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Abstract

　In the past decade, there has been a revolutionary breakthrough in artificial intelligence research field culti-

vated by the adoption of deep neural network-based learning architecture for various machine perception tasks. 

A number of ‘human-versus-machine’ evaluations demonstrated that state-of-the-art AI-enabled systems are able 

to substitute the human role in various challenging tasks, such as visual content understanding and speech rec-

ognition. This report reviews the major AI concepts pertinent to non-destructive evaluation (NDE) and summa-

rizes over 100 contributions, including both fundamental research and practical applications in the field, most 

of which appeared in the last five years. Particularly, we survey the use of AI-enabled computing for several 

critical NDE applications, such as AI approaches to ultrasonic imaging understanding, computerized impact-

echo investigation and machine vision approach to displacement measurement of structures. We conclude this 

survey with a discussion of open challenges together with several inspiring directions for the future research.
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1. Introduction

All man-made structures, i.e. bridges, dams, and 

airports, have finite life spans and start to degrade since 

they are put into service. As the time goes, deteriorations, 

such as corrosion, fatigue, erosion, wear and overloads, 

will continue until the structures are no longer fit for their 

intended use.  Maintenance,  rehabi l i ta t ion,  and 

replacement of critical social infrastructures pose 

worldwide pressing problems to human society. Among 

all issues related to infrastructure safety management, 

condition inspection is the foremost one, since it is 

decision-making stage for any further process, and thus 

attracted lots of research ef forts through decades. In 

general, damage can be formulated as the change 

introduced into a system that will deteriorate overall 

integrity and affect its current or future performance1). 

For instance, a damage in mechanical structures can be 

defined specifically as change to the material and/or 

geometric proper ties. Health condition inspection 

provides quantitative information on the integrity of the 

structure. It allows better use of resources than time-

based maintenance scheduling, which may be performed 

even there is no necessity. To achieve on-demand 

maintenance, a wide variety of condition inspection 

approaches had been proposed from both theoretical and 

numerical aspects and those methods can be briefly 

categorized into two groups: destructive and non-
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destructive tests2). The first group, as the name suggests, 

would break down the specimen so as to determine its 

properties, such as strength, toughness and hardness. In 

contrast, non-destructive evaluation/test (NDE/NDT) 

refers to the set of non-invasive activities used to assess 

the condition of objectives or installations without causing 

any damage. This study mainly addresses the NDE/NDT 

approaches. Efficient NDE methods, such as the impact-

echo test, acoustic emission, ultrasonic inspection and 

X-ray imaging3), had been successfully applied in a wide 

range of applications including detection delamination, 

inner void of concrete4); finding leakage of storage tanks 

or piping systems5); assessment of welding quality and 

debonding6). More recently, the innovative NDE methods 

become more ef ficient which enable us get access to 

health condition of structures, including whether there is 

damage and what kind of damage it is, and even how 

severe it is7).

It is noteworthy that some major drawback existed in 

the conventional condition inspection methods, i.e. the 

process is costly and usually finds no faults; also, it is 

subject to human error in reading resultant data. 

Advanced sensing technologies and efficient AI-enabled 

computation modeling are paramount to tackle those 

shortages. With the rapid progress made in the materials 

science, it is possible nowadays to design a sensor 

material that can achieve high sensitivity with smaller size 

and low-cost. For instance, piezoelectric (PZT) and 

polyvinylidene fluoride (PVDF) sensors are conventional 

methods to measure pressure and acceleration of 

structures which render higher sensitivity compared to 

the strain gauges2). More recently, Micro Electro-

mechanical Systems (MEMS) based sensors have become 

quite active as sensing device which exhibit higher 

accuracy and lower cost8). The booming of new-generation 

sensing devices leads to a new style of inspection, i.e. the 

whole process of loading and damaging of target 

structures can be recorded and such inspection data 

covers wide timespan and thus is able to of fer richer 

condi t ion infor mat ion of  s tr uctures9).  W ith the 

accumulation of long-term multi-modal sensor data, how 

to efficiently exploit the data becomes challenging issue. 

The resultant inspection data can be different forms, such 

as images, videos, sounds and time-series data. The raw 

data does not tell where/what the flaws are in the 

structure. Efficient investigation is required to convert 

raw values into meaningful quantities or semantic 

judgement that clearly indicate flaws status, i.e. location 

and severity. Such data interpretation is conventionally 

performed by skilled experts, i.e. listening to echo sound 

in hammer sounding test on concrete, examining 

ultrasonic images for flaw detection of metal/Carbon 

Fiber Reinforced Polymer Composites (CFRP) structures 

and reading ground penetration radar images in highway 

inspection3), 4). It is evident that human interpretation is 

high subjective and individual bias can be added to the 

judgement.

As soon as it was possible to save and load data into a 

computer, researchers have built systems for automated 

analysis of non-destructive evaluation data10), 11). In broad 

terms, there are two approaches to NDE data analysis: 

model-driven and data-driven approaches12). Model-driven 

methods establish a high-fidelity physical model of the 

structure, usually by finite element analysis, and then 

establish a comparison metric between the model and the 

measured data from the real structure. If the model is for 

a system or structure in normal (i.e. undamaged) 

condition, any departures indicate that the structure has 

deviated from normal condition and damage is inferred. 

Data-driven approaches also establish a model, but this is 

usually a statistical representation of the system, e.g. a 

probability density function of the normal condition. 

Departures from normality are then signaled by measured 

data appearing in regions of very low density13). Data-

driven methods became quite active in recent years due 

to the mature applications of low-cost NDE sensor, 

powerful central processing unit (CPU) and ever-fast 

high-speed internet access. In nowadays, it is much easier 

to generate/transfer/store more and more data during 

structure inspection2). To efficiently process the large-

scale non-destructive test data, various data-driven 

analysis algorithms had been developed which are mainly 

drawn from the discipline of machine learning, or more 

broadly, artificial intelligence (AI). The design of a data-

driven pattern analysis system requires careful attention 

to the following issues: definition of pattern classes, 

sensing environment, pattern representation, feature 

extraction and selection, cluster analysis, classifier design 

and learning, selection of training and test samples, and 

performance evaluation. The object of this paper is to 
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illustrate the utility of the data-driven approach to damage 

identification by means of an extensive survey and by 

summarizing recent literatures, we aim to:

† present current progress that advanced machine 

learning (deep learning) techniques have permeated 

various aspects of non-destructive evaluation research 

field;

† identify the challenges for successful application of 

deep learning to structural health condition assessment 

tasks;

† highlight the potential solutions which may tackle 

these challenges.

This survey has been structured as follows. In Section 

2 we present a concise historical review of ar tificial 

intelligence (AI) and machine learning research, and then 

introduce the representative technical milestones. 

Particularly, we deliver an overview on Deep Learning – a 

machine learning paradigm which exhibit strong ability to 

substitute human’s in various visual/acoustic information 

processing tasks. Section 3 describes the contributions of 

deep learning to several central tasks in NDE data 

analysis, including signal enhancement, content-based 

segmentation, pattern classification, and anomaly 

detection. Section 4 discusses current open challenges in 

development of computerized NDE data analysis systems 

using machine learning techniques, such as lack of data, 

uncertainty in data annotations. We finalize this study with 

a summary, an in-depth discussion and an outlook for 

future works.

2. Review of research progress in Artificial Intelligence

2. 1 AI, the concept
The idea of creating an intelligent machine is as old as 

computing, if not  even  older. An initial description had 

been laid out by Alan Turing in 1950s, who is an English 

pioneer of computer science. His seminal paper   

“Computing Machinery and Intelligence”  laid out several 

criteria to assess whether a machine could be said be 

intelligent, which has since become known as the Turing 

test14).  Several  years later,  the term of Ar ti f icial 

intelligence (AI) had been coined by John McCarthy in 

1956  when he organized the famous Dar tmouth 

conference on the subject15). Learning, in computer 

science, is initially defined as a procedure of establishing 

a model (algorithm) that can perform a specific task, such 

as visual/acoustic pattern classification16). Besides, it has 

been commonly acknowledged that AI ranges from 

machines truly capable of thinking to search algorithms 

used to play board games. The key issues had been 

extensively studied through decades, including acting and 

thinking humanly. Figure 1 shows the taxonomy of 

modern AI research, which comprises of several major 

subjects including machine learning (ML) and neural 

networks (NN). Particularly, the active AI technique of 

deep architecture of learning (DL) is a class of machine 

learning technique developed largely from 200617), 18). In 

the following sections, we will present more details of 

technical and conceptual development in nowadays AI 

research.

