はじめに

我が国では、現在放射線利用が幅広い分野に広がっている。原子力発電のみならず、放射性同位元素や加速器を用いた放射 線による工業・医療利用などである。このような施設では、放射線業務従事者の被ばく線量の測定・管理、また環境中の放射 線レベルの測定も重要になる。また放射線を利用したがん治療では、患部への線量評価が必要となる。このような背景を元に、 産総研では信頼性の高い高精度の放射線線量標準を開発し、各種の二次標準機関を通して個人線量計やサーベイメーター、ま た病院等で使用される放射線計測機器の校正として多くのユーザーに供給されている。

従来、線量標準として照射線量(C/kgあるいはR(レントゲン))が用いられてきたが^{1,20}、最近光子放射線に対して照射線量 の代わりに空気カーマの値が使用される場合が増えてきた。現在、一次標準の国際比較は全て空気カーマで行われており、国 内においても2001年4月から、放射線障害防止法関係法令において空気カーマが取り入れられた。産総研でも2001年8月から照 射線量に加え、校正依頼者の指定により空気カーマでの校正も行っている。γ線源としては、医療分野に、防護・環境測定用 機器の校正用として主としてCo-60、Cs-137が用いられてきた。Ra-226線源については、1980年代初頭から国際放射線防護委員 会(ICRP)やIAEA、WHOによって医学に用いられている線源を他の線源に替えることが勧告されたため、その使用は急速に減 少した。しかし長半減期の利点を有することから、数ヶ所の校正施設では環境測定用計測機器の校正線源としてRa-226を用い ている。産総研もしばらくRa-226線源の使用を中止してきたが、Ra-226線源による校正の要望、Ra-226γ線の実効エネルギー がCo-60とCs-137の間にあることなどから改めて標準を設定した。

γ線線量標準では、放射性同位元素から放出されるγ線の、ある空間における空気カーマ(率)の絶対測定を行い、置換法 によって放射線測定器の校正を行っている。空気カーマ率の絶対測定にはグラファイト製の円筒型空洞電離箱を用い、 Bragg-Grayの空洞理論から空気カーマ率を求めている。しかし、実際には原理は成り立っておらずそれを補うために様々な補 正が必要である。従来これらの補正係数は実験や理論計算によって求められてきた。近年、コンピュータ性能の向上により、 放射線の挙動を個々に対して評価するモンテカルロ法によるシミュレーションが研究され、汎用性のある計算コードも開発さ れるようになった。これらの計算コードは、放射線計測、遮蔽、また医学分野など様々な分野で活用されており、実験値との 比較も数多く行われその精度は評価されている。そこで今回、これらの計算コードを用い補正係数を評価し、産総研における γ線空気カーマ率の再設定を行った。

本報告は、円筒型空洞電離箱による、Co-60, Cs-137, Ra-226 y線源に対する空気カーマ率の測定、各補正係数の評価、不確か さの算出についての結果を紹介する。

γ線空気カーマ標準の設定

目 次

第1章 線量の定義と単位: 1
1.1 照射線量 (exposure) 1
1.2 $\neg - \neg$ (kerma) 1
1.3 空洞電離箱による線量測定 1
第2章 γ線標準場·····2
2.1 照射施設 2
2.1.1 大γ線源照射室 ·····2
2.1.2 小γ線源照射室 2
第3章 空気カーマ率の測定 4
3.1 空洞電離箱 4
3.2 電離電流の測定 4
3.3 浮遊容量の測定 4
3.4 線量の算出 55
3.5 物理定数の評価 5
3.5.1 ρ · 0°C 15F (1013.25hPa) における空気密度 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.
252 $\overline{\mu}/\overline{\mu}$ · \overline{m} Br $2\pi/\overline{\nu}$ · \overline{m} Br $2\pi/\overline{\nu}$ · \overline{m} Br $2\pi/\overline{\nu}$ · \overline{m}
$3.3.2 \mu_{air}/\mu_{ga}$. 貝里小小ルコ 双极际效比 3
3.3.3 S_{ga}/S_{air} :半均貝里阻止能比 0
3.5.4 W_{air}/e : 電士に対する空気のW値 0
3.5.5 1-g:gは二次電子の空気中にわける制動放射損失の割合 0.c. タチゼオズが
3.0 谷悝佣止馀剱 0 0.0.1 (
3.6.1 K _{loss} : 単何損失備止係数 6
$3.6.2$ k_h : 湿度補止條数 7
3.6.3 k_{wall} : 壁効果に対する補止係数 7
3.6.4 <i>k</i> _{stem} : 電離箱ステムによる散乱線の寄与に対する補正係数 7
3.6.5 <i>k</i> _{nu} : γ線標準場の非一様性に対する補正係数 8
第4章 スペクトルの評価 9
4.1 MCNPによる計算 9
4.2 Ge検出器によるRa-226 γ 線測定 9
第5章 線量率測定 11
第6章 不確かさの評価 12
6.1 V:電離体積 12
6.2 <i>k</i> _{wan} : 壁効果に対する補正 12
6.3 K _{stem} :電離箱ステムによる散乱線の寄与に対する補正 12
6.4 電離箱設定位置による不確かさ 12
6.5 <i>k</i> _m : γ線場の非一様性に対する補正 13

6.6 k_{los}	_s :電荷損失に対する補正 1. 1.
6.7 I:	測定電流 1.
6.8 散舌	1.線による不確かさ 111111111111111111111111111111111111
6.8.1	質量エネルギー吸収係数比 11 15 15 15 15 15 15 15 15 15 15 15 15
6.8.2	質量阻止能比 16
6.8.3	k _{wall} : 壁効果に対する補正 16
第7章 γ線	標準における校正・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
7.1 校正	E定数とその不確かさの成分 11 11 11 11 11 11 11 11 11 11 11 11 11
7.2 各页	式分の不確かさの算出 11
7.2.1	温度の不確かさ 19
7.2.2	気圧の不確かさ 15
7.2.3	湿度の不確かさ 15
7.2.4	校正機器の出力の不確かさ 19
7.2.5	校正検出器設置位置による不確かさ 19
7.2.6	校正検出器の体積に依存した線場の非一様性に起因する不確かさ 20
7.2.7	空気カーマ率の設定値が持つ不確かさ 20
7.3 校正	E定数の合成不確かさ 20
7.4 校正	E手順 · · · · · · · · · · · · · · · · · · ·
7.4.1	準備 20
7.4.2	測定 21
7.5 測定	定結果の処理 2.

参考論文

Comparison of the standards for air kerma of the NMIJ and the BIPM for 60 Co γ rays	* 23
Comparison of the standards for air kerma of the NMIJ and the BIPM for 137 Co γ rays	• 35

第1章 線量の定義と単位

1.1 照射線量 (exposure)

これは歴史的に最も古くから用いられている量であり、 X線、 γ 線の量を気体の電離で測定した事に由来してい る。質量 Δm をもつ空気の体積要素内で光子により発生 したすべての電子(電子と陽電子)が空気中で完全に静 止するまでに、空気中に作られる正負いずれかのイオン の電荷量の和 ΔQ を Δm で割った値として定義されてい る。

$$X = \frac{\Delta Q}{\Delta m} \quad (C \text{ kg}^{-1}) \tag{1-1}$$

照射線量には、二次電子による制動放射線の吸収は含ま れない。高エネルギー光子の場合に重要になるこの制動 放射線の寄与を除けば、照射線量は空気カーマに等価な 電離量である。照射線量の測定には空気電離箱が原理的 に最適である。照射線量に関するエネルギーの上限は原 理的にはないが、実際上は光子のエネルギーが高くなる と、電離箱中で電子によって生成された正負イオンを完 全に収集できなくなり、これを完全に収集しようとする と電離箱が大きくなって光子束が減衰する。

1.2 カーマ (kerma)

カーマ (kerma: Kinetic Energy Released per unit Mass) は、質量dmの物質内で、非荷電粒子(光子や中性子)に よって放出されるすべての荷電電離粒子の初期運動エネ ルギーの和 dE_{tra} をdmで割った値として定義されている。

$$K = \frac{dE_{tra}}{dm} \quad (J \text{ kg}^{-1} \ddagger \hbar \text{ kGy}) \tag{1-2}$$

空気カーマには放出された荷電粒子が制動放射線として 放出するエネルギー、および同一体積要素内に二次過程 として作られるすべての荷電粒子(例えば、オージェ電 子など)のエネルギーもdE_{tra}中に含まれる。荷電粒子平 衡が成立し、制動放射損失が無視される場合には、カーマは吸収線量に等しくなる。最近、光子放射線に対して、 照射線量の代わりに空気によるカーマの値が使用される 場合が多くなってきた。現在、一次標準の国際比較は全 て空気カーマで行われており、国内においても2001年4 月から放射線障害防止法関係法令において空気カーマが 取り入れられた。産総研では従来X線やγ線の線量測定 器の校正を照射線量で行ってきたが、2001年から校正依 頼者の指定によりGy単位の空気カーマによっても校正 を行っている³。

