ミリ波帯アンテナ標準供給のための高精度測定法の現状と展望

山本 哲也*

(平成16年10月12日受理)

Recent progress and future prospects for highly accurate measurement methods in millimeter-wave antenna standards

Tetsuya YAMAMOTO

Abstract

According to the extensive use in the electromagnetic wave, it is the urgent business not only for microwave antenna gain standards but also for millimeter-wave ones to fully equip the precise measurement range. This article surveys the recent progress and future prospects for the highly accurate antenna measurement methods in millimeter-wave band.

At first, the relation between the use of electromagnetic fields and the standards in metrology is described. Secondly, the characterization and the use in millimeter wave band are presented. Finally, the extrapolation range technique known as an accurate measurement technique is expressed.

1. はじめに

近年の多様化された電波の利用形態に対応し、急務な 整備が必要とされているミリ波帯アンテナ標準供給のた めの現状と動向、並びに将来展望に関して議論し、高精 度で安定なミリ波帯電磁界測定手法を概説する.

本稿では,最近特に注目されてきているミリ波帯電磁 波に関しての標準整備に関して述べる.まずは,電波利 用と計量標準との関連を解説し,次に,ミリ波帯電磁波 の特徴と電波利用に関して記述し,その後,特に諸外国 において高精度な測定手法として知られる外挿法に関し て触れ,最後にまとめる.

2. 産業技術の中にみる電波の役割と計量標準¹⁾

情報通信環境のユビキタス化,ブロードバンド化等へ の対応,無線による高齢者の生活支援等による快適で質 の高い国民生活の実現,及び関連サービス・機器市場の 拡大等による産業経済活動の活性化に資するための電波 の役割が注目されているが,一方で防災通信等の安全で 災害に強い社会・国土の形成に資する電波の役割も引き 続き重要と考えられている.更に、無線を利用したコミ ユニケーションの需要に対応していくために電波技術等 の研究開発に資する実験無線局等の科学技術の振興のた めの電波の役割も一層重要になってきている.

その中でも特に、昨今の携帯電話等の普及には目を見 張るものがある.携帯通信機器に関連した無線設備が生 活圏の付近に整備されるに伴い、これらの無線設備から 放射される電磁波が人体に好ましくない影響を及ぼすの ではないかという懸念が提起されてきている.平成9年 には携帯電話端末等の身体に近接して使用される無線機 器に適用される電波防護指針が策定され、無線機器の製 造等におけるガイドラインとして活用されてきた.更に、 人体頭部近傍で使用する携帯端末等について、許容値が 規定され、製造メーカ等に対して遵守が義務付けられて いる.

上述の携帯電話やその無線設備に限らず,昨今,多く の電子機器が,LSI等の電子部品を内蔵するようになった ことから,それらから放射される本来目的としない電波 (不要電波)が,他の無線通信に混信を与え,また,医 用機器等の各種電気・電子機器が誤動作することが大き な社会問題となっている.国際電気標準会議(IEC)の 特別専門委員会である国際無線障害特別委員会(CISPR) では,各種電子機器等に対する妨害波の許容値を規定し

^{*} 計測標準研究部門 電磁波計測科

山本哲也

ている.今後,携帯電話,無線アクセス等の電波システ ムの利用が増大する中,人体に与える影響及び医療機器 などの電子機器等への影響の継続的な研究が必要となっ てきている.

このように,近年の高度化・多様化する電波利用に鑑 み,日本国内のみならず国際間においても電子機器類か ら放射される妨害波等の問題が非関税障壁とならないよ うに,アンテナ感度や空間電磁界強度の国際的な共通化 を図る必要性が生じてきている.高精度な測定・評価技 術の開発は,この課題克服の手段であり,そのため,特 に電気・電子関係の計量標準の重要性が認知されて来て いる.

3. ミリ波帯電磁波の特徴と電波利用¹⁾⁻²⁾

最近のデバイスの低廉化や広帯域通信の可能性という 観点から,昨今,ミリ波帯電磁界は,新しい通信手段と して注目され始めている.30GHz~110GHz帯の周波数の 電波を使用する無線システムを議論するに当たり,ミリ 波帯電磁波の特徴を以下にまとめる.

(1) 広帯域伝送が可能

一般にミリ波帯においては、広い帯域幅での周波数 割り当てが可能であること、高い変調周波数を使用す ることが可能であることから、高速・大容量な情報の 伝送が可能である.

(2) 機器の小型化が可能

ミリ波帯は波長が短く,特に60GHz帯は5mm程度で あることから,空中線や送受信装置等の機器の小型化, 軽量化が可能である.