2. 2 Types of machine learning techniques toward AI
Machine  lear n ing  methods  can  be  genera l ly 

categorized into two groups: supervised and unsupervised 

learning, although there are many nuances19).

In supervised learning, the goal is to learn a mapping 

from inputs x  to outputs y, given a set of data-label pairs  

{x ,y}n, where x , y and n denote the input in the form of 

vector, the corresponding label and the sample number, 

respectively. In the following mathematical representation, 

Figure 1　Conceptual coverage map of AI
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pattern classification [16]. Besides, it has been commonly acknowledged that AI ranges from 
machines truly capable of thinking to search algorithms used to play board games. The key 
issues had been extensively studied through decades, including acting and thinking humanly. 
Figure 1 shows the taxonomy of modern AI research, which comprises of several major 
subjects including machine learning (ML) and neural networks (NN). Particularly, the active 
AI technique of deep architecture of learning (DL) is a class of machine learning technique 
developed largely from 2006 [17,18]. In the following sections, we will present more details 
of technical and conceptual development in nowadays AI research.

Figure 1. Conceptual coverage map of AI

2-2. Types of machine learning techniques toward AI
Machine learning methods can be generally categorized into two groups: supervised and 
unsupervised learning, although there are many nuances [19]. 
In supervised learning, the goal is to learn a mapping from inputs x to outputs y, given a set 
of data-label pairs 𝓓𝓓 = {𝒙𝒙, y}𝑁𝑁 , where 𝒙𝒙 are features, y are labels and N is the sample 
number.  y can be discrete or continuous values, as for the cases of classification and 
regression, respectively. The supervised machine learning scheme commonly amounts to 
finding model parameters Θ that best predict the training data based on a error/loss function 
𝐿𝐿(𝑦𝑦, �̃�𝑦), where �̃�𝑦 denotes the estimation result of the model obtained by feeding a data point
𝒙𝒙 to the function 𝑓𝑓(𝒙𝒙; Θ) . The second category, i.e. unsupervised learning algorithms,
processes data without labels and are trained to find inner structures of data, such as latent 
subspaces [13,18]. This is sometimes called knowledge discovery [20]. Unsupervised training 
can be performed under a batch of loss functions. One example is reconstruction loss 𝐿𝐿(𝒙𝒙, �̃�𝒙)
where the model is designated to reconstruct its input, often through a lower dimensional or 
noisy condition. While, the problem is commonly not well-defined, since we are not told what 
kinds of structures to capture, and there is no obvious error measurement to use (unlike in 
the case of supervised learning, where the error is defined as difference between ground 
truth y to our prediction result for a given x to the observed value). One of the most successful 
traditional unsupervised learning algorithms are principal component analysis (PCA) [13]
and clustering methods [21]. 
In recent decade, several new formulations of machine learning had been proposed, such as
reinforcement learning which is based on decision theory [16] to learn how to act or behave 
when given occasional reward or punishment signals, such as in the famous AlphaGo learned
to play go and won top human players [22]. The techniques become more important in various 
real applications, including automatic driving and robotics [18]. This survey mainly focuses
on the supervised/unsupervised machine learning, since they are anticipated to play more 
critical roles in non-destructive test data investigation.
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scalars are noted by lower case letters and vectors are 

described by boldface lowercase letters. y can be discrete 

or continuous values, as for the cases of classification and 

regression. The supervised machine learning scheme 

commonly amounts to finding model parameters θ that 

best predict the training data based on an error/loss 

function L(y,y～), where y～ denotes the estimation result of 

the model obtained by feeding a data point x  to the 

function: y～＝f(x ;θ). The second category, i.e. unsupervised 

learning algorithms, processes data without labels and are 

trained to find inner structures of data, such as latent 

subspaces13), 18). This is sometimes called knowledge 

discovery20). Unsupervised training can be performed 

under a batch of loss functions. One example is 

reconstruction loss L(x , x～) where the model is designated 

to reconstruct its input, often through a lower dimensional 

or noisy condition. While, the problem is commonly not 

well-defined, since we are not told what kinds of 

structures to capture, and there is no obvious error 

measurement to use (unlike in the case of supervised 

learning, where the error is defined as difference between 

ground truth y to our prediction result for a given x to the 

observed value). One of the most successful traditional 

unsuper vised lear ning algorithms are principal 

component analysis (PCA)13) and clustering methods21).

In recent decade, several new formulations of machine 

learning had been proposed, such as reinforcement 

learning which is grounded on decision theory16) to learn 

how to act or behave when given occasional reward or 

punishment signals, such as in the famous AlphaGo 

learned to play go and won top human players22). The 

techniques become more impor tant in various real 

applications, including automatic driving and robotics18). 

This sur vey mainly focuses on the super vised/

unsupervised machine learning, since they are anticipated 

to play more critical roles in non-destructive test data 

investigation.

2. 3 AI-enabling techniques, the milestones
Thr ough decades ,  var ious  machine  lear n ing 

frameworks had been formulated, among which the 

statistical approach has been most intensively studied and 

used in practice23). In this section, we review the key 

contributions that boosted AI research in past half 

century. We begin the review with a general framework of 

machine learning system, which includes four steps in a 

sequential setup. At the first data input stage, AI systems 

are expected to be able to process the data with various 

modalities, such as image, audio, and time-series data. 

Feature extract stage is in charge of generating a vector 

form from the raw data, which can greatly facilitate 

further statistical learning with concise representation. At 

the statistical data analysis step, machine learning 

techniques are employed to train an optimal model which 

understands the pattern conveyed by the input data. The 

model can be regarded as a knowledge base for 

processing unseen future inputs. Finally, the results are 

presented with respect to application requirements. The 

processing flow can be visualized with Figure 2.
From historical viewpoint,  AI research can be 

categorized into four generations, which are shown in the 

following Table 1. We can see the revolutionary progress 

had been made in the feature extraction approaches 

which greatly boost the performance of AI systems to 

Figure 2　A general processing flow of machine learning system
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2-3. AI-enabling techniques, the milestones
Through decades, various machine learning frameworks had been formulated, among which 
the statistical approach has been most intensively studied and used in practice [23]. In this 
section, we review the key contributions that boosted AI research in past half century. We 
begin the review with a general framework of machine learning system, which includes four 
steps in a sequential setup. At the first data input stage, AI systems are expected to be able 
to process the data with various modalities, such as image, audio, and time-series data. 
Feature extract stage is in charge of generating a vector form from the raw data, which can 
greatly facilitate further statistical learning with concise representation. At the statistical 
data analysis step, machine learning techniques are employed to train an optimal model 
which understands the pattern conveyed by the input data. The model can be regarded as a 
knowledge base for processing unseen future inputs. Finally, the results are presented with 
respect to application requirements. The processing flow can be visualized with Figure 2. 

Figure 2. A general processing flow of machine learning system

From historical viewpoint, AI research can be categorized into four generations, which are 
shown in the following Table 1. We can see the revolutionary progress had been made in the 
feature extraction approaches which greatly boost the performance of AI systems to tackle 
real world challenges. Based on the high-level classification of AI paradigms, we present a 
comprehensive survey on key technical developments.

Four generations of 
machine learning

Feature extraction Multivariate data analysis

1. Rule based (~1985)
Hand-crafted features 
(Geometrical)

Correlations
Distance measure [16]

2. Traditional Machine
Learning (1985~2000)

Hand-crafted features
(Geometrical / statistical)

Linear Discriminant function 
[19]

3. Representation
Learning (1998~2010)

Hand-crafted features
(Geometrical / advanced statistical)

Non-linear Statistical 
classifier (SVM[30], RF[35])

4. Deep Learning 
(2006~)

Automatic hierarchical feature 
extraction by Deep learning

Softmax [18]/ SVM

Table 1. Four generations of AI research
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tackle real world challenges. Based on the high-level 

c l a s s i f i c a t i o n  o f  A I  p a r a d i g m s ,  w e  p r e s e n t  a 

comprehensive survey on key technical developments.