1.3 空洞電離箱による線量測定

空洞電離箱による吸収線量測定法は、Bragg-Grayの空 洞原理に基づくものである。空洞理論によれば、媒質中 のある点における吸収線量D_mは、その点の回りに小さい 空洞を作り、その中に導入した気体中に生じたイオン対 数 (J_e) から、次の関係式で与えられる。

$$D_m = J_g \cdot W_g \cdot s_{mg} \tag{1-3}$$

 s_{mg} は空洞を通過する二次電子に対する媒質と空気の平 均質量阻止能比であり、 W_g は二次電子が気体中にイオン 対1C当たりを作るのに必要な平均エネルギーである。こ の空洞原理は、(1)媒質中に空洞が存在しても二次電子粒 子フルエンスおよびそのエネルギー分布は変化しない、 (2)二次電子の減速は連続的とみなされる(δ 線放出効果 の無視)という二つの仮説に基づいている。仮定(1)は空 洞体積を小さくするか、あるいは気圧を下げることによ り満足されるが、その場合には仮定(2)が満足されなくな る。すなわち、仮定(1)と(2)は相反関係にある。その場合 の理論的補正法がSpencerとAttix⁴⁾およびBurch⁵⁾により 与えられ、その後Burlin⁶により空洞体積が大きい場合に 拡張されている。

第2章 γ線標準場

2.1 照射施設

1.1 大γ線源照射室

図1に照射室(2-3B117)の概要を示す。照射室には148 TBqのCo-60と34TBqのCs-137線源が設置されている。 Co-60線源容器前面には高速シャッターが設けられ、高圧 空気で動作し、開閉の動作時間は約0.3秒である。又、Co-60 線源は通常容器開閉から80cm奥の位置に固定されている が、容器開閉口から約50cmまで任意の位置に繰り出すこ とができる。照射y線ビーム軸は床面上から150cmとなっ ている。線源が測定台車は、照射室Co-60線源容器前方に 設置されたレール上を移動し、容器前面から6mまでの任 意の位置に固定することができる。また台車上部はビーム 軸に対して直角に稼動可能で、これによりCs-137のy線ビ ーム位置に検出器を設置することができる。

照射室には、ビーム軸上と軸に対し直角な位置にレーザ ーが設置されており、これにより検出器を基準位置にセッ トする。直角方向のレーザー光位置は、格納状態の線源の

図1 大γ線源照射室

中心から約1mの位置になっている。空気カーマ率の基準 位置は、Co-60の場合線源からの距離が30cm, 40cm, 1, 2, 3, 4, 5, 6mまで、またCs-137の場合は1, 2, 3, 4mとなっている。 また、6mの点での線量率と小γ線源照射室で設定できる 最大線量率との間の線量率の場を得るために、Co-60では 照射容器のγ線出口に厚さ25mmあるいは40mmのタング ステンディスクを挿入してγ線を減弱させている。Cs-137 線源でも同様 n、厚さ20mmの鉄板を用いて線量率を減弱 させ、線量率の広い範囲にわたる標準場を設定している。

2.1.2 小γ線源照射室

図2に小γ線照射室(2-3B142)及び線源格納室 (2-3B141)の概要を示す。照射室と線源格納室は、厚 さ80cmのコンクリート壁により仕切られている。仕切ら れた壁の中央、床上150cmの位置に10cmφの鉛コリメー タ(鉛の厚さ20cm)が埋め込まれ、線源室からコリメー タを通し、y線源が照射室に繰り出されるようになって いる。線源の繰り出しは照射室壁面より120cmまでで、 コリメータ内を含めて任意の位置に設定することができ る。コリメータの前面には、厚さ20cmの鉛シャッターが 設置されており、開閉動作は圧縮空気で行われそのスピ ードは約0.3秒である。コリメータ前方、床に約7mのレ ールが設置されており、レール上を測定台車が移動する よになっている。γ線の照射軸は、大γ線源照射室と同 様に床上150cmの高さである。照射軸方向前方上部及び 照射軸に対して直角方向に、コリメータ壁面(基準面) から90cmと220cmの三箇所にレーザーが設置されてお り、これらを用いて照射軸上の所定の位置に測定器具類 をセットする。

低線量γ線空気カーマ率設定用として線源選択台に搭載されているγ線源は、Co-60(185, 18.5, 3.7GBq)、Cs-137 (222, 18.5, 1.85GBq)、Ra-226 (7.4, 3.885, 0.37GBq) である。

第3章 空気カーマ率の測定

3.1 空洞電離箱

図3に絶対測定に用いたグラファイト空洞電離箱の構造を 示す。サイズの異なる二種類の電離箱があり、C-110G-No.765, 766は内径40mm、C-110G-No.763, 764は内径20mmの円筒型 である。電離箱壁は密度1.85g/cm³のグラファイトでできてお り、¹³⁷Csの場合は2mm、⁶⁰Coの場合は3mm、²²⁶Raの場合は5mm の壁厚のものを使用している。各厚さはそれぞれの放出γ線 によって生成される二次電子のほぼ最大飛程であり、電離箱 空洞部分で電子平衡が成立つ厚さである。これらの円筒型電 離箱は、電離電流の角度依存の変化が少ない電離箱中心軸が γ線照射方向に対し45度の角度に設定して使用している。電 離箱電離体積の幾何学中心が線量測定点である。

電離箱の空洞壁に囲まれた電離体積の他に、中心電極 の基部周辺における電荷収集も考慮して電離体積を決定 する。基部周辺の実効的な電離体積は、空洞壁の内径、 深さおよび支持台のはめ込み部の長さから求められる空 洞壁に囲まれた部分の電離体積を用いて次のようにして 求める。外部電極の空洞壁と中心電極を外し、新たに短 い中心電極を取り付け、グラファイト製の平板で電極基 部に蓋をする。この状態でy線照射した時の電流を測定 し、通常の使用法による時の信号電流と比較し、新たに 取り付けた中心電極の長さ等を考慮して基部の実効的電 離体積を求める。得られた電離体積は**表1**の通りである。

図3 円筒型グラファイト空洞電離箱

表1 空洞電離箱の電離体積

電磁悠	空洞壁内	基部周辺	全電離体積
电阳相	(cm ³)	(cm ³)	(cm ³)
No. 763	6.0092	0.0546	6.0638
No. 764	6.0017	0.0565	6.0583
No. 765	62.6320	0.0525	62.6845
No. 766	62.6409	0.0575	62.6984

3.2 電離電流の測定

電離箱による照射線量率の絶対測定は、電離電流の高 精度測定が必要である。電離電流は、振動容量型電位計 に標準コンデンサを組み合わせ、電離電流の流入による コンデンサの電位上昇率から測定する、いわゆる charge-up methodを用いている。電離電流*i*(A)により容量 *C*(F)のコンデンサを*V*(V)の電位まで充電するのに要する 時間を*t*(s)とすると、*i*は次式によって求められる。

$$i = \frac{(C + \Delta C)V}{t} \tag{3-1}$$

△Cは接続した電離箱、ケーブルの等価浮遊容量を含む 振動容量型電位計の浮遊容量である。線量率に伴い、電 離電流が変化するため接続する標準コンデンサは10nF, 1nF, 1000pFの三種類を使い分けている。実際の測定では、 任意の時間間隔における電位を測定し、最小自乗法によ り単位時間あたりの電圧変位を求めることにより電離電 流を算出している。振動容量型電位計の出力電圧は、標 準電圧発生器により各レンジについて校正している。 電離電流は、極性効果から電離箱壁にプラスを印加した 場合とマイナスを印加した場合では、0.1%程度異なる。 線量率を求める際には、極性効果を打ち消す補正をする ためプラスとマイナス極性の平均値をとっている。

3.3 浮遊容量の測定

前述したように浮遊容量の評価が必要となるため、二 種類の電気容量の異なる標準コンデンサを使い浮遊電気 容量を測定した。測定回路を図4に示す。振動容量型電 位計のプリアンプのFeed backに直流電圧のマイナスを、 コンデンサの上部入力端にプラスを接続し、振動容量型 電位計の出力を電圧計で読む。

図4 浮遊静電容量測定のための回路

コンデンサAを接続して、直流電圧をゼロとした時の 電圧計の指示値 B_A と直流電圧M(V)を供給した時の電圧 計の指示値 V_A を読み取る。同様に異なる容量のコンデン サBを接続しそれぞれ B_B , V_B を読み取る。コンデンサの容 量を C_A , C_B とすると、求めたい浮遊電気容量 C_F との関係 は下記の通りとなる。

$$C_{F}(V_{A} - B_{A}) = C_{A}(M - (V_{A} - B_{A}))$$

$$C_{F}(V_{B} - B_{B}) = C_{B}(M - (V_{B} - B_{B}))$$
(3-2)

上記の式を展開すると

$$C_{F} = \frac{C_{A}C_{B}((V_{A} - B_{A}) - (V_{B} - B_{B}))}{C_{B}(V_{A} - B_{A}) - C_{A}(V_{B} - B_{B})}$$
(3-3)

となる。これにより浮遊電離容量を求めることができる。 浮遊電気容量は10pF程度であるため、使用する二種類 のコンデンサも100pFと86pFなどなるべく容量の小さい ものを使用する。また、バックグラウンドの電圧がふら つくため、振動容量型電位計と電圧発生装置のグラウン ドを同電位とする必要がある。

3.4 線量の算出

グラファイト壁空洞電離箱による電流出力が *I* の場合、 照射線量率 *X* は次式によって得られる。

$$\dot{X} = \frac{I}{m} \cdot \frac{\overline{\mu}_{air}}{\overline{\mu}_{gra}} \cdot \frac{\overline{s}_{gra}}{\overline{s}_{air}} \cdot k_{loss} \cdot k_{h} \cdot k_{wall} \cdot k_{stem} \cdot k_{nu}$$
(3-4)

ここでmは空洞電離箱内の空気の質量であり、電離体積 をVとすると、

$$m = \rho_0 \cdot V \cdot \frac{273.15}{273.15 + T} \cdot \frac{P}{1013.25}$$
(3-5)