(3) 酸素による吸収減衰が大きい

ミリ波帯は、マイクロ波帯以下の周波数帯に比べ降 雨や大気による減衰が大きい.図1に示す大気(酸素)に よる電波の総合的な吸収減衰のうち、60GHz付近では 酸素の吸収により減衰が大きい.この図に示されるよ うに、電波が遠くまで到達しない、という物理的特性 をもつため、同一周波数の空間的再利用(繰り返し利 用)が比較的近距離において可能である.

ミリ波帯の利用については,昭和36年に34GHzが気象 庁の実験局に対して初めて割り当てられて以来,国や民 間の機関において研究開発が進められてきた.その結果, 現在では中央防災行政無線(36GHz帯),加入者系無線ア クセスシステム(38GHz帯),簡易無線(50GHz帯)等が 実用化されている.特に,ミリ波帯の中でも60GHz帯に ついては,この周波数帯の研究開発の促進を目的として 平成5年2月に59~60GHz帯が実験用周波数帯として設定

され、ここでの研究開発の成果をもとに、平成7年10月 には主として自動車衝突防止の目的で使用されている小 電力ミリ波レーダが制度化された.現在、このシステム は、76GHz帯の衝突防止レーダとして実用化されている.

表1に、今後予想されるミリ波帯電磁波利用分野を示 す.総務省の情報通信審議会等の資料¹⁾⁻²⁾によると、ミリ 波帯電磁波利用分野としては、固定・移動通信分野、

宇宙通信分野,放送分野,高度道路交通システムITS (Intelligent Transportation System)分野のそれぞれに関 して,以下の項目が挙げられる.

固定・移動通信分野においては、光インフラ等有線系 の高速アクセス手段を持たない各家庭・事業所等までの 伝送路として、有線系を補完するサービスとして提供さ れる無線LAN・無線アクセスシステムが挙げられる.こ のシステムには、専用線サービスを提供するP-Pサービス システムと複数加入者を収容するP-MPサービスシステ ムがある.また、屋内における映像多重伝送及び無線LAN 用のホームリンク回線用システム等も考えられる.

宇宙通信分野においては、Qバンド以上のミリ波の周 波数帯に関しては、利用はまだ実験的であるが、回折性 が少ない点を生かした妨害を受けにくい通信用途や、降 雨減衰が問題とならない宇宙空間等での大容量通信での 活用が期待できる.具体的には、気象観測・地球探査用

電波利用分野		電波利用システム	周波数带
			(30GHz以上のみ)
固定・陸上移 動通信業務	エントランス回線	広帯域無線アクセスシステム	38/60GHz帯
		自営用高速無線回線	
		移動通信用IP系無線エントランス回線	
		移動通信基地局大容量エントランス回線	
		準ミリ・ミリ波アクセスシステム	40-70GHz带
		成層圏プラットフォーム高速伝送システム	31/47/48GHz帯
	無線アクセス	22/26/38GHz帯加入者系無線アクセスシステム	38GHz带
		加入者系無線アクセスシステム	-
		次世代無線LAN技術を用いたシステム(ホットスポッ	60GHz
		ト・ホームリンク)	
		次世代無線アクセスシステム (FWA)	38GHz帯
		成層圏プラットフォーム無線アクセスシステム	31/47/48GHz带
		無線LAN及び無線アクセス(次世代(4G)移動体通信	60GHz帯
		WLANシステムを含む)	
防災無線	防災行政無線	防災行政無線システム	40GHz帯
	公共安全	消防防災無線	40GHz帯
	防災行政無線	海上海浜防災システム	40GHz帯
	業務用無線	地域(非常時)通信網	80GHz帯
放送業務	素材伝送	42GHz带FPU	42GHz帯
		42GHz带素材伝送装置	42GHz帯
		60GHz带素材伝送装置	60GHz帯
	BS放送	42GHz带衛星放送	42GHz帯
		60GHz帯電波を利用した集合住宅用の衛星放送再送	60GHz帯
		信システム	
道路交通	車載レーダ	車載レーダ	76GHz
	ITS	ITS通信/車々間通信システム	60/76GHz帯
		ITS通信/レーダ統合通信システム	60/76GHz帯
		移動車両無線アクセスシステム	60GHz
気象観測	地球探查	高性能マイクロ波放射計	36/50/52/89GHz帯
その他		アマチュア無線	47/76/78/136/250GHz 帯

表1 今後予想されるミリ波帯電磁波の利用形態

として高性能マイクロ波放射計による利用,また,通信 インフラのみならず地球観測,警戒任務,消防,警察の 指揮中継等の幅広い利用が考えられている成層圏プラッ トフォーム無線アクセスシステムにおける周波数として 31/47/48GHzが考えられている.これは,地上系・衛星 系に次ぐ第3の通信インフラになる可能性があり大いに 期待されている.