Figure 3. shows the most remarkable contributions to 

AI research. According to the figure, the performance of 

machine learning systems had been constantly increasing 

through decades and behind this chart, the availability of 

large scale dataset and high-power computers are also 

key contributing factors18). In parallel to Figure 3. below is 

a brief historical timeline of machine learning techniques:

1943: McCulloch & Pitts show that neurons can be 

combined to construct a Turing machine by using ANDs, 

ORs, & NOTs.24). It is the first attempt to build “thinking” 
machine using computers, meanwhile it gave birth to the 

research territory of artificial intelligence.

1958: Rosenblatt shows that perceptron algorithm can 

eventually f ind a proper classif ication boundar y 

(convergence) if what they are trying to separate two 

classes of data which are inherently linear-separable25). 

This work presented the theoretical guarantee of 

availability of machine learning for easy classification 

tasks and attracted much attentions from both neural 

science and computer research fields.

1969: Minsky & Papert showed the computational 

limitations of Rosenblatt ’s perceptron with a solid 

mathematical derivation in the famous book Perceptron26). 

This conclusion was largely responsible for casting 

serious doubt on the computational capabilities of not only 

the perceptron, but also neural networks with any forms 

up to the mid-1980s18). During that period, research 

towards neural network has been regarded as the dead 

end and almost all research proposals named with “neural 

Table 1　Four generations of AI research
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the supervised/unsupervised machine learning, since they are anticipated to play more 
critical roles in non-destructive test data investigation.

2.3 AI-enabling techniques, the milestones
Through decades, various machine learning frameworks had been formulated, among which 
the statistical approach has been most intensively studied and used in practice 23). In this 
section, we review the key contributions that boosted AI research in past half century. We 
begin the review with a general framework of machine learning system, which includes four 
steps in a sequential setup. At the first data input stage, AI systems are expected to be able 
to process the data with various modalities, such as image, audio, and time-series data. 
Feature extract stage is in charge of generating a vector form from the raw data, which can 
greatly facilitate further statistical learning with concise representation. At the statistical 
data analysis step, machine learning techniques are employed to train an optimal model 
which understands the pattern conveyed by the input data. The model can be regarded as a 
knowledge base for processing unseen future inputs. Finally, the results are presented with 
respect to application requirements. The processing flow can be visualized with Figure 2.

Figure 2. A general processing flow of machine learning system

From historical viewpoint, AI research can be categorized into four generations, which are 
shown in the following Table 1. We can see the revolutionary progress had been made in the 
feature extraction approaches which greatly boost the performance of AI systems to tackle 
real world challenges. Based on the high-level classification of AI paradigms, we present a 
comprehensive survey on key technical developments.

Four generations of 
machine learning

Feature extraction Multivariate data analysis

1. Rule based (~1985)
Hand-crafted features 
(Geometrical)

Correlations
Distance measure 16)

2. Traditional Machine
Learning (1985~2000)

Hand-crafted features
(Geometrical / statistical)

Linear Discriminant 
function19)

3. Representation
Learning (1998~2010)

Hand-crafted features
(Geometrical / advanced statistical)

Non-linear Statistical 
classifier (SVM30), RF35))

4. Deep Learning 
(2006~)

Automatic hierarchical feature 
extraction by Deep learning

Softmax 18)/ SVM

Figure 3　Time line of representative techniques of AI research

H29調査研究報告

Figure 3. Time line of representative techniques of AI research

Figure 3. shows the most remarkable contributions to AI research. According to the figure, 
the performance of machine learning systems had been constantly increasing through 
decades and behind this chart, the availability of large scale dataset and high-power 
computers are also key contributing factors [18]. In parallel to Figure 3. below is a brief
historical timeline of machine learning techniques: 
1943: McCulloch & Pitts show that neurons can be combined to construct a Turing machine 
by using ANDs, ORs, & NOTs. [24]. It is the first attempt to build “thinking” machine using 
computers, meanwhile it gave birth to the research territory of artificial intelligence.
1958: Rosenblatt shows that perceptron algorithm can eventually find a proper classification 
boundary (convergence) if what they are trying to separate two classes of data which are 
inherently linear-separable [25]. This work presented the theoretical guarantee of 
availability of machine learning for easy classification tasks and attracted much attentions
from both neural science and computer research fields.
1969: Minsky & Papert showed the computational limitations of Rosenblatt’s perceptron with
a solid mathematical derivation in the famous book Perceptron [26]. This conclusion was 
largely responsible for casting serious doubt on the computational capabilities of not only 
the perceptron, but also neural networks with any forms up to the mid-1980s [18]. During 
that period, research towards neural network has been regarded as the dead end and almost 
all research proposals named with “neural network” got killed at grant reviewing. 
1984: A special type of classifier is the decision tree [27], which can be trained by an iterative 
selection of individual features that are most salient at each node of the tree. The criteria 
for feature selection and tree generation include the information content, the node purity, or 
Fisher’s criterion. Decision tree classification systems had been successfully applied for a 
number of real applications, such as in [23]. Concurrently, the method is available in the 
public domain and therefore, often used as a reference benchmark [13, 23].
1985: The backpropagation algorithm by Geoff Hinton et al [28] revitalizes the field. It is 
noteworthy that backpropagation and its variants are still being extensively used in current 
so-called deep learning algorithms and several key parameters, such as learning rate, 1st/2nd

order optimization schemes, had been investigated with theoretical depth [18].
1988: Neocognitron: a hierarchical neural network capable of visual pattern recognition [29]. 
1995: One of the most interesting developments in statistical pattern classifier design is the 
introduction of the support vector classifier by Vapnik [30]. It is primarily a two-class
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network” got killed at grant reviewing.

1984: A special type of classifier is the decision tree27), 

which can be trained by an iterative selection of individual 

features that are most salient at each node of the tree. The 

criteria for feature selection and tree generation include 

the information content, the node purity, or Fisher’s 

criterion. Decision tree classification systems had been 

successfully applied for a number of real applications, 

such as in23). Concurrently, the method is available in the 

public domain and therefore, often used as a reference 

benchmark13), 23).

1985: The backpropagation algorithm by Geoff Hinton 

et al 28) revitalizes the field. It is notewor thy that 

backpropagation and its variants are still being extensively 

used in current so-called deep learning algorithms and 

several key parameters, such as learning rate, 1st/2nd 

order optimization schemes, had been investigated with 

theoretical depth18).

1988: Neocognitron: a hierarchical neural network 

capable of visual pattern recognition29).

1995: One of the most interesting developments in 

statistical pattern classifier design is the introduction of 

the support vector classifier by Vapnik30). It is primarily a 

two-class classifier and further generalized to multiple 

class cases31), 32). The optimization criterion here is the 

width of the margin between the classes, i.e., the empty 

area around the decision boundar y defined by the 

distance to the nearest training patterns. These patterns, 

called support vectors, finally define the classification 

function. Their number is minimized by maximizing the 

margin. A batch of distance kernel metrics can be 

incorporated with suppor t vector machines (SVM) 

formulation, such as using polynomial and Gaussian radial 

basis functions. By introducing kernel mapping, SVM 

of fers a possibility to train generalizable, nonlinear 

classifiers in high-dimensional spaces using a small 

training set33).

1998: The most successful type of models for computer 

vision to date is convolutional neural networks (CNNs) 

with Backpropagation, which had been proposed by Yan 

LeCun for hand-written digit recognition34). The method 

achieved record-breaking performance and beat all other 

methods with large margin. Despite its superiority had 

been confirmed, the use of CNNs did not gather 

momentum until related technical requirements have 

been satisfied, such as efficient training scheme for deep 

networks, and advances made in computing hardware.

2001: In statistics and machine learning, ensemble 

methods use multiple learning algorithms to improve the 

stability and accuracy for better predictive performance. 

Random forests35) is one of the most successful ensemble 

learning method by constructing a multitude of  decision 

trees   and outputting the class  by majority voting of all 

trees. It had been validated as efficient approach to tackle 

the overfitting issues caused by decision tree.