によって得られる。ここで*p*₀は0℃、1気圧(1013.25hPa)

における乾燥空気の密度で、 $T \ge P$ は測定時の気温 気圧である。(3-4)式における μ とsは、光子に対する質 量エネルギー吸収係数と電子に対する質量阻止能であり、 サフィックスのair とgraは、それぞれ空気とグラファイ トに対する値であることを示している。記号の上の横線 は、それぞれ入射光子または空洞を通過する二次電子の エネルギー分布に対する平均値であることを意味してい る。式の後半の各k は下記の補正係数である。 k_{loss} : 再結合と拡散による電荷損失に対する補正係数

k_h :湿度による電離量の変化に対する補正係数

k_{wall}:壁効果に対する補正係数

k_{stem}:電離箱ステムによる散乱線の寄与に対する補正係数
 k_m: γ線場の非一様性に対する補正係数

⁻⁻⁻⁻ 照射線量 X は照射線量率 X と照射時間 t の積である。

 $X = \dot{X} \cdot t \tag{3-6}$

空気カーマ K_{air} は照射線量から、次式によって得られる。 (W / e)

$$K_{\text{air}} = X \cdot \frac{(r_{\text{air}}/\ell)}{(1-g)}$$
(3-7)

ここで (W_{air}/e) は電子に対する空気のW値である。またgは、空気中における二次電子の制動放射損失の割合である。

3.5 物理定数の評価

3.5.1 ρ₀: 0°C、1気圧(1013.25hPa)における空気密度 空気密度については参考文献1)から下記の値を用いる。 ρ₀=1.2930 kg/m^{3 7)}

3.5.2 *µ*_{ai}/*µ*_{ora}: 質量エネルギー吸収係数比

各標準場における散乱線を含む光子エネルギー分布を 計算によって求め、その分布で加重した質量エネルギー 吸収係数の値をデータ⁸から求めた。同じ線質では照射 条件による質量エネルギー吸収係数比の値の変化は小さ いことから、それぞれの線質について、下記の値を使用 する。

```
Cs-137 : 0.9996
Co-60 : 0.9990
Ra-226 : 0.9996
```

3.5.3 **s**_{ora}/**s**_{air}:平均質量阻止能比

平均質量阻止能比は、γ線により電離箱内で発生した 二次電子により、壁物質、空洞内空気のそれぞれの単位 質量あたり吸収されたエネルギーの比であって、電離箱 理論の核心をなすものである。平均質量阻止能比を導出 するBragg-Grayの原理が出されて以来、多くの研究者に よって研究が行われて報告も数多い。今までは、二次電 子のスペクトルや空洞内での減衰、δ-rayの効果などを モデルを用いて近似的に求められてきた。しかし計算コ ードの精度向上により、厳密に空洞内の二次電子スペク トルを計算することが可能となったことから、今回計算 により評価を行った。計算によって得られた二次電子ス ペクトルに以下の式で空気と炭素の阻止能比の重み付け を行った。

$\overline{S} = \frac{1}{2}$	$_{e}(E) \cdot S_{Carbon}(E)dE$	(3-)	(3-8)
5 = -	$\int_{e} (E) \cdot S_{air}(E) dE$	(3-0	,

この方法でCo, Csについて行った計算結果は、BIPMが 評価した値とほぼ一致した。

線源	BIPM値	今回の計算
Ra	-	1.0016
Co	1.0010	1.0015
Cs	1.0104	1.0096

3.5.4 W_{air}/e:電子に対する空気のW値

空気のW値は下記の値を使用する⁹。但し、W値の不確 かさは質量阻止能比の不確かさと関連し、W値として 33.97J/kgの値を使用する事が国際的に合意されている。 従って、W値は規定値とし、阻止能比の不確かさだけを 考慮する。

 $W_{\rm air}/e = 33.97 \pm 0.05 \, {\rm J/kg}$

3.5.5 1-g:gは二次電子の空気中における制動放射 損失の割合

各標準場における散乱線を含む光子エネルギー分布を 計算によって求める。各分布について、光子エネルギー に対するgの値¹⁰を使用し、空気の質量エネルギー吸収 係数のデータ⁸⁾を用いて荷重し、(1-g)の値を得る。同じ 線質では照射条件による (1-g)の値の変化が小さいこと から、同じ線質については、下記の代表値を使用するこ ととする³⁾。

Cs-137 :	$(1-\overline{g}) = 0.9984 \pm 0.0001$
Co-60 :	$(1-g) = 0.9970 \pm 0.0002$
Ra-226 :	$(1-g) = 0.9967 \pm 0.0002$

3.6 各種補正係数

3.6.1 k_{loss}:電荷損失補正係数

電離箱の電離イオン再結合補正には、初期再結合損失 (initial recombination loss) と一般再結合損失 (general recombination loss) がある。初期再結合損失は、二次電 子の飛跡に沿って作られた正負イオンどうしの再結合に よる電荷損失であって線量率に依存しない。一般再結合 補正は、生成された正負イオンが電界により相互に逆方 向に流動し、その過程において衝突した正負イオンの再 結合による電荷損失で線量率に依存する。いずれも印加 電圧が高いほど再結合損失は小さくなり、飽和電離電流 に近づく。

従来は、初期再結合が主となる低線量率における測定 と、一般再結合が主となる高線量率での測定をそれぞれ 行い、各補正係数の値を別々に得た。しかし、ここでは Boutillonによって考案された手法¹¹⁾を用いた。この手法 では、幾つかの異なる線量率の場において印加電圧を変 えて測定し、印加電圧の異なる場合の信号電流の比を信 号電流の関数としてプロットすると、測定データは直線 上に並び、この直線の傾斜は一般再結合に対する補正係 数に対応し、Y軸の切片は初期再結合による電荷損失に 対応する。実際には、以下の式の係数を各電離箱に対し て得られた測定データから評価し、再結合補正を行って いる¹²⁾。

$k_{\rm loss} = 1 + A/V$	$V + B/V^2 \cdot I$	(3-9)
1055	/	

- V :印加電圧 (V)
- I : 測定電流 (pA)
- A, B: Aは初期再結合と拡散損失に関連し、Bは体積 再結合に関連する各電離箱固有の定数

各電離箱に対するA, Bの値は下記の通りである。

電離箱	Α	В
No. 763	-	-
No. 764	1.078	2.92418E-01
No. 765	1.178	5.52099E-01
No. 766	1.0987	6.16359E-01

3.6.2 k_h:湿度補正係数

k_hは湿度による空洞電離箱中の電離量の変化に対す る補正係数である。空洞電離箱の電離量の変化は、湿度 によって空気の質量エネルギー吸収係数とW値が変化す る事による。湿度補正係数は、電離箱の信号出力の湿度 依存のデータ(図5)¹³⁾から求めた。このデータからフィ ッティングによって得た下記の評価式を用いる。ここで Hは20℃における相対湿度(%)である。

$$\begin{split} 1/k_{\rm h} =& 1.0 + 4.0499 \text{E-}4 \cdot H \text{ -}2.485 \text{E-}5 \cdot H^2 + 8.4819 \text{E-}5 \cdot H^3 \\ &- 1.4299 \text{E-}8 \cdot H^4 + 2.4244 \text{E-}11 \cdot H^5 + 3.222 \text{E-}12 \cdot H^6 \\ &- 5.4071 \text{E-}14 \cdot H^7 + 3.6796 \text{E-}16 \cdot H^8 \text{ -}9.4258 \text{E-}19 \cdot H^9 \end{split}$$

3.6.3 k_{wall}:壁効果に対する補正係数

 k_{wall} は電離箱壁による γ 線の減衰と電離箱壁によって 散乱された γ 線の一部が信号電流に寄与する効果に対す る補正係数である。一定 γ 線照射のもとで、電離箱壁厚 を変えて電離電流を求める。この測定結果から直線外挿 によって壁厚ゼロにおける電離電流を求める。この電流 と実際に使用する電離箱の壁厚における電離電流の比は、 電離箱による γ 線の減衰と散乱線に対する補正係数の値 となる。しかし電離箱壁内で発生して電離体積内に入る 二次電子の発生位置は、電離箱内面よりやや入った所と なっている。このため二次電子発生実効位置の内壁面か らの深さを推定し、この厚さの電離箱壁物質による γ 線 の減衰量を γ 線の減衰係数から計算して、上記電流の比 から求めた補正係数の値をさらに補正する必要がある。

しかし、円筒形や球形の電離箱において、γ線が二次 電子を発生するまでに壁中を通過する長さは壁厚に比例 しないことが指摘され、従来の直線による壁厚ゼロへの

図5 湿度に対する空洞電離箱の出力変化。 乾燥空気による出力 I_{ar} で規格化されている。この 値は、照射線量の絶対測定における湿度の影響に 対する補正係数 k_bの逆数に相当する。

外挿では、正しい補正値が得られないことがモンテカル ロ法によって示された¹⁴。

産総研では、EGS4を使ったシミュレーション計算によって次式の壁効果に対する補正係数を求めた¹⁵⁾。

$$k_{\text{wall}} = \frac{\sum_{i} r_{i}^{0} e^{+\mu d_{i}}}{\sum_{i} (r_{i}^{0} + r_{i}^{1})}$$
(3-11)

