

NMIJ International Metrology Symposium, February 17th, 2016

## 日本における質量定義改定に向けた取り組み Toward the redefinition of the kilogram in Japan

藤井賢一 Kenichi FUJII

#### 工学計測標準研究部門 Research Institute of Engineering Measurement

> X線結晶密度法によるアボガドロ定数N<sub>A</sub>の測定方法

X-Ray Crystal Density (XRCD) method for measuring  $N_A$ 

▶ なぜ同位体濃縮シリコンが必要なのか

Why Si isotope enrichment is necessary?

国際プロジェクトの概要

**Outline of the International Project** 

▶ 測定結果と今後の取り組み

**Result and future** 



## キログラムの再定義方法 Possible method for the redefinition

≻ 例1 (example 1)

キログラムは基底状態にある静止した自由な5.018 · · · × 10<sup>25</sup> 個の炭素原子<sup>12</sup>C の質量に等しい

The kilogram is equal to the mass of 5.018  $\cdots \times 10^{25}$  free  $^{12}C$  atoms at rest and in their ground state

アボガドロ定数 (Avogadro constant) *N*<sub>A</sub> = 6.022 · · · × 10<sup>23</sup> mol<sup>-1</sup>

### ≻ 例2 (example 2)

アインシュタインの関係式 (Einstein's relations)

 $E = mc^2 = hv$ 

 $v = mc^2/h$ 

キログラムは周波数が[(299 792 458)²/6.626 · · · ] × 10<sup>34</sup> ヘルツの光子のエネル ギーと等価な物体の質量である

The kilogram is the mass of a body at rest whose equivalent energy equals the energy of a collection of photons whose frequencies sum to  $[(299 792 458)^2/6.626 \cdots] \times 10^{34}$  hertz

光速度 (speed of light) *c* = 299 792 458 m/s (already defined) プランク定数 (Planck constant) *h* = 6.626 · · · × 10<sup>-34</sup> J s



(1776 - 1856)

## アボガドロ定数とプランク定数との関係 Relation between N<sub>A</sub> and h

基礎物理定数の関係式  $m_e = 2hR_{\infty}/(\alpha^2 c)$ 





Max Planck (1858-1947)

### $N_A$ とhは反比例 $N_A$ is antiproportional to h

 $cM_{\rm p}\alpha^2/[2R_{\infty}(m_{\rm p}/m_{\rm e})]$ :  $u_{\rm c.r} = 4.5 \times 10^{-10}$ 



# X線結晶密度法

## X-Ray Crystal Density (XRCD) method

- 密度 (density): *ρ*
- 格子定数 (lattice constant): a
- モル質量 (molar mass): M

<sup>28</sup>Si, <sup>29</sup>Si, <sup>30</sup>Siの同位体存在比 (isotope composition)

単位格子の密度 (unit cell density):  $\rho = (8M/N_A)/a^3$ 

 $N_{\rm A} = 8M/(\rho a^3)$ = 6.022 · · · × 10<sup>23</sup> mol<sup>-1</sup>



立方晶の単位格子 Unit cell of a cubic crystal

## 従来はモル質量の測定精度がボトルネック

Molar mass measurement has been the bottle neck in uncertainty

NMJ<sup>1</sup> National Metrology Institute of Japan



## **International Avogadro Coordination (IAC) Project**

- > 国際度量衡委員会 (CIPM)が主導 (coordination)
- > 共同研究期間 (term of MoU): 2004-2011
- ▶ シリコン同位体濃縮 (Si isotope enrichment)

|                  | Natural Si           | Enriched S           |
|------------------|----------------------|----------------------|
| <sup>28</sup> Si | 92 %                 | 99.994 %             |
| <sup>29</sup> Si | 5 %                  | 0.005 %              |
| <sup>30</sup> Si | 3 %                  | 0.001 %              |
| <i>∆M</i> /M     | 1 × 10 <sup>-7</sup> | 1 × 10 <sup>-8</sup> |

➢ BIPM (国際度量衡局), INRIM (伊), IRMM (EU), NIST (米), NMIA (豪), NMIJ (日), NPL (英), and PTB (独)

> Target: 
$$\Delta N_A / N_A = 2 \times 10^{-8}$$



## 5 kgの<sup>28</sup>Si同位体濃縮結晶 Production of isotopically enriched <sup>28</sup>Si crystal



Avo28 grown by the float-zoning method at IKZ (May 2007)

Cutting plan of silicon-28 ingot



濃縮度 (enrichment): 99.99 % 炭素濃度 (carbon) < 1.0 × 10<sup>15</sup> /cm<sup>3</sup> 酸素濃度 (oxygen) < 3.7 × 10<sup>14</sup> /cm<sup>3</sup>