放送分野においては,60GHz帯広帯域無線伝送装置の 応用例として,近距離素材伝送システム,マルチオーディ オリンク,4000本TV伝送システム,出演者送り返し用小型モニターシステム等がある.特に、ミリ波の広帯域性を 利用して,超高精細度放送等の大容量信号の短距離伝送を 行うためのシステムとして、ミリ波を用いた地上放送の再 送信システムが考えられる.また,60GHz帯電磁波を利用 した集合住宅用の衛星放送再送信のシステムも考えられ ている.これは、集合住宅の共同受信システムを無線化す るものであり、BS-CSアンテナで受信した衛星放送の信号 を60GHz帯に周波数変換し、電波で各家庭に配分するシス テムである. ワイヤレスカメラに用いられるミリ波帯のシ ステムとしては, 60GHz帯素材伝送装置が挙げられる. こ れは, 60GHz帯の無線伝送装置を用いてハイビジョン信号 の短距離伝送を実現し, スタジオ・ホール等屋内で使用す るワイヤレスカメラやゴルフ中継等屋外イベントで使用 するワイヤレスカメラとして活用する.

高度道路交通システム分野としては、DSRC (Dedicated Short Range Communication) 技術が挙げられる.これは、現在、5.8GHz帯として利用されているノンストップ料金 自動支払システムETCとして良く知られているシステム であり、これをミリ波帯へ拡張し、数mから数100mの通 信範囲において、駐車場、物流センター、ガソリンスタ ンド、コンビニエンスストア等で、情報の交換を行うシ ステムである.また、大容量のマルチメディア情報の伝 送を行う無線システムとして、自動車のみならず新幹線、特急列車を中心に利用が増えるものと思われる移動車両 無線アクセスシステムも考えられる.

上記の様々なシステムに加え,各種防災無線システム へのミリ波利用も考えられており,これまで実用性とい う面においてあまり注目されてこなかった周波数帯であ るミリ波帯電磁波の今後の活発な利用が期待される.

4. ミリ波帯電磁波標準の評価手法

4.1 測定距離と測定環境

開口面アンテナ等の指向性を有する高利得アンテナの 特性は、一般的に平面波近似が成立する遠方界において 定義される.しかしながら、現実問題としては、そのよ うな理想的な測定環境は実現できず、アンテナの特性は、 有限の距離で評価しなくてはならない.この場合の測定 距離Rは、アンテナの大きさ(最大寸法D)と自由空間波 長λの関数として与えられる.距離による振幅の誤差が 無視できるとすると、遠方界領域として以下の関係式が よく知られている.

$$R \ge \frac{2D^2}{\lambda} \tag{1}$$

まず,ボアサイト方向において定義される利得に関し て検討を行う.図2に,Xバンドホーンアンテナにおける 近接効果の補正の図を参考文献3)から抜粋して示す.同 図において,横軸がアンテナ間距離に相当し,最も左側 が2D²/λの場合に対応する.また,縦軸は,その際の補 正量を示す.この図に示されるように,標準利得ホーン アンテナの場合,遠方界領域として定義される領域であ る2D²/λを使用して測定を行ったとしても,近接効果に より1dB程度の利得低下が生じることが分かる.また, 同図より、測定距離を変化させることにより無限遠方に 対する利得の差異を0.05dB以下に減らすためには、実際 には32D²/λの測定距離が必要であることが読み取れる^{3,4)}.

ボアサイト方向のみならず、広角方向のサイドローブ レベルに関しても、測定距離は影響を与える.これは、 例えば,実測データから指向性利得を算出する場合に, 特に問題となる.図3にテイラー指向性アンテナにおけ る測定距離の違い(3種類のアンテナ間距離R=2D²/λ, 4D²/λ,∞)に対する放射パターンの違いを参考文献5)か ら抜粋して示す.式(1)の測定距離Rは、開口面アンテナ の中心から観測点までの距離と開口面アンテナ端部から 観測点までの距離の位相差Δ φ が π/8となる距離として 定義される.ただし、位相差△ φは、測定したアンテナ 指向性のダイナミックレンジに影響する. すなわち, -30dBのサイドローブレベルで設計されたテイラー分布 を持つアンテナに対して $\Delta \phi \delta \pi/8$ とした際に、ピーク から-23dB以下の領域では遠方放射界と一致しない.す なわち、R=∞のものと比べてダイナミックレンジは 23dBしか確保できない. また, 位相差 $\Delta \phi \delta \pi/16$ と設定 すれば、Rは上式の倍となるが、このΔ φ に対して有効 なダイナミックレンジは25dBとなる.特に、アンテナの 物理的な大きさが大きく波長が短い場合, Hackerと Schrankは、-30から-40dBを有する超低サイドローブアン テナのアンテナ指向性を正確に評価するには、開口中心 と周辺部との観測点における位相差Δφを約5°としな ければならないということを示しており、その際には、 更に長い測定距離が必要とされる。