2006: The Hinton lab solves the training problem for 

D e e p  N e u r a l  N e t w o r k s  f o r  d i g i t  h a n d w r i t i n g 

recognition36), 37) and opens the door to revolutionary deep 

learning-based AI research era. The latest progress in 

Deep learning will be presented with following section.

2. 4 Modern AI — the deep learning era
The swift rise and apparent dominance of deep learning 

over traditional machine learning methods on a variety of 

tasks has been clarified in recent years though a batch of 

human vs.  machine evaluations.  I t  is  commonly 

acknowledged that deep learning approaches render 

three key merits: 1. Universal learning scheme that can 

deal with data with different forms of data, e.g. video and 

audio. 2. Deep learning is capable of automatically extract 

hierarchical features which are robust to the pose/size 

variations and noises. 3. The learnt model can be 

efficiently updated as input data arrives18). The success of 

deep learning methods also reflects on the volume of the 

scientific publications. For instance, deep-learning-related 

articles in main computer vision venues boosted from 

fewer than 100 in 2012 to an astounding level of more than 

1,000 in 2017. We present a concise review of progress of 

Deep learning research.

2. 4. 1 Neural networks
The neural networks are defined as one type of learning 

algorithm that laid fundamentals of current deep learning 

methods. A neural network is built with a number of 

neurons or units with some activation a and parameters 

θ  ＝{W , B}, where W  and B  denote a set of weights and a 

set of biases, respectively. Notably, both variables are in 

the matrix form and therefore written in uppercase 

boldface letters. The activation, which is regarded as core 

computation process, can be realized by using a linear 

combination of the input x  to the neuron and the 
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parameters, followed by an element-wise nonlinearity 

σ (・). The process can be referred to as following transfer 

function:

a＝σ(wTx＋b) (1)

There are several options in choosing transfer 

functions, such as the sigmoid and hyperbolic tangent 

function. The multi-layered perceptron (MLP), which is 

one of the most well-recognized structure of neural 

networks, composes of several stacking-layers of these 

activations:

f(x ;Θ)＝σ(W T σ(W T...σ(W T x＋b))＋b). (2)

Here, W  is a matrix is composed of columns Wk , 

associated with activation k in the output. Between the 

data input and prediction output, we can see several layers 

and they are often referred to as hidden layers. As for the 

case that a neural network contains multiple hidden layers 

(i.e. more than 3), it is typically called a deep neural 

network, hence leading to the term deep learning. At the 

final layer of the network the activations are mapped to a 

posterior distribution over all classes memberships  

P(y|x :θ) through a softmax function27):

P(y|x ;Θ)＝softmax(x ;Θ)＝ ewk
T
 x＋b

――――――
∑k

K
＝1 ewk

T
 x＋bk
， (3)

where wk denotes the weighting vector leading to the 

output node associated with class k. A systematic diagram 

of three-layer MLP is shown in Figure 4.
One critical issue is how to find the best setting of 

parameters θ of a neural network dedicated for a given 

task, such as recognizing objects in an image or 

classifying specific sound from environment audio data. 

Concretely, it can be achieved by numerical optimization. 

A cost function J(θ) is initially defined which typically 

includes a performance measure evaluated on the entire 

training set as well as additional regularization terms19), 20). 

Optimization, simply speaking, is to find a rule to 

significantly reduce cost function J(θ) through updating 

all the parameters in the neural network. Through decade, 

stochastic gradient descent (SGD) has been the most 

popular method to fit parameters θ to a dataset34). In SGD, 

a small subset of the data, i.e. commonly named as mini 

batch, is employed for each gradient update instead of the 

full data set. Optimization, i.e. achieving the maximum 

likelihood, in practice amounts to minimizing the negative 

log-likelihood:

arg m
θ
in－∑

N

(n＝1)
log[P(yn|x n;θ)]. (5)

For a long period, deep neural networks (DNN) with 

multiple hidden layers were considered difficult to train 

efficiently. They only gained popularity in 200617) when it 

was shown that training DNNs layer-by-layer in an 

unsupervised manner (pre-training), followed by fine-

tuning of the stacked network in a supervised manner, 

could  achieve good per for mance.  T wo popular 

architectures trained in such a way are deep belief 

networks (DBNs)36) and stacked auto-encoders (SAEs)37). 

However, these techniques are rather sophisticated and 

require a batch of engineering tricks to generate 

promising results. Currently, the most popular scheme is 

to train models in an end-to-end fashion, and effectively 

simplifying the training process. The most popular 

learning schemes are convolutional neural networks 

(CNNs)38) and recurrent neural networks (RNNs)18). 

CNNs are currently most widely used in (medical) image 

analysis, although RNNs are gaining popularity in time-

series analysis. The following sections will give a brief 

overview of each of these methods, starting with the most 

popular ones, and discussing their differences and limits 

when applied to NDE data investigation.

2. 4. 2 Convolutional Neural networks (CNN)
CNN denotes a family of neural network architecture 

which are dedicated to process matrix-shaped data, i.e. 

images. Briefly, there are two major changes between 

MLPs and CNNs. First, the weights in CNNs are shared a 

manner of per forming convolution operations on 

2-dminensional data 39). This way, the model does not need 
Figure 4 Diagram of typical multiple layer neural network 

architecture
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tangent function. The multi-layered perceptron (MLP), which is one of the most well-
recognized structure of neural networks, composes of several stacking-layers of these
activations :

𝑓𝑓(𝒙𝒙;Θ) = 𝜎𝜎(𝑾𝑾𝑇𝑇𝜎𝜎(𝑾𝑾𝑇𝑇 …𝜎𝜎(𝑾𝑾𝑇𝑇𝒙𝒙 + 𝑏𝑏)) + 𝑏𝑏).                    (2)
Here, 𝑾𝑾 is a matrix is composed of columns 𝒘𝒘𝒌𝒌, associated with activation 𝑘𝑘 in the output. 
Between the data input and prediction output, we can see several layers and they are often 
referred to as ’hidden’ layers. As for the case that a neural network contains multiple hidden
layers (i.e. more than 3), it is typically called a ’deep’ neural network, hence leading to the 
term ’deep learning’. At the final layer of the network the activations are mapped to a 
posterior distribution over all classes memberships 𝑃𝑃(𝑦𝑦|𝒙𝒙;Θ) through a softmax function [27]:

𝑃𝑃(𝑦𝑦|𝒙𝒙;Θ) = softmax(𝒙𝒙;Θ) = 𝑒𝑒𝒘𝒘𝒌𝒌𝑇𝑇𝒙𝒙+𝑏𝑏

∑ 𝑒𝑒𝒘𝒘𝒌𝒌𝑇𝑇𝒙𝒙+𝑏𝑏𝑘𝑘𝐾𝐾
𝑘𝑘=1

,                     (3)

where wk denotes the weighting vector leading to the output node associated with class k. A 
systematic diagram of three-layer MLP is shown in Figure 4.

Figure 4. Diagram of typical multiple layer neural network architecture

One critical issue is how to find the best setting of parameters θ of a neural network
dedicated for a given task, such as recognizing objects in an image or classifying specific 
sound from environment audio data. Concretely, it can be achieved by numerical optimization.
A cost function J(θ) is initially defined which typically includes a performance measure 
evaluated on the entire training set as well as additional regularization terms [19,20]. 
Optimization, simply speaking, is to find a rule to significantly reduce cost function J(θ)
through updating all the parameters in the neural network. Through decade, stochastic 
gradient descent (SGD) has been the most popular method to fit parameters Θ to a dataset 
[34]. In SGD, a small subset of the data, i.e. commonly named as mini-batch, is employed for 
each gradient update instead of the full data set. Optimization, i.e. achieving the maximum 
likelihood, in practice amounts to minimizing the negative log-likelihood:

argmin
Θ

−∑ log[𝑃𝑃(𝑦𝑦𝑛𝑛|𝒙𝒙𝑛𝑛;Θ)] .𝑁𝑁
𝑛𝑛=1                          (5)