ここでr[®]は入射 γ線が放出した二次電子によって空洞 中の空気に付与されたエネルギーであり、r¹は空洞壁中 で一次散乱あるいは多重散乱によって発生した散乱線が 放出した二次電子によって付与されたエネルギー、µは 入射 γ線に対する壁物質の減衰係数、dは入射 γ線が二次 電子を発生するまでの空洞壁中の通過距離である。iは電 離箱に入射する個々の γ線を示している。壁厚はCsの場 合2mm、Coの場合3mm、Raの場合は5mmとしている。 壁効果に対する補正係数は、平行入射 γ線に対して求め、 他に非一様性に対する補正として点線源を用いた計算を 行った。また、参考文献15)では単色 γ線として扱って いるが、ここでは散乱線スペクトルも考慮して各電離箱 に対して下記の値を得た。

> No.763, 764 (6cc) Cs-137 : 1.0168 Co-60 : 1.0202 No.765, 766 (60cc) Cs-137 : 1.0194 Co-60 : 1.0222 Ra-226 : 1.0386

3.6.4 k_{stem}:電離箱ステムによる散乱線の寄与に対す る補正係数

電離箱を通常使用の設定状態(図6左図)から90度回転し、ステムがγ線源方向から45度の角度となるように設置する。この電離箱の空洞壁の端面に、同じ種類の電離箱の空洞壁と中心電極を外した空洞壁支持台を密着させて設置する(図6右図)。この支持台を設置した時と、取り除いた時の電離箱の信号電流の比から、ステムによる散乱線の寄与に対する補正係数の値を得る。各電離箱について、下記の値が得られた。

No.763, 764 (6cc) Cs-137 : 0.9950 Co-60 : 0.9977 No.765, 766 (60cc) Cs-137 : 0.9934 Co-60 : 0.9968 Ra-226 : 0.9970

図6 ステム散乱補正係数測定のための配置図

3.6.5 k_m: γ線標準場の非一様性に対する補正係数

γ線標準場はγ線ビーム中心軸上の値として設定され る。絶対測定に使用される電離箱の有感体積内における 線量率は、γ線ビーム軸方向と、それに直角方向共に、 一定ではない。k_mの値は、モンテカルロ法によって下記 の式から得られる。

$$k_{\rm nu} = \frac{D_{\rm parallel}}{D_{\rm point}}$$

(3-12)

ここで、 $D_{parallel} \geq D_{point}$ はそれぞれ、平行で一様な場と点 線源による場に電離箱を設置した時に、 γ 線ビーム軸上 で同じフルエンスの γ 線が通過した時、入射 γ 線と散乱 γ 線によって電離体積内の空気に付与されるエネルギー である。実際の標準場では、特に線源からの距離が短い 場合、 γ 線ビームに直角な方向の非一様性は、線源やコ リメーターからの散乱線の影響により、点線源を仮定し た場合よりも大きい。従って、線源からの距離が1m以下 の標準場については、 γ 線ビームに直角な方向の線量分 布を測定し、(5)式における D_{point} の計算において、直角方 向の分布は、この測定結果に従うとして補正係数の値を 計算する。

電離容積が小さなNo.763、764に関しては、計算によ る統計的な不確かさ以上の補正値が得られなかったため、 補正値は1とした。またNo.765,766についても線源から 1m以上離れた場合、補正値が計算精度以下となったため 1とした。

No.763, 7764 (6cc)

Cs-137, Co-60ともに1.0000

- No.765、766 (60cc)
 - Cs-137, Co-60, Ra-226ともに1m以上では、1.0000

第4章 スペクトルの評価

質量エネルギー吸収係数比や平均質量阻止能比、電離箱壁 補正係数の値を計算するためには、光子スペクトル情報が必 要である。Co-60やCs-137は単色エネルギーの光子を放出する 核種であるが、線源自身や、ホルダー、コリメータ等で散乱 光子が発生し、連続エネルギー分布を持つことになる。また Ra-226は様々な娘核種から様々なエネルギーの光子が放出さ れる。そこでCo-60, Cs-137に関しては、MCNPを用いた計算に よる評価を、またRa-226では、様々なエネルギーのγ線が放出 されることからGe検出器による放出γ線の測定を行った。

4.1 MCNPによる計算

線源や、格納容器、コリメータなど幾何学的配置について 詳細に入力し、線源から放出される光子の輸送計算を行い、 各線量基準点におけるエネルギースペクトルの計算を行った。 図7にそれぞれの線源からの1mの位置における計算結果を示 す。これからCo-60の散乱線成分がCs-137に比べて多いことが 分かる。これは、Co-60から放出されるy線エネルギーが高く、 相互作用の中ではコンプトン散乱が主となりそれによって散 乱線が多く生成されていることが分かる。Cs-137から放出され るy線エネルギーはCo-60の半分であり、コンプトン散乱の割 合が小さくなっている。これらの散乱線成分は、床や部屋の 壁からの散乱線よりも、線源、線源ホルダー、線源周りの遮 蔽材、コリメータから散乱される成分の方が多いことが計算 によって知ることができた。したがって、散乱線をより少な くするためには、線源形状や、線源周り、コリメータの設計 を十分考慮する必要がある。

4.2 Ge検出器によるRa-226γ線測定

産総研が所有しているRa-226線源は7.4GBq, 3.885GBq, 370MBqと弱いため、コリメータを使用しなくても放出y線 をGe検出器によって直接測定することができる。ただ 7.4GBq, 3.885GBq線源は比較的線量率が大きいので、線源と 検出器間の距離を6mとした。370MBqの線源では、距離1.1m, 2m, 4m, 6mで測定し、距離によるスペクトルの変化を観察し た。図8に370MBqの線源について線源から1.1mの位置で測定 したスペクトルを示す。ただし、今回の測定データについて は、放出y線のピーク部分のみを解析しており、アンフォー ルディングによる散乱線スペクトルの解析は行っていない。 Ge検出器のピーク効率またエネルギー校正は、放射能を校正 された基準γ線源を用いて行った。表2に測定されたピーク γ線のエネルギーと放出率を示す。また合わせて同定された 放射性同位元素も示した。表に示した低エネルギー成分の二 本の光子は、Ra-226からの娘核種から放出されたものではな く、Ra-226線源を被覆している白金合金の白金からの特性X 線であることが分かった。またこの成分は、線源が異なるこ とによっても変わっており、放射能が小さいほど相対的な比 率が大きくなっている。これは、白金カプセルの厚さは同じ でも小線源ほどカプセルが小さく、γ線発生位置からカプセ ルまでの平均距離が短い事によると考えられる。

図8 線源距離が1.1mでのGe検出器で測定されたRa-226 (370MBq) スペクトル

放出	核種	ピークエネルギー(MeV)	フルエンス (n cm ⁻² s ⁻¹)	全体を1とした 相対フルエンス
Pt I	Κα	0.066	1.90E+00	0.013
Pt I	Κ β	0.076	7.66E-01	0.005
Ra-226	γ2	0.186	6.31E-01	0.004
Pb-214	γ5	0.242	2.37E+00	0.016
Pb-214	γ6	0.295	1.06E + 01	0.071
Pb-214	γ4	0.352	2.42E+01	0.163
Bi-214	γ 4.5	0.610	3.47E+01	0.234
Bi-214	(y 31)	0.666	1.23E+00	0.008
Bi-214	γ6	0.743	1.15E+00	0.008
Bi-214	γ 11	0.769	3.90E+00	0.026
Pb-214	γ8	0.787	9.08E-01	0.006
Bi-214	γ 10	0.806	1.12E+00	0.008
Bi-214	γ 13	0.934	2.75E+00	0.019
Bi-214	γ 14	1.121	1.41E+01	0.095
Bi-214	(y 36)	1.156	1.61E+00	0.011
Bi-214	γ 15	1.182	1.58E+00	0.011
Bi-214	γ 16	1.238	5.39E+00	0.036
Bi-214	γ 18	1.281	1.02E+00	0.007
Bi-214	γ 20	1.378	3.17E+00	0.021
Bi-214	γ 21	1.402	5.46E-01	0.004
Bi-214	γ 23	1.408	1.49E+00	0.010
Bi-214	γ 28	1.509	2.10E+00	0.014
Bi-214	γ 30	1.662	8.97E-01	0.006
Bi-214	γ 31	1.730	2.52E+00	0.017
Bi-214	γ 33	1.764	1.45E+01	0.098
Bi-214	γ 35	1.847	1.92E+00	0.013
Bi-214	γ 36	2.118	1.48E+00	0.010
Bi-214	γ 37	2.203	7.02E+00	0.047
Bi-214	γ 38	2.292	3.80E-01	0.003
Bi-214	γ2	2.447	2.37E+00	0.016

表2 Ge検出器によって測定されたRa-226線源からのγ線ピークのフルエンス

第5章 線量率測定

大γ線源照射室では、Co-60は線源-検出器間距離が 30cm, 40cm, 1m, 2m, 3m, 4m, 5m, 6mまた6mでタングス テンディスク25mm, 40mm, 65mmを挿入して減弱させた 場合の絶対値を測定した。Cs-137は線源-検出器間距離 が1m, 2m, 3m, 4mまた4mで鉄ディスクを挿入して減弱 させた場合の絶対値を測定した。小γ線源照射室につい ては、線源と電離箱間の距離を一定とし、線源を2-3B141 室と2-3B142室間の壁に取り付けられているコリメータ 内の種々の位置に設定した場合の電離箱による電離電流 の測定を行った。この結果から、線源が壁面から40~ 60cm内側に入った所に設置した場合が散乱線が少ない ことが判明した。よって内側から50cm入った位置をγ線 標準場設定時の線源位置とした。各線源について線源位 置からの距離が1.1m, 1.5m, 2m, 2.5m, 3m, 3.5m, 4m, 4.5m, 5m, 5.5m, 6mの位置を基準点として空気カーマ率の絶対 測定を行った。