外部からの電磁波の影響を受けない測定場として、電気 的にシールドされた部屋の中に電波吸収体を敷設した電 波暗室が挙げられるが、そのような閉じた空間においては、 長い距離を有する測定環境を実現するのは難しい.また、 オープンサイトで測定を行う場合には、地面からの反射に よる誤差や他の散乱体からの反射波・散乱波の影響、また、 外部からの妨害電波による影響が測定に含まれてしまい、 正確な測定は困難である.上記の問題に加え、ミリ波帯電 磁波においては、大気(酸素)による減衰が大きく、十分 な距離の測定環境を実現した場合、天候等によっては測定 結果に大きな差異が生じることになる.

通信,レーダ,ナビゲーション,リモートセンシング 等,電磁界を利用したシステムにおいて,その正確な動 作特性の評価は必要不可欠である.現在,ピラミダルホ ーンアンテナやコニカルホーンアンテナ等の標準ホーン アンテナや,パラボラアンテナ等の開口面アンテナを精 度良く測定する手法として,米国NISTを初めとした外国 標準研究機関においては,外挿法を使用している.

図2 Xバンドホーンアンテナにおける近接効果の補正

図3 テイラー指向性アンテナにおける測定距離の 違いに対する放射パターン

この手法は,近傍界/遠方界変換理論の応用として, 限られた短い測定距離で供試アンテナの利得および偏波 特性を精度良く測定する手法である.具体的には,供試 アンテナと対向アンテナの結合度を測定距離の漸近級数 として表し,測定距離の変化に伴う結合度の変化より, 漸近級数の各項の係数を求めることによって無限遠の場 合の値を得ることができる.なお,測定環境としては, 電波暗室が良く用いられる.最も高い精度が必要とされ る場合のアンテナ測定に関しては,現在,最も有益な方 法であるといわれている.このように,外挿法は,測定 をコンパクトな空間に限定することにより,外的諸条件 の影響を極力排除し,精度と信頼性の高い測定を可能に する測定法である.

4.2 平面波散乱行列表現⁷⁾⁻¹⁷⁾

外挿法の使用に関しては、1963年にNBS(現NIST)の Kernsによって提案された散乱行列表現を用いる.この 手法は、アンテナを空間に対し無限個の平面波入出力端 子を持つ接合回路と考え問題を解く手法である.まず、 散乱行列法に関して簡単に述べる.

図4に示すような対向した2つのアンテナが結合して いる系を考える.平面波散乱行列法では,アンテナは1 個の給電端子と方向の異なる無数の平面波に対応した無 限個の端子をもつ回路網と考える.そうすると,一般の 多端子回路網において各端子における入射波,反射波の 関係を散乱行列を使って表すのと同様にアンテナの場合 も給電端子面 S_0 における入出力波 a_0, b_0 と空間に出入りす るベクトル平面波スペクトル $\bar{a}_m(\overline{K}), \bar{b}_m(\overline{K})$ の間の関係を 散乱行列を用いて記述できる. aは入射波,bは反射波又 は放射波を表す.上付きのバーはベクトルを表す.給電 端子面 S_0 に関係するパラメータには,0の添え字をつけて 表すとアンテナの入出力波の関係は,

$$b_{0} = S_{00}a_{0} + \iint \sum_{m=1}^{2} \overline{S}_{01}(m, \overline{K}) \cdot \overline{a}_{m}(\overline{K}) d\overline{K}$$
(2a)
$$\overline{b}_{m}(\overline{K}) = \overline{S}_{10}(m, \overline{K})a_{0} + \iint \sum_{n=1}^{2} \overline{\overline{S}}_{11}(m, \overline{K}; n, \overline{L}) \cdot \overline{a}_{n}(\overline{L}) d\overline{L}$$
(2b)

となる. *m*, *n*は, 偏波を表すパラメータで, 1がTM波 (H_z =0), 2がTE波 (E_z =0) に対応している. これが, アンテナの平面波散乱行列 (plane-wave scattering matrix) 表現である. この式の中で, S_{00} は端子面 S_0 における反射 係数であり, $\overline{S}_{01}(m,\overline{K})$ は空間からの入射波に対する受信出 力 b_0 の関係を表すのでアンテナの受信関数とみなすこと ができる. 同様にして, $\overline{S}_{10}(m,\overline{K})$ はアンテナの送信関数, $\overline{S}_{11}(m,\overline{K};,n,\overline{L})$ は入射平面波が再び外部空間に出て行く平 面波を表しているので, アンテナの散乱関数と考えるこ とができる.