For a long period, deep neural networks (DNN) with multiple hidden layers were considered 
difficult to train efficiently. They only gained popularity in 2006 [17][39][40] when it was
shown that training DNNs layer-by-layer in an unsupervised manner (pre-training), followed 
by fine-tuning of the stacked network in a supervised manner, could achieve good
performance. Two popular architectures trained in such a way are deep belief networks 
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to establish individual detectors for same kind of object 

presenting at different locations in an image, enabling the 

network equivariant with respect to positioning-

translations of the input. It also efficiently reduces the 

total amount of parameters (i.e. the number of weights no 

longer depends on the size of the input image) that need 

to be learned. An example of a 1D CNN is shown in 

Figure 5.
From the chart, we can see several layers are stacked 

in a sequential manner; at each layer, the input image is 

convolved with a set of K kernels W＝{W 1, W 2, …, WK} 

and added biases b＝{b1, b2, …, bk}, each generating a new 

feature map X k. These features are subjected to an 

elementwise non-linear transform σ(·) and the same 

process is repeated for every convolutional layer l:

X k
l＝X l－1

k ＊X l－1＋b l－1
k  (6)

The second core difference between CNNs and MLPs 

lies in the adoption of pooling layers in CNNs, where pixel 

values of neighborhoods are aggregated using a 

permutation invariant function, typically the max or mean 

operation. Such process can induce favorable translation 

invariance to the feature maps and further eliminates 

redundant parameters in the network as well. Fully-

connected layers (i.e. regular neural network layers) are 

often added to the final stage of the network, where 

weights are no longer shared. Similar to MLPs, a 

distribution over possible classes is generated by feeding 

the activations in the final layer through a softmax 

function and the network is trained using maximum 

likelihood.

2. 4. 3 Deep CNN Architectures
Given the prevalence of CNNs in multimodal data 

analysis, we elaborate on the most widely-applied 

architectures and their dif ferences. LeNet34), Auto 

Encoder 40) and AlexNet41), introduced over a decade later, 

were in essence very similar, e.g. both schemes were 

relatively shallow, consisting of two and five convolutional 

layers, respectively; employed kernels with large 

receptive fields in layers close to the input and smaller 

kernels closer to the output. Particularly, AlexNet did 

incorporate rectified linear units (ReLU) as activation 

function that is dif ferent from conventional hyperbolic 

tangent setting. 

After 2012 the exploration of novel architectures took 

off, and in the past five years a trend emerged to build far 

deeper and wider models. By stacking smaller kernels, it 

is possible to represent a function by using fewer 

parameters. Meanwhile, such deeper architectures 

generally render a lower memor y footprint through 

statistical inference, which enable their deployment on 

smartphones and other mobile computing devices. A 

notable article performed in-depth investigation on much 

deeper networks by employed smaller, fixed size kernels 

in each layer42). The most remarkable work is a 19-layer 

model often referred to as VGG19 or OxfordNet won the 

ImageNet challenge of 2014.
On top of the deeper networks, more complex designs 

have been exploited aiming at improving model training 

efficiency and again reducing the amount of parameters. 

A 22-layer network named GoogLeNet was introduced 

in43), also referred to as Inception, which made use of a 

couple of inception blocks, a module with a set of 

Figure 5　General framework of deep neural network for computer vision
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(DBNs) [36] and stacked auto-encoders (SAEs) [37]. However, these techniques are rather
sophisticated and require a batch of engineering tricks to generate promising results.
Currently, the most popular scheme is to train models in an end-to-end fashion, and 
effectively simplifying the training process. The most popular learning schemes are 
convolutional neural networks (CNNs) [38] and recurrent neural networks (RNNs)[18]. 
CNNs are currently most widely used in (medical) image analysis, although RNNs are 
gaining popularity in time-series analysis. The following sections will give a brief overview 
of each of these methods, starting with the most popular ones, and discussing their
differences and limits when applied to NDE data investigation.

2-4-2. Convolutional Neural networks (CNN)
CNN denotes a family of neural network architecture which are dedicated to process matrix-
shaped data, i.e. images. Briefly, there are two major changes between MLPs and CNNs. 
First, the weights in CNNs are shared a manner of performing convolution operations on 2-
dminensional data. This way, the model does not need to establish individual detectors for 
same kind of object presenting at different locations in an image, enabling the network 
equivariant with respect to positioning-translations of the input. It also efficiently reduces 
the total amount of parameters (i.e. the number of weights no longer depends on the size of 
the input image) that need to be learned. An example of a 1D CNN is shown in Figure 5.

Figure 5. General framework of deep neural network for computer vision

From the chart, we can see several layers are stacked in a sequential manner; at each layer, 
the input image is convolved with a set of K kernels W’ = {W1, W2,…, Wk} and added biases B
= {b1, b2, …, bK }, each generating a new feature map Xk. These features are subjected to an 
elementwise non-linear transform σ(·) and the same process is repeated for every 
convolutional layer l :

𝑿𝑿𝑘𝑘
𝑙𝑙 = 𝑿𝑿𝑘𝑘

𝑙𝑙−1 ∗ 𝑿𝑿𝑙𝑙−1 + 𝑏𝑏𝑘𝑘𝑙𝑙−1                            (6)
The second core difference between CNNs and MLPs lies in the adoption of pooling layers in 
CNNs, where pixel values of neighborhoods are aggregated using a permutation invariant 
function, typically the max or mean operation. Such process can induce favorable translation 
invariance to the feature maps and further eliminates redundant parameters in the network
as well. Fully-connected layers (i.e. regular neural network layers) are often added to the 
final stage of the network, where weights are no longer shared. Similar to MLPs, a 
distribution over possible classes is generated by feeding the activations in the final layer 
through a softmax function and the network is trained using maximum likelihood.
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convolutions of different sizes. Network in network (NIN) 

is another representative network design that can extract 

rich information of raw data by introducing deeper net 

structure 44). It is noteworthy that the ResNet architecture 

won the ImageNet challenge in 201545) and consisted of 

so-called ResNet-blocks. Rather than inferring a function, 

the residual block only estimates the residual and is 

thereby biased towards learning mappings of each layer. 

Such design will enhance reconstruction property of 

feature mapping. The impressive progress of computer 

vision systems for object recognition has been boosted by 

deep learning schemes and we summarize the process in 

Figure 6. This way, even deeper models can be trained 

effectively. Notably, only the results until 2015 had been 

shown because since 2015, the per formance on the 

ImageNet benchmark has saturated and it is difficult to 

assess whether the small increases in performance can 

really be attributed to better and more sophisticated 

architectures. The advantage of the lower memor y 

footprint these models provide is typically not as 

important for real applications. Consequently, AlexNet or 

other simple models such as VGG are still popular for 

non-destructive evaluation data processing, though recent 

advanced results are preferred to use a version of 

GoogleNet called Inception version346), 47). There are two 

major reasons accounted for such status, which are 

superiority of learning architecture and public availability 

of open source codes.

2. 4. 4 Recurrent Neural Networks (RNNs)
RNNs were well-developed tools for discrete sequence 

data analysis in deep learning field20). They can be 

understood as a variant of MLPs with both the input and 

output can be of var ying length. One representative 

application of RNNs is machine translation where a 

sentence of the source and target language are the input 

and output18). As for classification tasks, the model infers a 

distribution over classes P(y|x 1, x 2, ..., x T;θ) given a 

sequential observation x 1, x 2, ..., x T, rather than a single 

input vector x . The plain RNN maintains a latent or hidden 

state h at time t that is the output of a non-linear mapping 

from its input x t and the previous state ht－1:

h t＝σ(Wx t＋Rh t－1＋b) (7)

where weighting matrices R  and W  are shared over time. 

For classification, one or more fully connected layers are 

typically added followed by a softmax function to map the 

sequence to a posterior over the classes.

P(y|x 1, x 2, ... , xT;Θ)＝softmax(h t;W out, b out) (8)

Since the gradient needs to be backpropagated from 

the output through time, RNNs are inherently deep (in 

time) and consequently suffer from the same problems 

with training as regular deep neural networks48). To this 

end, several specialized memor y units have been 

developed, the initial work is the Long Shor t Term 

Memor y  (LSTM) ce l l 49),  wh ich  i s  s t i l l  popu lar 

concurrently.