各種γ線に対する線量率測定は、大γ線源照射室の Co-60線源を突き出し検出器間距離を30cmと40cmにし た場合と、線源が格納位置での検出器間距離が1mの場合 は、6ccの小型の電離箱で測定した。これは、線量率が高 く62cc電離箱では再結合補正による不確かさが大きくな ってしまうこと、また検出器の容積が大きいことによる 不均一補正が大きいため、6cc電離箱のみによる測定を行 った。Co-60の2mから6mとCs-137のすべての基準点では、 二本の62cc電離箱で線量率を測定し、その平均値を絶対 値とした。小γ線源照射室では、線量率が低いことから 62cc電離箱で絶対測定を行った。ただ小γ線源照射室で は線量率が低く、線源強度によっては62cc電離箱では電 離量が不十分なことによる電流測定の統計的不確かさが 大きくなることから、空洞容量が800ccのExradin社製A6 電離箱による相対測定を行い、絶対値の評価を行った。

大γ線源照射室における線量率測定は、6ccあるいは 62cc電離箱による電流測定の不確かさは小さくそのまま 測定値を絶対値とした。(**表3、4**)

小y線源照射室の線量率測定では、各核種線源とも最 も放射能の大きいものに対しては62cc電離箱による絶対 測定が行えたが、中・小の放射能線源では電離電流が小 さくなり、統計的な不確かさが大きくなった。線量率の 低い場の設定には、二つの方法が考えられる。一つは、 電離容量が大きい相対測定用空洞電離箱を使って相対的 に設定する方法である。もう一つは、一番強度の強い線 源を用いて各位置での絶対測定を行いその線量率位置依 存性を使って、他の強度の弱い線源の線量率を決定する 方法である。この場合、線量率の低い線源の絶対値は、 線源-検出器間距離が最も短い位置の値で規格化する。各 核種線源で最も小さい線源での測定では、A6電離箱によ る相対測定の結果も電離電流が小さく統計的不確かさが 大きく、線量率の値付けを行うことは困難となった。そ こで最も強度の強い線源によって線量率の位置依存性を 求め、それを用いて弱い線源の線量率を決定することと した。この手法によって設定した絶対値を表31~41に示 す。

第6章 不確かさの評価

検出器、測定位置に関係なく不確かさが一定なものとして**表3**のものがある。

表3 各補正係数に対する相対標準不確かさ

	不確かさ	
桶工你奴	$100 U_{\rm A}$	$100 U_{ m B}$
空気質量	-	0.01
質量エネルギー吸収係数比	-	0.05
質量阻止能比	-	0.11
$W_{ m air}/e$	-	-
1 – g	-	0.02
湿度補正	-	0.02
複合不確かさ	0.00	0.125

表3に示した値の他に、温度計、気圧計の不確かさが ある。これらの不確かさは、これらの機器の校正時の不 確かさから評価した**表4**の値を用いる。

表4 温度、気圧に対する相対標準不確かさ

	$100 U_{\rm A}$	$100 U_{ m B}$
温度	0	0.02
気圧	0	0.01
合成不確かさ	0	0.03

各電離箱固有の不確かさとして以下のものがある。

6.1 V: 電離体積

円筒形キャップ部の電離体積はキャップの内径、深さ、 支持台のはめ込み部の長さの測定値から求めるため、こ れらの測定による不確かさは小さい。中心電極基部周辺 の浮遊体積に対しては電流測定による統計的不確かさ、 測定手法に起因する系統的不確かさが生じる。電離体積 に対する浮遊体積の割合によって不確かさは異なる。表 5にその相対標準不確かさを示す。

表5 電離体積に対する相対標準不確かさ

検出器	$100 U_{\mathrm{A}}$	$100 U_{ m B}$
No. 764	0.01	0.05
No. 765	0.01	0.01
No. 766	0.01	0.01

6.2 k_{wall}: 壁効果に対する補正

シミュレーション計算の統計的な不確かさ、計算コー ド自体がもつ系統的な不確かさがある。系統的な不確か さは様々な実験との比較から見積もった(**表6**)。

検出器	$100 U_{ m A}$	$100 U_{ m B}$
No. 764	0.05	0.1
No. 765	0.05	0.1
No. 766	0.05	0.1

表6 壁補正係数に対する相対標準不確かさ

6.3 k_{stem}:電離箱ステムによる散乱線の寄与に対する 補正

測定による統計的な不確かさと、実験手法による系統 的な不確かさがある。系統的な不確かさは、シミュレー ション計算によって見積もった(**表7**)。

表7 電離箱ステム散乱補正係数に対する相対標準不確 かさ

検出器	$100 U_{ m A}$	$100 U_{ m B}$
No. 764	0.01	0.1
No. 765	0.01	0.1
No. 766	0.01	0.1

6.4 電離箱設定位置による不確かさ

位置の設定は、レーザー光を用いた検出器中心設定時 における不確かさと、台車の目盛合わせによるものがあ る。レーザー光と目盛りがもつ幅によって0.2mm程度の ずれが生じると考えられる(**表8**)。

(八)脉脉思剂主、小	7	主共通/
測定位置	$100 U_{ m A}$	$100 U_{ m B}$
30cm	-	0.13
40cm	-	0.10
100cm	-	0.04
200cm	-	0.02
300cm	-	0.01
400cm	-	0.01
500cm	-	0.01
600cm	-	0.01

表8 電離箱設定位置による相対標準不確かさ (大 γ 線源昭射室 小 γ 線源昭射室共通)

6.5 k_{nu}: γ線場の非一様性に対する補正

 k_{m} の不確かさは検出器の大きさに依存する。 k_{m} はシ ミュレーション計算によって求めたが、計算による統計 的な不確かさ以上の補正値とならなかったため、補正値 自身は1.0とし、線源からの距離に依存する系統的な不確 かさとした(**表**9, 10)。

表9 大 γ 線源照射室における非一様性補正係数に対す る相対標準不確かさ

測定位置	Cs-	137	C0	-60
彻足位直	$100 U_{\rm A}$	$100 U_{ m B}$	$100U_{\rm A}$	$100 U_{ m B}$
30cm	*	*	-	0.10
40cm	*	*	-	0.06
100cm	-	0.10	-	0.01
200cm	-	0.03	-	0.03
300cm	-	0.01	-	0.01
400cm	-	0.01	-	0.01
500cm	*	*	-	0.01
600cm	*	*	-	0.01

表10 小γ線源照射室における非一様性補正係数に対す

る相対標準不確かさ

測定位置	$100 U_{\rm A}$	$100 U_{ m B}$
100cm	-	0.10
200cm	-	0.03
300cm	-	0.01
400cm	-	0.01
500cm	-	0.01
600cm	-	0.01

6.6 k_{loss}:電荷損失に対する補正

補正係数は測定電流の大きさに依存し、系統的な不確 かさとして補正値の5%と見積もられる(表11, 12, 13)。

表11 大γ線源照射室のCs-137線源に対する電荷損失補 正係数の相対標準不確かさ

位置と測定条件	$100 U_{\rm A}$	$100 U_{ m B}$
100cm	-	0.01
200cm	-	0.01
300cm	-	0.01
400cm	-	0.01
Fe disk at 400cm	-	0.01

表12 大 γ 線源照射室のCo-60線源に対する電荷損失補 正係数の相対標準不確かさ

位置と測定条件	$100 U_{\rm A}$	$100 U_{ m B}$
30cm	-	0.06
40cm	-	0.04
100cm	-	0.01
200cm	-	0.01
300cm	-	0.01
400cm	-	0.01
500cm	-	0.01
600cm		0.01
W25mm at 600cm		0.01
W40mm at 600cm		0.01
W65mm at 600cm	-	0.01

表13 小γ線源照射室の全線源に対する電荷損失補正係 数の相対標準不確かさ

位置と測定条件	$100 U_{ m A}$	$100 U_{ m B}$
全て	-	0.01

6.7 /:測定電流

電流測定における不確かさとして、電離電流測定の統計的な不確かさと、電荷測定用コンデンサ、電離箱や信号ケーブルに付随する浮遊電離容量、振動容量電流計の 増幅率の系統的な不確かさがある。統計的な不確かさは 繰り返し測定によって見積もった。系統的な不確かさは コンデンサの校正における不確かさ、浮遊静電容量の持 つ不確かさ、及び増幅率の測定における不確かさから評 価した。コンデンサの校正値は、0.01%の不確かさで、 浮遊静電容量は0.2pFと見積もられる。従って各照射条件

表16 大γ線源照射室Cs-137線源の電流測定に対する相 対標準不確かさ

位置と測定条件	$100 U_{ m A}$	$100 U_{ m B}$
100cm	0.01	0.01
200cm	0.01	0.01
300cm	0.02	0.01
400cm	0.03	0.01
Fe disk at 400cm	0.04	0.01

表17 大γ線源照射室Co-60線源の電流測定に対する相 対標準不確かさ

位置と測定条件	$100 U_{ m A}$	$100 U_{ m B}$
30cm	0.01	0.01
40cm	0.01	0.01
100cm	0.01	0.01
200cm	0.01	0.01
300cm	0.01	0.01
400cm	0.01	0.01
500cm	0.01	0.01
600cm	0.01	0.01
W25mm at 600cm	0.05	0.06
W40mm at 600cm	0.06	0.06
W65mm at 600cm	0.15	0.06