図4 結合した2つのアンテナ系と送受信関数の関係

山本哲也

4.3 3アンテナ外挿法

上記の考えを2個の結合したアンテナ系に適用する. 一方のアンテナから放射された平面波は他方のアンテナ への入射波となることと,式(2)の関係を用いると2個の アンテナの結合を表す方程式が得られる. 今,左側のア ンテナが送信,右側のアンテナが受信の場合を考え,受 信側のパラメータや入出力波に を付けて表す.また, 送信側のアンテナを1,受信側のアンテナを2とする.す ると,受信側で受信される波は,

$$b_0' = \frac{a_0}{1 - \Gamma_1 \Gamma_2} \int_K \sum_m S_{01}^2'(m, K) S_{10}^1(m, K) \exp(i\gamma d) dK$$
(3)

と表される. ここで, $\Gamma_2 \ge \Gamma_l$ は, それぞれアンテナ2, 負荷に対する反射係数である. なお, 上式においては, アン テナ間の多重反射の影響は含まれていないが, その議論は, 次節の冪級数表現の説明の際に触れる. 上式に3アンテナ 法を適用するために, アンテナ間距離dが極めて大きい場 合の漸近形を, 書き表すと, 以下のようになる.

$$b_0' \approx \frac{2\pi i k a_0 \exp(ikd)}{(1 - \Gamma_l \Gamma_2) d} \left[S_{10x}^1(0) S_{10x}^2(0) - S_{10y}^1(0) S_{10y}^2(0) \right]$$
(4)

送受信関数における散乱行列成分のX方向成分,Y方向成 分をそれぞれX,Yと表し,例えば,それぞれ S_{10x} ¹(0)= X_1 , S_{10y} ²(0)= Y_2 等と表記すると, $d \rightarrow \infty$ とした場合の送受信間 の結合特性は,以下のように表される.

図5 結合した2つのアンテナの向きと結合方程式の関係

$$X_{1}X_{2} - Y_{1}Y_{2} = \lim_{d \to \infty} \left(\frac{b_{0}'d}{a_{0}} \frac{(1 - \Gamma_{1}\Gamma_{2})e^{-ikd}}{2\pi ik} \right) \equiv D_{12}'$$
(5a)

次に,受信側のアンテナの向きをボアサイト方向に関し て90度回転させる.この場合の送受信アンテナ間の結合 特性は,受信側のパラメータや入出力波に、、を付けて 表すと,以下のようになる.

$$X_{1}Y_{2} + X_{2}Y_{1} = \lim_{d \to \infty} \left(\frac{b_{0}''d}{a_{0}} \frac{(1 - \Gamma_{l}\Gamma_{2})e^{-ikd}}{2\pi ik} \right) \equiv D_{12}''$$
(5b)

上式は、実際には、他の種類のアンテナペアの組み合わ せに対しても行われる.図5に結合した2つのアンテナの 向きと結合方程式の関係を示す.実際には、3種類のア ンテナに対して未知量は6種類となり、6元連立方程式を 解くことになる.この結合関係は、アンテナmからアン テナnへの伝送量として、下記のように簡潔に記述する ことができる.

$$X_n X_m - Y_n Y_m = D_{nm}$$
 (6a)
$$X_n Y_m + X_m Y_n = D_{nm}$$
 (6b)

ここで、 $X \ge Y$ は未知数、 D_{nm} は、測定によって与えられる数である.いったん、X、Yが導出されれば、利得、軸比等は、下式により容易に導出を行うことができる.

$$G = \frac{4\pi k^2 \left(\left| X \right|^2 + \left| Y \right|^2 \right)}{1 - \left| S_{00} \right|^2} = \frac{4\pi k^2 \left(\left| L \right|^2 + \left| R \right|^2 \right)}{1 - \left| S_{00} \right|^2}$$
(7)

$$4R = \frac{|R| + |L|}{|R| - |L|}$$
(8)

なお, RとLは, 散乱行列成分の右旋, 左旋円偏波成分で あり,

$$R = (X - iY)/\sqrt{2}$$
(9a)

$$L = (X + iY)/\sqrt{2}$$
(9b)

である.

4.4 アンテナ間結合の冪級数表現

 D_{nm} を決定するのに必要とされるデータは、対向した2 つのアンテナに対する送信アンテナの出力信号の受信ア ンテナの入力信号に対する比 $|b_0'(d)/a_0| \ge |b_0''(d)/a_0| \ge$, そ の受信アンテナを回転させた際の位相変化 $\arg(b_0''(d)/b_0'(d))$ である.これらのデータとアンテナ間距 離d,周波数f,反射係数等により、 D_{nm} を決定することが できる.