### INRIM(伊)のX線干渉計による<sup>28</sup>Si格子定数の測定 Absolute lattice parameter measurements by INRIM (Italy)



## 格子定数の測定の相対標準不確かさ Relative standard uncertainty in *a*: 1.8 × 10<sup>-9</sup>



### NMIJのレーザ干渉計によるシリコン球体の直径測定 Diameter measurement of the silicon sphere at NMIJ

#### <sup>28</sup>Si silicon sphere







Rotational couplings Water jacket Radiation shiled

#### Temperature stability < 1 mK

Diameter measurements from 1000 directions Standard uncertainty in diameter measurement: 1 nm Surface evaluation by SE, XRR, XPS, XRF Present state:  $u_r(V) = 2 \times 10^{-8}$ 





Inductively Coupled Plasma (ICP): 誘導結合プラズマ



### Relative standard uncertainty in *M*: $5.6 \times 10^{-9}$



## 予想外の出来事

### **Unexpected surface contamination with Ni and Cu**



XRF measurements using the synchrotron radiation facility at PTB

- ・CSIRO (豪)で研磨した他のシリコン球も全てNiとCuで汚染
- ・金属層の厚さ (thickness): 0.5 nm
- ・金属層の質量 (mass of the metals): 100 µg



## アボガドロ定数の測定結果 (2011)

| Quantity        | Unit                               | Avo28-S5          | Avo28-S8          |
|-----------------|------------------------------------|-------------------|-------------------|
| 格子定数a           | pm                                 | 543.099 624 0(19) | 543.099 618 5(20) |
| 質量m             | g                                  | 1000.087 558(15)  | 1000.064 541(15)  |
| 球体積V            | cm <sup>3</sup>                    | 431.059 061(13)   | 431.049 111(10)   |
| 密度 $\rho = m/V$ | kg/m <sup>3</sup>                  | 2320.070 841(76)  | 2320.070 998(64)  |
| モル質量M           | g/mol                              | 27.976 970 26(22) | 27.976 970 29(23) |
| N <sub>A</sub>  | 10 <sup>23</sup> mol <sup>-1</sup> | 6.022 140 95(21)  | 6.022 140 73(19)  |

## $N_{\Lambda} = 6.022 \ 140 \ 82(18) \times 10^{23} \ \mathrm{mol}^{-1}$

| Uncertainty budget for Avo28-55 |                              |
|---------------------------------|------------------------------|
| Quantity                        | Relative standard            |
|                                 | uncertainty/10 <sup>-9</sup> |
| 格子定数a                           | 11                           |
| 質量 <i>m</i>                     | 4                            |
| 球体積V                            | 29                           |
| 表面 (surface)                    | 15                           |
| モル質量 $M$                        | 8                            |
| 点欠陥 (point defects)             | 3                            |
| Total                           | 36                           |

#### 

#### Reference

- Determination of the Avogadro Constant by Counting the Atoms in a 28Si Crystal, Physical Review Letter, 106, 030801 (2011).
- Counting the atoms in a 28Si crystal for a new kilogram definition, Metrologia, 48 (2011) S1-S13.
- Metrologia Special Issue: International determination of the Avogadro constant (2011). A total of 14 papers.



## 再研磨した<sup>28</sup>Si濃縮結晶球 Metallic layer is near-completely removed

Avo28-S5



AVO28-S5c, (p-v)<sub>diameter</sub> = 69 nm

Avo28-S8



AVO28-S8c, (p-v)<sub>diameter</sub> = 38 nm

質量1 kg、直径94 mm、凹凸の標準偏差:5 nm



### New results on the Avogadro constant in 2015

#### $N_{\rm A} = 6.022 \ 140 \ 76(12) \ \times \ 10^{23} \ {\rm mol}^{-1}$

Relative standard uncertainty:  $2.0 \times 10^{-8}$ 

| Quantity | Unit                               | AVO28-S5c         | AVO28-S8c         |
|----------|------------------------------------|-------------------|-------------------|
| М        | g/mol                              | 27.976 970 07(15) | 27.976 970 07(15) |
| а        | pm                                 | 543.099 621 9(10) | 543.099 616 9(11) |
| V        | cm <sup>3</sup>                    | 430.891 289 1(69) | 430.763 222 5(65) |
| т        | g                                  | 999.698 359(12)   | 999.401 250(16)   |
| m/V      | kg/m³                              | 2320.070 943(46)  | 2320.070 976(51)  |
| NA       | 10 <sup>23</sup> mol <sup>-1</sup> | 6.022 140 71(13)  | 6.022 140 79(14)  |

| Quantit                     | 10 <sup>9</sup> <i>u</i> ( <i>N</i> <sub>A</sub> )/ <i>N</i> <sub>A</sub> | Contribution / % |
|-----------------------------|---------------------------------------------------------------------------|------------------|
| у                           |                                                                           |                  |
| Μ                           | 5                                                                         | 6                |
| а                           | 5                                                                         | 6                |
| t <sub>SL</sub>             | 10                                                                        | 23               |
| V                           | 16                                                                        | 59               |
| т                           | 4                                                                         | 4                |
| <i>m</i> <sub>deficit</sub> | 3                                                                         | 2                |
| Total                       | 21                                                                        | 100              |