表18 小y線源照射室Cs-137、222GBq線源の電流測定に 対する相対標準不確かさ

位置と測定条件	$100 U_{ m A}$	$100 U_{ m B}$
110cm	0.08	0.01
150cm	0.10	0.01
200cm	0.18	0.01
250cm	0.19	0.01
300cm	0.30	0.01
350cm	0.29	0.01
400cm	0.29	0.01
450cm	0.34	0.01
500cm	0.52	0.01
550cm	0.45	0.01
600cm	0.70	0.01

における不確かさは表16~26のように見積もられる。 表19 小γ線源照射室Cs-137、18.5GBg線源の電流測定に 対する相対標準不確かさ

位置と測定条件	$100 U_{ m A}$	$100 U_{ m B}$
110cm	0.62	0.01
150cm	0.62	0.01
200cm	0.64	0.01
250cm	0.65	0.01
300cm	0.68	0.01
350cm	0.68	0.01
400cm	0.68	0.01
450cm	0.70	0.01
500cm	0.81	0.01
550cm	0.76	0.01
600cm	0.93	0.01

表20 小γ線源照射室Cs-137、1.85GBg線源の電流測定に 対する相対博進不確かさ

刈9 0 相刈悰準小唯かさ		
位置と測定条件	$100 U_{ m A}$	$100 U_{ m B}$
110cm	0.82	0.01
150cm	0.82	0.01
200cm	0.83	0.01
250cm	0.84	0.01
300cm	0.87	0.01
350cm	0.87	0.01
400cm	0.86	0.01
450cm	0.88	0.01
500cm	0.97	0.01
550cm	0.93	0.01
600cm	1.07	0.01

表21 小γ線源照射室Co-60、185GBq線源の電流測定に対 する相対標準不確かさ

位置と測定条件	$100 U_{\rm A}$	$100 U_{ m B}$
110cm	0.06	0.01
150cm	0.09	0.01
200cm	0.09	0.01
250cm	0.15	0.01
300cm	0.15	0.01
350cm	0.18	0.01
400cm	0.18	0.01
450cm	0.18	0.01
500cm	0.24	0.01
550cm	0.24	0.01
600cm	0.39	0.01

位置と測定条件	$100 U_{ m A}$	$100 U_{ m B}$
110cm	0.18	0.01
150cm	0.20	0.01
200cm	0.20	0.01
250cm	0.23	0.01
300cm	0.23	0.01
350cm	0.26	0.01
400cm	0.26	0.01
450cm	0.25	0.01
500cm	0.30	0.01
550cm	0.30	0.01
600cm	0.43	0.01

表22 小 γ 線源照射室Co-60、18.5GBq線源の電流測定に 対する相対標準不確かさ

表23	小γ線源照射室Co-60、	3.7GBq線源の電流測定に対
	する相対標準不確かさ	

位置と測定条件	$100 U_{\rm A}$	$100 U_{ m B}$
110cm	0.55	0.01
150cm	0.55	0.01
200cm	0.55	0.01
250cm	0.57	0.01
300cm	0.57	0.01
350cm	0.58	0.01
400cm	0.58	0.01
450cm	0.58	0.01
500cm	0.60	0.01
550cm	0.60	0.01
600cm	0.67	0.01

表24 小γ線源照射室Ra-226、7.4GBq線源の電流測定に 対する相対標準不確かさ

位置と測定条件	$100 U_{ m A}$	$100 U_{ m B}$
110cm	0.21	0.01
150cm	0.27	0.01
200cm	0.33	0.01
250cm	0.48	0.01
300cm	0.53	0.01
350cm	0.56	0.01
400cm	0.67	0.01
450cm	0.78	0.01
500cm	0.95	0.01
550cm	1.06	0.01
600cm	1.20	0.01

表25	小γ線源照射室Ra-226、	3.885GBq線源の電流測定
	に対する相対標準不確か	5

the prost of a strate of a state		
位置と測定条件	$100U_{\rm A}$	$100U_{\rm B}$
110cm	0.31	0.01
150cm	0.41	0.01
200cm	0.46	0.01
250cm	0.58	0.01
300cm	0.61	0.01
350cm	0.65	0.01
400cm	0.74	0.01
450cm	0.84	0.01
500cm	1.00	0.01
550cm	1.10	0.01
600cm	1.24	0.01

表26 小γ線源照射室Ra-226、370MBq線源の電流測定に 対する相対標準不確かさ

刈り る 相対 惊 単 小 唯 か さ		
位置と測定条件	$100 U_{ m A}$	$100 U_{ m B}$
110cm	1.23	0.01
150cm	1.26	0.01
200cm	1.27	0.01
250cm	1.32	0.01
300cm	1.34	0.01
350cm	1.35	0.01
400cm	1.40	0.01
450cm	1.46	0.01
500cm	1.56	0.01
550cm	1.62	0.01
600cm	1.72	0.01

6.8 散乱線による不確かさ

照射場は、線源から放出される単色 γ線だけではなく、 コリメーターや室内壁によって散乱された成分も含まれ ている。散乱線は、質量エネルギー吸収係数比、質量阻 止能比、 k_{val}の値に影響を与える。散乱線によるこれら の値の不確かさを見積もるため、モンテカルロシミュレ ーションにより散乱線スペクトルを計算し、それによる 各補正係数の変化量を推定した。

6.8.1 質量エネルギー吸収係数比

質量エネルギー吸収係数比の散乱線による各位置での ばらつきは、Csで0.03%、Coで0.1%、Raで0.18%であっ た。従ってこれを、散乱線による質量エネルギー吸収係 数比の不確かさとした(表27)。

表27 散乱線による質量エネルギー吸収係数比の相対標 準不確かさ

-

. . . .

Г

緑源	$100 U_{ m B}$
Cs-137	0.03
Co-60	0.10
Ra-226	0.18

6.8.2 質量阻止能比

質量阻止能比は、BIPMで用いられている値と同じ値を 使用しているが、従来のSpencer-Attixによる手法で計算 した阻止能比の散乱線を考慮した場合のばらつきはCs で0.01%、Coで0.06%、Raで0.11%であった。従ってこれ を、散乱線による質量阻止能比の不確かさとした(表28)。

表28 散乱線による質量阻止能比の相対標準不確かさ

線源	$100 U_{ m B}$
Cs-137	0.01
Co-60	0.06
Ra-226	0.11

6.8.3 k_{wall}: 壁効果に対する補正

単色γ線と散乱線を含めた場合のk_{wall}の差は、Csで6cc 電離箱と60cc電離箱共に0.02%、Coでは共に0.1%、また Raでは0.18%であった。従ってこれを、散乱線による壁 効果に対する補正値の不確かさとした(**表29**)。

表29 散乱線による壁補正係数の相対標準不確かさ

線源	検出器	$100 U_{ m B}$
Cs-137	No.763 , 764(6cc)	0.02
	No.765, 766(60cc)	0.02
Co-60	No.763, 764(6cc)	0.10
	No.765, 766(60cc)	0.10
Ra-226	No.765, 766(60cc)	0.18

よって散乱線による合成不確かさは表30の通りである。

表30 散乱線の影響による相対標準不確かさ

1.1. x-+			
線源	検出器	$100 U_{ m A}$	$100 U_{ m B}$
Cs-137	No.763 , 764(6cc)	-	0.06
	No.765, 766(60cc)	-	0.06
Co-60	No.763, 764(6cc)	-	0.26
	No.765, 766(60cc)	-	0.26
Ra-226	No.765, 766(60cc)	-	0.47

最終的な相対拡張不確かさ(k=1)を表31~41に示す。

表31 大γ線量照射室におけるCs-137線源による空気カ ーマ率

測定位置と条件	空気カーマ率(Gy/s)	不確かさ(%)
	(2002年7月25日現在)	(k = 1)
100cm	5.0976E-04	0.23
200cm	1.2469E-04	0.21
300cm	5.4845E-05	0.21
400cm	3.0641E-05	0.23
Fe disc at 400cm	9.0317E-06	0.23

表32 大γ線量照射室におけるCo-60線源による空気カ ーマ率

測定位置と条件	空気カーマ率(Gy/s)	不確かさ(%)
	(2002年7月25日現在)	(k = 1)
30cm	7.9525E-02	0.37
40cm	4.5475E-02	0.35
100cm	7.0740E-03	0.33
200cm	1.6690E-03	0.33
300cm	7.2780E-04	0.33
400cm	4.0401E-04	0.33
500cm	2.5611E-04	0.33
600cm	1.7627E-04	0.33
W-25mm at 600cm	1.5515E-05	0.34
W-40mm at 600cm	3.9523E-06	0.34
W-65mm at 600cm	4.3071E-07	0.36

表33 小γ線源照射室におけるCs-137 222GBq線源によ る空気カーマ率

а <u>ш</u> , ц,	1	
測定位置と条件	空気カーマ率(Gy/s)	不確かさ(%)
	(2002年12月1日現在)	(k = 1)
110cm	2.9254E-06	0.24
150cm	1.5327E-06	0.23
200cm	8.4926E-07	0.27
250cm	5.3778E-07	0.28
300cm	3.7031E-07	0.36
350cm	2.7018E-07	0.36
400cm	2.0579E-07	0.35
450cm	1.6176E-07	0.40
500cm	1.3070E-07	0.56
550cm	1.0756E-07	0.49
600cm	9.0161E-08	0.73