Figure 6 Advancement of machine vision for object recognition on the ILSVRC challenge. Since deep learning had been intro-
duced in 2012, the error rates continued to decrease, and the latest model outperformed human ability in 2015
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2-4-3. Deep CNN Architectures
Given the prevalence of CNNs in multimodal data analysis, we elaborate on the most widely-
applied architectures and their differences. LeNet [34] and AlexNet [41], introduced over a 
decade later, were in essence very similar, e.g. both schemes were relatively shallow, 
consisting of two and five convolutional layers, respectively; employed kernels with large 
receptive fields in layers close to the input and smaller kernels closer to the output. 
Particularly, AlexNet did incorporate rectified linear units (ReLU) as activation function
that is different from conventional hyperbolic tangent setting.

After 2012 the exploration of novel architectures took off, and in the past five years a trend 
emerged to build far deeper and wider models. By stacking smaller kernels, it is possible to 
represent a function by using fewer parameters. Meanwhile, such deeper architectures 
generally render a lower memory footprint through statistical inference, which enable their 
deployment on smartphones and other mobile computing devices. [42] were the first to 
investigate much deeper networks by employed smaller, fixed size kernels in each layer. The 
most remarkable work is a 19-layer model often referred to as VGG19 or OxfordNet won the 
ImageNet challenge of 2014. 

Figure 6. Advancement of machine vision for object recognition on the ILSVRC challenge. 
Since deep learning had been introduced in 2012, the error rates continued to decrease, 

and the latest model outperformed human ability in 2015

On top of the deeper networks, more complex designs have been exploited aiming at 
improving model training efficiency and again reducing the amount of parameters. A 22-
layer network named GoogLeNet was introduced in [43], also referred to as Inception, which 
made use of a couple of inception blocks, a module with a set of convolutions of different sizes. 
It is noteworthy that the ResNet architecture won the ImageNet challenge in 2015 [45] and 
consisted of so-called ResNet-blocks. Rather than inferring a function, the residual block 
only estimates the residual and is thereby biased towards learning mappings of each layer. 
Such design will enhance reconstruction property of feature mapping. The impressive 
progress of computer vision systems for object recognition has been boosted by deep learning 
schemes and we summarize the process in Figure 6. This way, even deeper models can be 
trained effectively. Notably, only the results until 2015 had been shown because since 2015, 
the performance on the ImageNet benchmark has saturated and it is difficult to assess 
whether the small increases in performance can really be attributed to ’better’ and more 
sophisticated architectures. The advantage of the lower memory footprint these models 
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One remarkable work towards development of RNNs is 

the Gated Recurrent Unit50), which can be regarded as a 

recent simplification of the LSTM. Although initially 

designated for one-dimensional  data,  RNNs are 

increasingly employed to process images. For instance, 

so-called pixelRNNs are used as autoregressive models, 

generative models that can eventually produce new 

images similar to samples in the training set51).

2. 4. 5 Unsupervised deep learning
Besides the supervised machine, in which training data 

is provided together with ground truth labels, deep 

learning can also be formulated to tackle label-free data, 

such as in dimension reduction12) and data-driven anomaly 

detection13). The popular techniques include Auto-encoder 

(AE) and Restricted Boltzmann Machines (RBMs) and 

Deep Belief Networks (DBNs)17), 18). The detail math 

derivations can be found in the cited works. However, this 

review is mainly focused on supervised learning paradigm 

because it the main solution applied for non-destructive 

test data analysis.

2. 4. 6 Hardware and Software for deep learning
One of the main driving force to steep rise of deep 

learning has been the widespread availability of Graphics 

processing unit (GPU) and GPU-computing libraries 

(CUDA, OpenCL). GPUs are highly parallel computing 

engines, which have an order of magnitude more 

execution threads than central processing units (CPUs). 

With current hardware, deep learning on GPUs is 

typically 10 to 30 times faster than on CPUs. More 

recently, field programmable gate arrays (FPGAs) have 

been adopted for accelerating the implementation of deep 

learning networks due to their ability to maximize 

p a r a l l e l i s m  a s  w e l l  a s  d u e  t o  t h e i r  e n e r g y 

ef ficiency52).  Next to hardware, the other contributor 

behind the popularity of deep learning methods are the 

open source software packages. These libraries provide 

efficient GPU implementations of important operations in 

neural networks, such as convolutions; allowing the user 

to implement ideas at a high level rather than worrying 

about low-level efficient implementations. At the time of 

writing, the most popular packages were (in alphabetical 

order):

・Caffe52). Provides C++ and Python interfaces, developed 

by graduate students at UC Berkeley.

・CNTK53). Named as Microsoft Computational Network 

Toolkit which provides an open-source toolkit for 

commercial-grade distributed deep learning. It was 

developed by Microsoft.

・Tensorflow54). Provides C++ and Python and interfaces, 

developed by Google and is used by Google research.

・PyTorch55). Provides a Lua interface and is used by, 

among others, Facebook AI research.

・MxNet56). Provides a very flexible machine learning 

library which is computation and memory efficient and 

supports various platforms ranging from mobile devices 

to distributed GPU clusters. The library was developed by 

graduate students from Carnegie Mellon University and 

the library is currently used by Amazon. co.

There are third-party packages written on top of one or 

more of these frameworks, such as Lasagne (https://

github.com/Lasagne/Lasagne) or Keras (https://keras.

io/). Those high-level application programming interfaces 

Figure 7 A typical RNN neural network, please note the red 
arrow lines, which allow recurrent jumps of infor-
mation passing
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provide is typically not as important for real applications. Consequently, AlexNet or other 
simple models such as VGG are still popular for non-destructive evaluation data processing, 
though recent advanced results are preferred to use a version of GoogleNet called Inception 
version 3 [46] [47]. There are two major reasons accounted for such status, which are 
superiority of learning architecture and public availability of open source codes.

2-4-4. Recurrent Neural Networks (RNNs)
RNNs were well-developed tools for discrete sequence data analysis in deep learning field
[20]. They can be understood as a variant of MLPs with both the input and output can be of 
varying length. One representative application of RNNs is machine translation where a 
sentence of the source and target language are the input and output [18]. As for classification 
tasks, the model infers a distribution over classes 𝑃𝑃(𝑦𝑦|𝒙𝒙1, 𝒙𝒙2,… , 𝒙𝒙𝑇𝑇; Θ) given a sequential 
observation 𝒙𝒙1, 𝒙𝒙2,… , 𝒙𝒙𝑇𝑇, rather than a single input vector 𝒙𝒙. The plain RNN maintains a 
latent or hidden state h at time t that is the output of a non-linear mapping from its input 
𝒙𝒙𝑡𝑡 and the previous state h𝑡𝑡−1:

𝒉𝒉𝑡𝑡 = σ(𝑾𝑾𝒙𝒙𝑡𝑡 + 𝑹𝑹𝒉𝒉𝑡𝑡−1 + 𝒃𝒃)]                             (7)
where weighting matrices R and W are shared over time. For classification, one or more fully 
connected layers are typically added followed by a softmax function to map the sequence to 
a posterior over the classes.

𝑃𝑃(𝑦𝑦|𝒙𝒙1, 𝒙𝒙2,… , 𝒙𝒙𝑇𝑇; Θ) = softmax(𝒉𝒉𝑡𝑡;𝑾𝑾𝑜𝑜𝑜𝑜𝑡𝑡,𝒃𝒃𝑜𝑜𝑜𝑜𝑡𝑡).                   (8)
Since the gradient needs to be backpropagated from the output through time, RNNs are 
inherently deep (in time) and consequently suffer from the same problems with training as 
regular deep neural networks [48]. To this end, several specialized memory units have been 
developed, the initial work is the Long Short Term Memory (LSTM) cell [49], which is still 
popular concurrently. 

Figure 7. A typical RNN neural network, please note the red arrow lines, which allow
recurrent jumps of information passing

One remarkable work towards development of RNNs is the Gated Recurrent Unit [50], which 
can be regarded as a recent simplification of the LSTM. Although initially designated for 
one-dimensional data, RNNs are increasingly employed to process images. For instance, so-
called ’pixelRNNs’ are used as autoregressive models, generative models that can eventually 
produce new images similar to samples in the training set [51]. 