式(4)において、アンテナ間の多重反射の影響を考慮す るために、同式を冪級数表現として書き表す.一般的に、 いかなる2つのアンテナに対しても、その受信信号は、 距離の関数として表した場合、冪級数として表現するこ とができることが知られている.すなわち、 ミリ波帯アンテナ標準供給のための高精度測定法の現状と展望

$$b_0'(d) = \frac{a_0}{1 - \Gamma_n \Gamma_l} \sum_{p=0}^{\infty} \frac{\exp[i(2p+1)kd]}{d^{2p+1}} \sum_{q=0}^{\infty} \frac{A_{pq}}{d^q}$$
(10)

上記の表現を詳細に書き出すと、以下のようになる.

$$b_{0}'(d) = \frac{a_{0}}{1 - \Gamma_{n}\Gamma_{l}} \left\{ \frac{e^{ikd}}{d} \left(A_{00} + \frac{A_{01}}{d} + \frac{A_{02}}{d^{2}} \cdots \right) + \frac{e^{3ikd}}{d^{3}} \left(A_{10} + \frac{A_{11}}{d} + \frac{A_{12}}{d^{2}} \cdots \right) + \frac{e^{5ikd}}{d^{5}} \left(A_{20} + \frac{A_{21}}{d} + \frac{A_{22}}{d^{2}} \cdots \right) + \cdots \right\}$$
(11)

上記の式において、初項は、近傍における直接的な伝送 信号を表し、二番目の項は、アンテナ間の最初の反射を 表し、3番目以降の項は、高次の多重反射を表す.式(10) から多重反射の影響と、1/dにおける高次の項の影響を取 り除くことにより、式(5a)のD_{nm}'は、以下のように表され る.

$$D_{nm}' = \lim_{d \to \infty} \left(\frac{b_0'(d)d}{a_0} \frac{(1 - \Gamma_l \Gamma_n)e^{-ikd}}{2\pi ik} \right) = \frac{A_{00}}{2\pi ik}$$
(12)

従って,無限遠方における特性を議論する場合には,最 終的に式(12)において A_{00} のみを求めれば良いことになる. 3 r ンテナ外挿法の場合,受信側のアンテナの向きが0°と90°の2通りに対してそれぞれ3種類ずつ計6種類の $<math>D_{nm}$ が測定される.これらの6元連立方程式を解くことで, $X_1 \sim X_3$, $Y_1 \sim Y_3$ の全ての送受信関数を導出することが可 能となり,最終的に,式(7),(8)から利得,軸比を算出す ることが可能となる.

4.5 測定装置と測定手順

ミリ波測定装置のブロックダイアグラムを図6に示す. 2台のアンテナは、2m程度の高さの測定台(ポール)に 設置する.なお、この2本の測定台は、軸合わせをされ た真っ直ぐなレール上に設置され、アンテナ間距離を変 化させながら、測定を行うことができるような構造にな っている.本測定装置の写真を図7に示す.なお、同図 においては、まだポール(支柱)上に測定台やミリ波モ ジュール等は設置されていない.まず、実際の測定を始 める前に、不整合誤差に対する補正を行うために、調整 型リフレクトメータ、もしくはネットワークアナライザ を用いて、それぞれのアンテナと信号源と負荷のポート の入力反射係数を測定する.これは、高精度測定を行う 場合に、特に必要とされる.

高利得アンテナのような特定の方向に鋭いビームを有 するアンテナを評価する場合,ボアサイト方向のアライ メント(軸合わせ)は,特に重要である.次のステップ として,その測定系のアライメント調整を正確に行う.

図6 ミリ波測定装置ブロックダイアグラム

図7 外挿法に使用するミリ波測定装置

測定系の座標軸としては、送受信間のアンテナの方向を2 軸方向とし、y軸は垂直方向、x軸は水平方向とする.ま ずは、測定軸であるz軸上にアンテナを設置し、送受信ア ンテナ間にセオドライト(測量機)を置き、送受信アン テナそれぞれに対して、開口面が正確にボアサイト方向 を向いているかの調整を行う.また、z軸とレールの方向 が正確に一致しているかを確認するために、送受信アン テナの測定台を動かしながら、測定系におけるz軸がレー ルの軸と正確に平行になるように、機械的な微調整を行 う.なお、偏波の測定を行うような場合にはアンテナをz 軸に関して回転して使用しなければならないので、そのよ うな場合には、更に慎重にアライメントを行う必要がある.

次に,発信器からの直接的な信号を測定するために, 2台の測定台を接近させ,信号源と負荷のポートを直接 接続する.上記の測定終了後に,送信アンテナからの信 号をアンテナ間距離の関数として測定する.なお,外挿 法において想定される最大測定距離 d_{max} は,少なくとも a^2/λ とするべきである.また,最小距離 d_{min} は, $d_{max}/d_{min}>4$ となるように,十分に小さい値を選ぶ.一般的には,約 0.2a²/λから2a²/λの範囲で測定が行われている. なお, 別の基準としては,距離を変化させながら測定を行い, その信号レベルが少なくとも10dB変化する範囲として も良い.測定データ上においては,実際には,アンテナ 間の多重反射に起因する小さい変動が生じる. この多重 反射の影響を,アベレージング等を利用して取り除き, 遠方界における値を外挿する.