測定位置と条件	空気カーマ率(Gy/s)	不確かさ(%)
	(2002年12月1日現在)	(k = 1)
110cm	1.7484E-07	0.66
150cm	9.1606E-08	0.69
200cm	5.0757E-08	0.70
250cm	3.2141E-08	0.71
300cm	2.2132E-08	0.74
350cm	1.6148E-08	0.74
400cm	1.2299E-08	0.74
450cm	9.6679E-09	0.76
500cm	7.8112E-09	0.86
550cm	6.4282E-09	0.81
600cm	5.3886E-09	0.97

る空気カーマ率

表35 小γ線源照射室におけるCs-137 1.85GBq線源によ る空気カーマ率

測定位置と条件	空気カーマ率 (Gy/s)	不確かさ (%)
	(2002年12月1日現在)	(k = 1)
110cm	2.1704E-08	0.85
150cm	1.1372E-08	0.96
200cm	6.3008E-09	0.97
250cm	3.9899E-09	0.97
300cm	2.7474E-09	1.00
350cm	2.0045E-09	1.00
400cm	1.5268E-09	0.99
450cm	1.2001E-09	1.01
500cm	9.6965E-10	1.09
550cm	7.9797E-10	1.05
600cm	6.6892E-10	1.18

空気カーマ率

測定位置と条件	空気カーマ率(Gy/s)	不確かさ (%)
	(2002年12月1日現在)	(k = 1)
110cm	6.4639E-06	0.35
150cm	3.3856E-06	0.34
200cm	1.8770E-06	0.34
250cm	1.1896E-06	0.36
300cm	8.1951E-07	0.36
350cm	5.9867E-07	0.37
400cm	4.5625E-07	0.37
450cm	3.5911E-07	0.37
500cm	2.8975E-07	0.41
550cm	2.3895E-07	0.40
600cm	2.0020E-07	0.51

表34 小γ線源照射室におけるCs-137 18.5GBg線源によ 表37 小γ線源照射室におけるCo-60 18.5GBg線源による 空気カーマ率

測定位置と条件	空気カーマ率 (Gy/s)	不確かさ(%)
	(2002年12月1日現在)	(k = 1)
110cm	6.3938E-07	0.39
150cm	3.3488E-07	0.44
200cm	1.8567E-07	0.43
250cm	1.1767E-07	0.45
300cm	8.1062E-08	0.45
350cm	5.9218E-08	0.46
400cm	4.5130E-08	0.46
450cm	3.5521E-08	0.46
500cm	2.8661E-08	0.49
550cm	2.3635E-08	0.49
600cm	1.9803E-08	0.57

表38 小γ線源照射室におけるCo-60 3.7GBq線源による

空気カーマ	率	
測定位置と条件	空気カーマ率(Gy/s)	不確かさ(%)
	(2002年12月1日現在)	(k=1)
110cm	1.1555E-07	0.64
150cm	6.0521E-08	0.68
200cm	3.3554E-08	0.64
250cm	2.1265E-08	0.65
300cm	1.465E-08	0.65
350cm	1.0702E-08	0.66
400cm	8.1559E-09	0.66
450cm	6.4195E-09	0.66
500cm	5.1796E-09	0.68
550cm	4.2714E-09	0.68
600cm	3.5788E-09	0.75

表36 小γ線源照射室におけるCo-60 185GBq線源による 表39 小γ線源照射室におけるRa-226 7.4GBq線源による 空気カーマ率

測定位置と条件	空気カーマ率(Gy/s)	不確かさ(%)
	(2004年7月1日現在)	(k = 1)
110cm	3.4007E-07	0.56
150cm	1.7809E-07	0.58
200cm	9.8627E-08	0.61
250cm	6.2433E-08	0.70
300cm	4.3092E-08	0.73
350cm	3.1382E-08	0.76
400cm	2.3803E-08	0.84
450cm	1.8747E-08	0.94
500cm	1.5114E-08	1.08
550cm	1.2451E-08	1.17
600cm	1.0464E-08	1.30

測定位置と条件	空気カーマ率(Gv/s)	不確かさ(%)
	(2004年7月1日現在)	(k=1)
110cm	1.7711E-07	0.61
150cm	9.2752E-08	0.69
200cm	5.1367E-08	0.71
250cm	3.2516E-08	0.80
300cm	2.2443E-08	0.82
350cm	1.6344E-08	0.85
400cm	1.2397E-08	0.92
450cm	9.7639E-09	1.01
500cm	7.8719E-09	1.14
550cm	6.4845E-09	1.23
600cm	5.4501E-09	1.36

表40 小γ線源照射室におけるRa-226 3.885GBq線源によ 表41 小γ線源照射室におけるRa-226 370MBq線源によ る空気カーマ率

る空気カーマ率

測定位置と条件	空気カーマ率(Gy/s)	不確かさ(%)
	(2004年7月1日現在)	(k=1)
110cm	1.7188E-08	1.33
150cm	9.0009E-09	1.37
200cm	4.9848E-09	1.37
250cm	3.1555E-09	1.42
300cm	2.1779E-09	1.43
350cm	1.5861E-09	1.45
400cm	1.2030E-09	1.49
450cm	9.4752E-10	1.54
500cm	7.6391E-10	1.64
550cm	6.2928E-10	1.70
600cm	5.2889E-10	1.79

第7章 γ線標準における校正

校正は、校正依頼者が要望するγ線種で、必要とする 線量率に近い標準場を用いて行う。校正検出器の有感部 の参照点(一般に検出器の中心)を標準場の基準位置に 設定する。測定器の設定方向や角度は依頼者が通常使用 する方向に設定する。線量計として校正する場合は、短 時間照射と長時間照射における出力と時間の差から校正 値を求める。校正においては、測定器近くの室温、気圧、 湿度を同時に測定する。校正検出器が電離箱の場合は校 正定数は22℃、1気圧(1013.25hPa)における値として示 す。依頼者が他の条件における校正定数を希望する場合 は、その条件における校正定数の値として算出する。一 般に、湿度に対しては補正しない。

7.1 校正定数とその不確かさの成分

22℃、1気圧(1013.25hPa)に換算した校正定数Fは以下の式によって求められる。

$$F = \frac{K \cdot (273.15 + 22) \cdot P}{M \cdot (273.15 + T) \cdot 1013.25}$$
(7-1)
K --- 校正測定時の空気カーマ率
M --- 校正機器の指示値
T --- 測定時の温度

P--- 測定時の気圧

γ線線量率による校正定数の不確かさの成分には次の ものがある。

- (1) 気温の不確かさ
- (2) 気圧の不確かさ
- (3) 湿度の不確かさ
- (4) 校正機器の指示値の不確かさ
- (5) 校正検出器設置位置の不確かさ
- (6) 校正検出器の体積に依存した γ 線場の非一様性に起 因する不確かさ
- (7) 測定位置における空気カーマ率の設定値の不確かさ

7.2 各成分の不確かさの算出

7.2.1 温度の不確かさ

温度の不確かさの要因として、白金抵抗温度計の校正

の不確かさ及び、照射室内の温度と校正検出器の温度の 違いによる不確かさが考えられる。温度計校正の不確か さは、±0.05℃である。また室内温度と校正検出器の温 度の違いは、校正を行う数時間前に校正検出器を照射室 に設置し、温度を室温に近づけておくことになっており、 室内の温度は、空調により1時間あたり±0.04℃の範囲 内で変化していることから、測定機器の温度変化もこの 変動内と考えられる。よって温度の合成不確かさは

$$u(T) = \sqrt{(0.05 \ ^{\circ}C)^{2} + (0.04 \ ^{\circ}C)^{2}} = 0.07 \ ^{\circ}C$$

(7-2)

である。よって相対不確かさは、0.07/(273+22)=0.03(%) となる。

7.2.2 気圧の不確かさ

これは、気圧計校正の不確かさに起因し、0.01%である。

7.2.3 湿度の不確かさ

湿度変化による電離電流の変化に関する報告がICRU Report 31に示されている。電離箱の校正時の湿度範囲を 10%から80%までとすると、校正値の変動は0.05%以下と なる。校正時の条件として湿度10%から80%とし、不確 かさを0.05%とする。

7.2.4 校正機器の出力の不確かさ

測定機器が示す指示値の統計的な変動に起因するもの で、この推定には繰り返し測定を行い、その統計誤差を 求める。

7.2.5 校正検出器設置位置による不確かさ

設定位置の不確かさの要因として、校正検出器を基準点 に設置する際に生じる不確かさと、線源位置の再現性の不 確かさがある。基準点に校正検出器を設置する際には、レ ーザー光を用いて設置するが、この時の精度は0.2mm以下 である。また線源を突き出すなどの場合、線源位置の設定 精度は0.1mm程度である。線源からの距離が30cmの場合、 不確かさが最大となる。線量率変化を1/r²とすると、そ の時の線量率の相対不確かさは0.2%と見積もられる。

7.2.6 校正検出器の体積に依存した線場の非一様性に 起因する不確かさ

この不確かさは校正検出器の大きさに起因するもので あるが、個々にそれを評価することは困難であることか ら、あらかじめシミュレーション計算を行い、不確かさ が0.1%以下であると考えられる大きさに、校正検出器を 制限することとした。制限を設けた位置はCo線源で30cm, 40cm, 100cmの場合で、検出器の大きさは有感部分が直 径3.7cmの球内に入るものとする。それ以外の位置やCs 線源では、照射野に入る範囲内とし、不確かさはすべて の位置で0.1%と見積もった。