2-4-5 Unsupervised deep learning
Besides the supervised machine, in which training data is provided together with ground 
truth labels, deep learning can also be formulated to tackle label-free data, such as in 

Figure 8 Popularity comparison between latest open-source 
deep learning libraries. The data is collected from 
GitHub (https://github.com), a world’s leading 
software development platform. A large-margin 
lead can be seen of TensorFlow in terms of all met-
rics. 
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Figure 8. Popularity comparison between latest open-source deep learning libraries. The 
data is collected from GitHub (https://github.com), a world’s leading software development 

platform. A large-margin lead can be seen of TensorFlow in terms of all metrics. 

3. AI applications in NDE fields
The last five years have seen remarkable progress in machine learning research, and a 
spreading trend emerged to develop human-level machine learning systems to relieve people 
from laborious and exhausting tasks in the non-destructive test for infrastructures. In order 
to substituting human role in hammering response interpretation and to achieve optimal 
decision-making in NDT, great efforts had been carried out to establish data-driven machine 
learning system to understand NDE data in terms of various forms, i.e. image, video, and 
time-series signal [2,14]. We present a review on current research status as follows.

3-1. Emerging topic of computerized ultrasonic imaging analysis
Ultrasonic imaging inspection systems had been extensively applied for NDT due to several 
favorable merits, such as high sensitivity to most material damage, and proficiency in 
extraction of defect location and size specifications [57]. The principle of ultrasonic testing 
is based on detection and analysis of received ultrasonic waves, from which defect-induced 
patterns can be clearly observed. A typical ultrasonic imaging inspection system is composed 
of three parts: A laser scan unit mounted the computer controlled mechanical stage which 
generates the excitation of ultrasound due to thermal expansion. A transducer attached to
the surface of the specimen collects the ultrasonic waves propagated through the specimen. 
Through an amplifier and a digital oscilloscope (A/D converter), the received signals are 
transmitted to a computer and stored in the computer hard drive. In current applications, 
ultrasonic image data requires an inspection engineer to determine if there are any defects 
present. The inspection performance, therefore, is to a large extent depending on inspector’s 
technical skill and the assessment results may vary considerably due to human factors. Over 
the past decade, there has been a dramatic increasing interest in research towards 
automated assessment for ultrasonic inspection using machine learning technique [58~78].
Figure 9 presents a diagram describing both the hardware setup of ultrasonic imaging 
inspection system and human/computerized defective pattern investigation schemes.
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(API) efficiently facilitate fast development of AI-enabled 

applications, however the efficiency was not satisfying. By 

comparison, Tensorflow and CNTK are well-suited for 

p r a c t i c a l  a p p l i c a t i o n s ,  i . e .  b u i l d i n g  p r o d u c t 

recommendation engine for online shopping and web-

scale image retrieval. While, it has been criticized to be 

complex to use  and ef ficiency is not high (single 

computer-wise). PyTorch is more welcomed by academic 

committee due to the high flexibility in deep learning 

structure configuration. MxNet renders user-friendly 

language interface and a high proficiency in multiple-GPU 

acceleration.

3. AI applications in NDE fields

The last five years have seen remarkable progress in 

machine learning research, and a spreading trend 

emerged to develop human-level machine learning 

systems to relieve people from laborious and exhausting 

tasks in the non-destructive test for infrastructures. In 

order to substituting human role in hammering response 

interpretation and to achieve optimal decision-making in 

NDT, great efforts had been carried out to establish data-

driven machine learning system to understand NDE data 

in terms of various forms, i.e. image, video, and time-

series signal2), 14). We present a review on current research 

status as follows.

3. 1 Emerging topic of computerized ultrasonic 
imaging analysis

Ultrasonic imaging inspection systems had been 

extensively applied for NDT due to several favorable 

merits, such as high sensitivity to most material damage, 

and proficiency in extraction of defect location and size 

specifications57). The principle of ultrasonic testing is 

based on detection and analysis of received ultrasonic 

waves, from which defect-induced patterns can be clearly 

observed. A typical ultrasonic imaging inspection system 

is composed of three parts: A laser scan unit mounted the 

computer controlled mechanical stage which generates 

the excitation of ultrasound due to thermal expansion. A 

transducer attached to the sur face of the specimen 

collects the ultrasonic waves propagated through the 

specimen. Through an amplifier and a digital oscilloscope 

(A/D converter), the received signals are transmitted to a 

computer and stored in the computer hard drive. In 

current applications, ultrasonic image data requires an 

inspection engineer to determine if there are any defects 

present. The inspection performance, therefore, is to a 

large extent depending on inspector’s technical skill and 

the assessment results may vary considerably due to 

human factors. Over the past decade, there has been a 

dramatic increasing interest in research towards 

automated assessment for ultrasonic inspection using 

machine learning technique58)-78). Figure 9 presents a 

diagram describing both the hardware setup of ultrasonic 

imaging inspection system and human/computerized 

Figure 9　Diagram of ultrasonic scanning system for non-destructive test with human/machine data interpretation
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Figure 9. Diagram of ultrasonic scanning system for non-destructive test with 
human/machine data interpretation

Plenty of research efforts had been delivered to design efficient automatic ultrasonic data 
interpretation systems, i.e. ultrasonic echo waveform and wave images had been investigated 
by using advanced machine learning classifiers. We present the comprehensive review using 
following table, in which the ultrasonic signal representation and statistical machine 
learning algorithms were summarized with two columns. 

Input signal Year Feature representation Multivariate data analysis

Ultrasonic 
waveform

[58], 2002 Wavelet transform Shallow artificial neural networks with 
RBF activation function

[64], 2009 Ultrasonic echoes with matching 
pursuit (MP) features

Sparse deconvolution method for signal 
enhancement

[66], 2012 Ultrasonic echo waveform Sparsity-induced feature learning for noise 
reduction

[59], 1996 Ultrasonic A-scan signal with 
principal component analysis

Shallow artificial neural networks

[67], 2013 Ultrasonic A-scan signal Self-organizing Maps classifiers

[68], 2015 Ultrasonic A-scan signal Support Vector Machines (SVM)

[70], 2016 Ultrasonic A-scan signal with 
wavelet transform

Hidden Markov Model (HMM)

[71], 2017 Vibrothermography images Maximum likelihood estimates (MLEs)

[72], 2017 Ultrasonic A-scan signal Convolutional Neural Networks (CNNs)

[74], 2017 Ultrasonic A-scan signal Split Spectrum Processing (SSP) and 
(shallow) artificial neural networks

[75], 2017 Ultrasonic A-scan signal Fourier 
spectrum with band feature 
selection

2-layer perceptron (MLP) neural network
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defective pattern investigation schemes.

Plenty of research efforts had been delivered to design 

efficient automatic ultrasonic data interpretation systems, 

i.e. ultrasonic echo waveform and wave images had been 

investigated by using advanced machine learning 

classifiers. We present the comprehensive review using 

fo l lowing table ,  in  which the  u l t rasonic  s ignal 

representation and statistical machine learning algorithms 

were summarized with two columns.

According to the above table, we come to several 

conclusions: first, a significant trend can be seen that AI-

enabled ultrasonic inspection data interpretation emerged 

as active research topic in recent 5 years and a wide 

variety of advanced machine learning techniques had 

Table 2　Overview of papers using AI techniques for ultrasonic non-destructive tests.