5. 電磁界・アンテナ標準整備状況

5.1 計量標準総合センター

産業技術総合研究所(産総研)計測標準研究部門電磁界 標準研究室では、10kHzから110GHzまでの周波数を4分割 し,それぞれの周波数領域において高品質で早急な標準の 確立に向けて、測定環境の整備業務を行っている¹⁸⁾⁻¹⁹⁾.数 年後には、ミリ波帯を含んだ110GHzまでの周波数領域に おけるアンテナ係数・アンテナ利得における物理標準が日 本国内において整備される予定である.ホーンアンテナ利 得標準としては、これまで、旧電総研時代にXバンドホー ンアンテナの利得測定装置等の研究として、挿入損失法を 使用し、国際比較の対象周波数である8、10、12GHzの周 波数を検討した経緯がある²⁰⁾.しかしながら、ミリ波帯電 磁波に関しては、当時としては、ごく一部の専門的で特別 な用途としてしか利用されていなかったため、今日のよう な電磁環境問題を本周波数帯において詳細に議論する必 要性は生じてはいなかった.

近年のミリ波帯電磁波利用の必要性を鑑み、産総研においては、つくば本部・情報技術共同研究棟において、ミリ 波帯電波暗室の施工を行い、平成16年3月に完成した.計 測室、電波暗室の写真を図8.1、図8.2にそれぞれ示す.

図8.1 産総研ミリ波電波暗室脇の計測室 (つくば本部・情報技術共同研究棟)

図8.2 産総研ミリ波電波暗室 (つくば本部・情報技術共同研究棟)

本測定場は、13m×9m×6mの大きさで、1.5mのクワイエ ットゾーンを有している.長期間の使用にも優れた安定 性を示し、超広帯域で、斜入射特性にも優れた吸収特性 を有する電波吸収材を用いている.現在、ミリ波帯電磁 界標準整備に向けて、この電波暗室において使用する測 定装置類を早急に整備しているところである.

5.2 諸外国の電磁界標準整備状況

諸外国の国家計量標準研究所におけるミリ波帯アンテ ナ利得の整備状況を、BIPMのホームページにおける CMCリスト (2004年現在),並びに,諸外国の標準研究 機関のホームページから抜粋し、表2に示す.現状では、 米国NISTは3アンテナ外挿法を使用して75GHzまで、英 国NPLはホーンアンテナにおいて同様な方法を使用し 45.5GHzまで、フランスBNM-LNEはホーンアンテナにお いて標準サイト法を使用し40GHzまで、オランダ NMi-VSLは、3アンテナ法を使用し40GHzまで、ロシア VNIIFTRIは、ホーンアンテナにおいて3アンテナ外挿法 を使用し118GHzまで、また、リフレクタアンテナに関し てコンパクトレンジを使用し、同じく118GHzまで、韓国 KRISSはホーンアンテナにおいて3アンテナ法を使用し、 40GHzまで校正可能という状況であった.表2から, 40GHz以上のアンテナ標準に関しては、米国、英国、ロ シアが整備を完了している.

著者は、本年の7月の初めに英国NPLを訪問しマイクロ 波帯における最新のアンテナ標準測定環境の視察を行い、 マイクロ波ミリ波帯ホーンアンテナ校正を担当している David Gentleとディスカッションを行う機会を得た.英 国NPLの大型外挿法測定装置の写真を図9.1、図9.2に示す. 今回の貴重な機会を生かし、諸外国においてまだ十分に

国名 研究機関名	Antenna	Method	Frequency	Uncertainty
米国 NIST	Antenna	Three antenna extrapolation technique	30-75GHz	0.15dB
英国 NPL	Horn antenna	Three antenna extrapolation technique	43.5-45.5GHz	0.05dB
フランス BNM-LNE	Horn antenna	Standard site method in AC	1-40GHz	0.24-0.65dB
オランダ NMi-VSL	Antennas	Three antenna method	1-40GHz	0.1dB
ロシア	Horn antenna	Three antenna method, extrapolation range	78.3-118GHz	0.15dB
VNIIFTRI	Reflector antenna	Compact range	16.7-118GHz	0.3dB
韓国 KRISS	Horn antenna	Three antenna method	0.5-40GHz	0.5-1dB

表2 ミリ波帯アンテナ標準の諸外国の整備状況

図9.1 NPLにおける大型外挿法測定装置における 送信側装置台

図9.2 NPLにおける大型外挿法測定装置における 送信側装置台の内部

整備されているとはいえないミリ波標準を我が国に おいて早急に整備することで,むしろ,世界に先導 する物理標準を確立することが可能となる.