7.2.7 空気カーマ率の設定値が持つ不確かさ

空気カーマ率の設定値の評価は別に示したが、測定位 置、照射条件により不確かさが異なる。照射条件によっ て幾つかのグループに分け、それぞれのグループに対し て使用する不確かさを下記に示す。

大γ線源照射室 Cs-137線源の場合 100,200,300,400,鉄ディスクあり:0.23% Co-60線源の場合 30cm, 40cm : 0.37% 100, 200, 300, 400, 500, 600cm (タングステンディ スクなし): 0.33% タングステンディスク25mm, 40mm, 65mmあり: 0.35% 小γ線源照射室 Cs-137線源の場合 Cs-137 222GBq : 0.73% Cs-137 18.5GBq : 0.97% Cs-137 1.85GBg : 1.18% Co-60線源の場合 Co-60 185GBq : 0.51% Co-60 18.5GBq : 0.57% Co-60 3.7GBq : 0.75% Ra-226線源の場合 Ra-226 7.4GBq : 0.51% Ra-226 3.885GBq : 0.57% Ra-226 370MBq : 0.75%

7.3 校正定数の合成不確かさ

大γ線源照射室および小γ線源照射室における各照射 条件での校正定数の合成不確かさは**表42**,43の通りであ る。

表42 大γ線源照射室における校正定数の合成不確かさ

条件	不確かさ(%)(k=1)	
Cs線源 100, 200, 300, 400, Fe disk	$\sqrt{(0.33)^2 + (U_s)^2}$	
Co線源 30cm, 40cm, 100cm	$\sqrt{(0.44)^2 + (U_s)^2}$	
Co線源 200, 300, 400, 500, 600cm	$\sqrt{(0.41)^2 + (U_s)^2}$	
Co線源 W25mm, 40mm, 65mm	$\sqrt{(0.43)^2 + (U_s)^2}$	

表43 小γ線源照射室における校正定数の合成不確かさ

条件	不確かさ(%)(k=1)
Cs-137 222GBq	$\sqrt{(0.73)^2 + (U_s)^2}$
Cs-137 18.5GBq	$\sqrt{(0.98)^2 + (U_s)^2}$
Cs-137 1.85GBq	$\sqrt{(1.18)^2 + (U_s)^2}$
Co-60 185GBq	$\sqrt{(0.51)^2 + (U_s)^2}$
Co-60 18.5GBq	$\sqrt{(0.58)^2 + (U_s)^2}$
Co-60 3.7GBq	$\sqrt{(0.75)^2 + (U_s)^2}$
Ra-226 7.4GBq	$\sqrt{(1.30)^2 + (U_s)^2}$
Ra-226 3.885GBq	$\sqrt{(1.36)^2 + (U_s)^2}$
Ra-226 370MBq	$\sqrt{(1.79)^2 + (U_s)^2}$

7.4 校正手順

7.4.1 準備

(1) 空調

測定の5時間以上前に照射室の空調の電源を入れる。 空調の設定温度は22℃とする。測定時に外部の大気温度 が22℃よりも高くなると予想される場合は、空調の冷却 器を連続運転させる。

(2)機器の照射室搬入と配線

電離箱のように、感度が温度に依存するものは、検出 部の温度を室温に近づけるために、測定の2時間以上前 に照射室に搬入する。信号ケーブルも機械的な歪による 雑音信号を抑えるために、測定の2時間以上前に設置す る。

(3) 検出部の設置

検出部の正面を γ 線源側として、規定点(一般に検出 部の体積の中心点)が、 γ 線ビームの中心軸と γ 線源か らの距離の基準位置を示すレーザー光に一致するように 調整して固定する。台車を移動させて線源からの距離を 変えて測定する場合は、信号ケーブルや電圧印加用ケー ブルの力によって検出部の位置が変化しないように、ケ ーブルを検出部支持台の根本近くで固定すること。検出 部の設置が終了したら、検出器の温度上昇を防ぐために、 レーザー光源は消灯する。

(4) 照射時間制御の場合

大γ線源照射室において一定の線量を照射して校正す る場合は、照射時間測定のために、高速シャッター開閉 信号ケーブルを、使用するCs-137またはCo-60線源のシャ ッター開閉検出センサーと結線する。また、大γ線源室 のCo-60線源を使用する場合は、高速シャッター駆動用 コンプレッサー電源を入れ、手動で開閉を確認すること。 これを行わないと、シャッターがストッパーを押し付け た状態になっていてストッパーが動かず、ソレノイドが 焼ける危険性がある。

7.4.2 測定

(1) 電源

校正機器の電源や、産総研の機器で電離箱の印加に使 用する電圧電源、温度、気圧、湿度の測定に使用する機 器など、校正に使用するものは、1時間以上前もって電 源を投入しておくこと。印加電圧も前もって印加してお くことが望ましい。

(2) 線量率の選択

測定器台車を動かして、必要とする線種と線量率の位 置に検出部を移動する。大γ線源照射室で、γ線減弱用 の鉄(Cs-137)あるいはタングステン(Co-60)ディスク を使用する場合は、これを設置する。

(3) 照射

必要な線源により、下記の手順に従って照射する。

(A) 大γ線源照射室のCo-60線源は必要とする線量率 に従って、線源位置を0.00mm、600.00mmまたは700.00mm に設定する。0.00mmに設定する場合は線源位置の表示が ±0.20mm以上、600.00mmまたは700.00mmに設定する場 合は0.10mm以上ずれないようにすること。また、線源位 置表示装置は電源を切断すると表示の値がゼロに初期化 される。このため、電源切断や停電の後は、Co-60線源 を1cm以上繰り出した後、自動で格納する。格納終了後 に線源位置の表示値を読み取る(格納終了後に数分経っ てから値を読むこと)。これを数回繰り返し、格納位置の 再現性を確認し、格納位置が平均的な値となったときに 線源位置表示装置の表示の値を押し釦でゼロにする。

(B) 小y線源照射室を用いる場合、線源の実効中心位 置をB142室の壁表面から50cm内側に設置する。この位置 に設置するために線源を移動する距離は、各線源によっ て異なるので、小y線源照射室に常備してある線源位置 設定表を参照すること。 (4) データの読み取り

校正機器の出力の取得は校正依頼者の通常の手法によ る。出力の読み取り回数は、出力の標準偏差を得るのに 十分な回数とする。校正機器からの出力の他、温度、気 圧、湿度を複数回読み取る。読み取ったデータは、校正 機器の出力と同じファイルに記録する。このとき、照射 条件、測定年月日、校正依頼機関名、校正機器番号、測 定者名、機器の設定条件も記録する。

7.5 測定結果の処理

校正測定機器が電離箱の場合、(7-1)式によって空気カ ーマに対する校正定数を計算する。ただしここでは校正 定数は、22℃における値である。校正測定時の空気カー マ率Kの値は下記の式によって得る。

$$K = K_{\circ} \cdot \left(\frac{1}{2}\right)^{\frac{l}{T}}$$
(7-3)

- K。:基準日における各照射条件での線量率
- t : 基準日から校正測定日までの日数
- T : γ線源核種の半減期
- 核種の半減期は、下記の値を用いる。
 - Cs-137: 30.07年¹⁶⁾
 - Co-60: 5.2714年¹⁶⁾

但し、1年=365.2422日17)

必要ならば、照射線量に対する校正定数も得る。また前 項の校正定数の合成不確かさに従って、合成不確かさを 計算する。電離箱以外の、温度、気圧に対する補正が一 般に不要である線量計を校正する場合は、校正測定時の 空気カーマ率Kの値を校正測定器の出力で除した値を校 正定数とする。この時の校正値の不確かさは、電離箱の 校正には付随しない特別な要因がない場合は、電離箱の 場合と同様とする。特別な要因がある場合は、それを勘 案して不確かさを算出する。

付記

本研究の一部は、原子力委員会の評価に基づき、文部 科学省原子力試験研究費により実施されたものである。

参考論文として、2001年に行われたBIPMとの国際比較 の結果についての論文を転載する。Rapport BIPM-2004/11はCo-60について、-2004/12はCs-137についてまと められている。

参考文献

- 加藤朗、山地磐、電子技術総合研究所彙報、864,47 (1983)
- 2) 山地磐、電子技術総合研究所彙報、1341,53,(1989)
- 高田信久・小山保二・黒澤忠弘、産総研計量標準報告、1,439 (2002)
- 4) L.V.Spencer and F.H.Attix, Radiat. Res., 3, 239 (1955)
- 5) P.R.J.Burch, Radiat. Res., 3, 361 (1955)
- T.E.Burlin, "Radiation Dosimetry", 2nd ed., Vol. I, Chap. 8, Academic Press (1968)
- 7) R.S. Davis, metrologia, 29,67-70 (1992)
- 8) J.H. Hubbell and S.M. Seltzer, NIST IR 5632 (1995)

- 9) CCEMRI 1985 BIPM: Com Cons Etalons Mes Ray Ionisants, 11, R 157-158 (1985)
- 10) CCEMRI(I)/85-18
- 11) M. Boutillon, Phys. Med. Biol., 43, 2061 (1998)
- 12) 高田信久、黒澤忠弘、小山保二、医用標準線量 17, 11(2002)
- 13) ICRU Report 31, Fig.5. 14, (1979)
- 14) A.F.Bielajew, Med. Phys., 17, 583(1990)
- 15) K. Kurosawa, Y. Koyama and N. Takata, 医用標準線量, 6, 1 (2001)
- 16) Table of Isotopes 8th Edition (1996)
- 17) Quantities and units: ISO Standards Handbook, ISO,1993