Y. Azuma, P. Barat, G. Bartl, H. Bettin, M. Borys, I. Busch, L. Cibik, G. Agostino, K. Fujii, H. Fujimoto, A. Hioki, M. Krumery, U. Kuetgens, N. Kuramoto, G. Mana, E. Massa, R. Meess, S. Mizushima, T. Narukawa, A. Nicolaus, A. Parmann, S. Rabbo, O. Rientiz, C. Sasso, M. Stock, R. Vocke, A. Waseda, S. Wundrack, S. Zakel: Improved measurement results for the Avogadro constant using a 28Si-enriched crystal, Metrologia, Vol. 52, No. 2, pp. 360-375 (2015)



## **Correlation between 2011 and 2015 results**

2011:  $N_{\rm A}$  = 6.022 140 99(18) × 10<sup>23</sup> mol<sup>-1</sup>(再研磨の前) 2015:  $N_{\rm A}$  = 6.022 140 76(12) × 10<sup>23</sup> mol<sup>-1</sup>(再研磨の後)

| Molar mass       | 0.00: NaOH to TMAH                         |
|------------------|--------------------------------------------|
| Unit cell volume | <b>0.15:</b> aberrations and extrapolation |
| Sphere volume    | <b>0.14: diffraction</b>                   |
| Sphere mass      | <b>0.32:</b> surface layer mass            |
| Total            | 0.17                                       |

Relative difference:  $38(33) \times 10^{-9}$ Weighted mean:  $N_A = 6.022 \ 140 \ 82(11) \times 10^{23} \ \text{mol}^{-1}$  $u_r(N_A) = 1.8 \times 10^{-8}$ 



## プランク定数の比較(2015年)











- > 2015-2017: 質量関連量諮問委員会(CCM)のキログラムの実現に関するPilot Studyに参加
  - ・共通のプランク定数の値(CODATAの2014年推奨値)を使って1キログラムを実現(realize)し、実現結果の整合性を確認(validation)
  - ・NMIJ(日)、PTB(PTB)、NIST(米)、NRC(カナダ)、LNE(仏)、 METAS(スイス)などが参加
- > 2016: キログラムの実現方法 (mise en pratique)を文書化
- > 2017:CODATAによるプランク定数h、電荷素量e、ボルツマ ン定数k、アボガドロ定数N<sub>A</sub>の決定(データの最終評価)
- > 2018: 第26回CGPMの開催(定義改定を審議)



## キログラムの再定義によって何が変わるのか

- メートルが光速度cで定義され、光周波数さえ測れれば誰もが長さの単位を 実現できるようになったように、プランク定数hやアボガドロ定数N<sub>A</sub>を基準と して誰もがキログラムを実現することできるようになる。
- > 新しい質量の定義 ⇒ 微小質量計測技術への応用





## 電圧天びんによる微小質量標準の実現(1 ng~1 mg)



 静電容量勾配の測定 電極が直線運動をするキャパシタの、運動 方向における静電容量変化率dC/dzを測定
質量(荷重)の測定 荷重と静電気力が釣り合うように電圧Uを制 御。そのときの静電気力Fと荷重mgを釣り 合わせる。

$$mg = F = \frac{1}{2} \frac{\mathrm{d}C}{\mathrm{d}z} U^2$$

 > 電圧の調整によって任意の質量を実現
> 電気的測定、長さ、時間という不確かさの小 さい量の測定から微小質量を直接的に実現

> 分銅に頼らない新しい微小質量標準





## キログラムの将来

- ▶ 1889年に開催された第1回国際度量衡総会(CGPM)で国際 キログラム原器(IPK)が質量の単位として定義されて以来、 ようやくアボガドロ定数やプランク定数の測定精度のほうが原 器の質量安定性よりもよくなってきた。
- ▶ 2014年11月に開催された第25回CGPMにおいて、2018年に 開催予定の第26回CGPMでキログラムの定義改定が審議さ れることになった。実現すれば130年ぶりの大改定。
- > プランク定数を基準とする微小質量計測が可能