6. まとめ

ミリ波帯電磁波は,近年特に注目されてきている 周波数帯である.本稿では,この電磁波に関しての 標準整備に関して,まず,その特徴と電磁波利用状 況に関して記述した.更に,諸外国において高精度 な測定手法として知られている外挿法に関して触れ, その簡単な理論,測定手順に関しても述べた.最後 に計量標準総合センターと諸外国におけるミリ波帯 電磁界標準に関してまとめた.

謝辞

本調査研究を実施するにあたり、ご指導頂いた電 磁波計測科・科長小見山耕司氏,電磁界標準研究室・ 室長廣瀬雅信氏,並びに同研究室の皆様方に深く感 謝致します.

参考文献

- "電波政策ビジョン(草案),"総務省情報通信審 議会電波政策特別部会資料,2003.
- "60GHz帯の周波数の電波を使用する無線設備 の技術的条件の答申," 郵政省電気通信技術審議 会諮問第107号, Jun. 1999.
- 3) Ronald.R.Bowman, "Field strength above 1GHz: measurement procedures for standard antennas," *Proc. IEEE*, vol.55, no.6, pp.981-990, Jun. 1967.

- T.S.Chu and R.A.Semplak, "Gain of electromagnetic horns," *Bell Sys. Tech. J.*, vol.55, no.6, pp.527-537, Mar. 1965.
- 5) "IEEE standard test procedures for antennas," IEEE Std. 149-1979, *IEEE Inc.* 1979.
- P.S.Hacker and H.E.Schrank, "Range distance requirements for measuring low and ultralow sidelobe antenna patterns," *IEEE Trans. Ant. Propag.*, vol.AP-30, no.5, Sep. 1982.
- Andrrew G.Repjar, Allen C.Newell and Douglas T.Tamura, "Extrapolation range measurements for determining antenna gain and polarization," NBS Technical Note, 1311, Aug. 1987.
- Allen C.Newell, Ramon C.Baird, and Paul F.Wacker, "Accurate measurement of antenna gain and polarization at reduced distances by an extrapolation technique," *IEEE Trans. Ant. Propag.*, vol.AP-21, no.4, Jul. 1973.
- Andrrew G. Repjar, Allen C. Newell and Douglas T. Tamura, "Extrapolation range measurements for determining antenna gain and polarization," NBS Technical Note, 1311, Aug. 1987.
- 10) David M. Kerns, "Plane-wave scattering-matrix theory of antennas and antenna-antenna interactions," *NBS Monograph*, Jun. 1981.
- David M. Kerns, "Correction of near-field antenna measurements made with an arbitrary but known measuring antenna," *Elec. Lett.*, vol.6, no.11, May 1970.

- 12) David M. Kerns, "Determination of both polarization and power gain of antennas by a generalized 3-antenna measurement method," *Elec. Lett.*, vol.7, no.3, Feb. 1971.
- 13) 手代木扶他, "アンテナの近傍界測定システムの 開発とその応用," 通信総合研究所季報, pp.101-180, vol.34, no.172, Sep. 1988.
- 14) 手代木扶, "アンテナ測定法の基礎と実際," 電 子情報通信学会アンテナ・伝播における設計・解 析手法ワークショップ(第13回)資料, Mar. 1999.
- 15) 手代木扶, "アンテナの近傍界測定," *電子情報 通信学会誌*, vol.62, no.10, pp.1145-1153, Oct. 1979.
- 16) "アンテナ工学ハンドブック," 電子情報通信学
 会編, 1980.
- 17) D.G.Gentle, A.Beardmore, J.Achkar, J.Park, K.MacReynolds, and J.P.N. de Vreede, "CCEM key comparison CCEM.RF-K3.F(GT-RF 92-1), measurement tecghniques and results of an intercomparison of horn antenna gain in IEC-R 320 at frequencies of 26.6, 33.0 and 40.0GHz," NPL report, CETM 46, Sep. 2003.
- 18) 石居正典, "アンテナ係数及び300MHz以下の標準アンテナに関する調査研究," 産総研計量標準 報告, pp. 175-180, vol.2, no.1, Apr. 2003.
- 19) 黒川悟, "EMI計測とアンテナ等電磁界標準に関 する調査," *産総研計量標準報告*, pp.149-154, vol.3, no.1, Mar. 2004.
- 20) 長塚明雄,小見山耕司,横島一郎,"Xバンドアン テナ利得測定装置の精度評価," *電気学会計測研 究会*, IM-87-41, pp.37-46, Oct. 1987.