Input signal  Year Feature representation Multivariate data analysis 

 

 

 

 

 

 

 

 

 

 

Ultrasonic 

waveform 

58), 2002 Wavelet transform  Shallow artificial neural networks with RBF 

activation function 

64), 2009 Ultrasonic echoes with matching 

pursuit (MP) features 

Sparse deconvolution method for signal 

enhancement 

66), 2012 Ultrasonic echo waveform Sparsity-induced feature learning for noise 

reduction 

59), 1996 Ultrasonic A-scan signal with 

principal component analysis 

Shallow artificial neural networks 

67), 2013 Ultrasonic A-scan signal  Self-organizing Maps classifiers 

68), 2015 Ultrasonic A-scan signal  Support Vector Machines (SVM) 

70), 2016 Ultrasonic A-scan signal with 

wavelet transform 

Hidden Markov Model (HMM) 

71), 2017 Vibrothermography images  Maximum likelihood estimates (MLEs) 

72), 2017 Ultrasonic A-scan signal  Convolutional Neural Networks (CNNs) 

74), 2017 Ultrasonic A-scan signal  Split Spectrum Processing (SSP) and 

(shallow) artificial neural networks 

75), 2017 Ultrasonic A-scan signal Fourier 

spectrum with band feature 

selection 

2-layer perceptron (MLP) neural network 

77), 2017 Ultrasonic A-scan signal Dictionary learning using K-SVD 

 

 

 

 

 

 

 

Ultrasonic 

image 

60), 1996 Time-of-flight diffraction (TOFD) 

scan image 

Shallow artificial neural networks 

61), 1997 Ultrasonic B-scan image Image histograms thresholding scheme 

62), 2006 Phase information extracted from 

TOFD images 

Cross-correlation coefficient 

63), 2007 Co-occurrence based matrix 

features 

Multilayer neural-fuzzy network 

65), 2011 Ultrasonic B-scan image with 

time-frequency analysis 

Shallow artificial neural networks 

69), 2016 Ultrasonic B-scan image Sparse deconvolution method 

73), 2017 Ultrasonic B-scan image Convolutional Deep Belief Networks 

(CDBN) 

76), 2017 Ultrasonic B-scan image with 

Hilbert–Huang transform (HHT)  

Cross-Correlation  

78), 2017 Ultrasonic guided wave images 4-layer deep neural network 
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been evaluated for the task68)-78). Second, as for the input 

ultrasonic signal, there are two groups: the raw echo 

signal and ultrasonic B-scan images. Accordingly, 

dif ferent feature extraction approached had been 

employed to deal with the data, i.e. Fourier and wavelet 

transform had been introduced to process A-scan waves 

and co-occurrence features had been investigated for 

ultrasound B-scan images as well. Third, advanced 

statistical pattern analysis approaches, such as sparse 

coding69), 77) and support vector machines68), had been 

evaluated for the ultrasonic signal analysis. Those 

literatures confirmed that novel machine learning/pattern 

recognition techniques can substantially contribute to 

ultrasonic data interpretation. It is noteworthy that as 

shown in the most recent publications, deep neural 

networks had been repeatedly mentioned72), 73), while the 

most complex neural network up to now applied for the 

task was limited to 4 layers78), which is genuinely NOT a 

deep learning solution78). The major factor accounted for 

this is that the ultrasonic inspection datasets are confined 

to small-scale so that there is no significant benefit to 

employ deep neural networks for generating ef ficient 

feature representations. It is also unfortunate that there is 

no standard/public ultrasonic inspection database and 

thus, each researcher has to generate their own. Hence, it 

is not possible to come to a conclusion and handpick the 

best.

According to the above survey, we also discovered 

several possible directions to conduct further research. In 

the first place, we found that current literatures usually 

dealt with ultrasonic signal in the form of waveform and 

2-dimensional images, while the short-time dependences 

were ignored. In Figure. 10, we present a char t to 

describe the current status, in which A-scan waveform 

and B-scan images of ultrasonic signal had been shown in 

the left and middle, respectively. To our interest, the rich 

discriminant information of ultrasonic signal is conveyed 

in spatio-temporal formulation, which can be seen in the 

rightmost plot in Figure 10. In such setting, we regard the 

ultrasonic wave propagation image sequences as one 

video clip and between-frame information herein will be 

characterized for the defect-induced ultrasonic wave 

pattern investigation. Meanwhile, latest research 

progresses in machine learning and computer vision field 

have deemed that deep learning can greatly facilitate 

video analysis with automatic feature engineering 79)-81). 

With the massive data collection, it can be anticipated that 

deep learning-based learning schemes for ultrasonic 

video frames analysis will outperform the conventional 

waveform/image-based approaches.

3. 2 Emerging topic of AI-enabled impact-echo test
The impact-echo, due to its cost ef ficiency and 

simplicity, has been extensively applied for concrete 

structure condition assessment over decades82). It played 

a key role as efficient Non-destructive test (NDT) method 

to detect multiple defects of concrete, e.g. delamination 

and inner voids83). In general, the method consists of 

several steps: 1. a hammer impact is applied to surface of 

concrete structure in order to generate elastic stress 

waves. 2. stress waves propagate inside the structure and 

then transmit through the air. 3. inspection workers will 

examine the echo signal and determine health condition 

of concrete. Although the technique is widely applied all 

over the world, there remains several inherent drawbacks, 

such as erroneous data interpretation due to subjective 

Figure 10　Three formulations of ultrasonic signal input for defect detection
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in Figure 10. In such setting, we regard the ultrasonic wave propagation image sequences as 
one video clip and between-frame information herein will be characterized for the defect-
induced ultrasonic wave pattern investigation. Meanwhile, latest research progresses in 
machine learning and computer vision field have deemed that deep learning can greatly
facilitate video analysis with automatic feature engineering [79,80,81]. With the massive 
data collection, it can be anticipated that deep learning-based learning schemes for 
ultrasonic video frames analysis will outperform the conventional waveform/image-based 
approaches.

Figure 10. Three formulations of ultrasonic signal input for defect detection

3-2. Emerging topic of AI-enabled impact-echo test

The impact-echo, due to its cost efficiency and simplicity, has been extensively applied for 
concrete structure condition assessment over decades [82]. It played a key role as efficient 
Non-destructive test (NDT) method to detect multiple defects of concrete, e.g. delamination 
and inner voids [83]. In general, the method consists of several steps: 1. a hammer impact is 
applied to surface of concrete structure in order to generate elastic stress waves. 2. stress 
waves propagate inside the structure and then transmit through the air. 3. inspection 
workers will examine the echo signal and determine health condition of concrete. Although 
the technique is widely applied all over the world, there remains several inherent drawbacks, 
such as erroneous data interpretation due to subjective judgement and requiring expertise 
knowledge. To tackle the limitations, research towards developing AI-enabled automatic echo 
analysis system for structural health assessment garnered a lot of attentions in recent years 
[84], [85]. Signal processing and machine learning techniques are integral components to 
build human-like echo analysis engine. In Figure 11 we show a basic diagram of 
computerized echo analysis system for air-coupled impact-echo test. Through decades, plenty 
of theoretical and empirical studies on impact-echo methods had been carried out and major 
results have been reported. In [86], by adopting wavelet Transform (WT), echo waveform is 
converted to frequency domain and spectral analysis is performed subsequently. Extensive 
studies revealed that there exists an empirical function describing relationship between peak 
frequency in echo amplitude spectrum and depth of inside defect, which can be expressed as 
follows:

𝑑𝑑 = 𝜷𝜷 𝐶𝐶𝑝𝑝
2𝑓𝑓peak

                                 (9)

where f peak denotes peak frequency of echo signal spectrum, Cp is the velocity of the 
longitudinal, β is constant of 0.96 for plate-shape structures wave [83] and d represents depth 
of inside void. However, some recent studies reveal the availability of formula (9) is
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judgement and requiring expertise knowledge. To tackle 

the limitations, research towards developing AI-enabled 

automatic echo analysis system for structural health 

assessment garnered a lot of attentions in recent 

years 84), 85). Signal processing and machine learning 

techniques are integral components to build human-like 

echo analysis engine. In Figure 11 we show a basic 

diagram of computerized echo analysis system for air-

coupled impact-echo test. Through decades, plenty of 

theoretical and empirical studies on impact-echo methods 

had been carried out and major results have been 

reported. In86), by adopting wavelet Transform (WT), echo 

waveform is converted to frequency domain and spectral 

analysis is performed subsequently. Extensive studies 

revealed that there exists an empirical function describing 

relationship between peak frequency in echo amplitude 

spectrum and depth of inside defect, which can be 

expressed as follows:

d＝β Cp――2fpeak
 (9)

where fpeak denotes peak frequency of echo signal 

spectrum, Cp is the velocity of the longitudinal, β is 

constant of 0.96 for plate-shape structures wave83) and d 

represents depth of inside void. However, some recent 

studies reveal the availability of formula (9) is constrained 

by the size and flatness of defect area, e.g. it is only valid 

for the case that void is parallel to surface, otherwise the 

echo resonance will behave differently from Eq. 9. Such 

limitation opens doorway to data-driven statistical pattern 

analysis of echo signals for defect detection.

The ini t ia l  systems commonly deal  with echo 

invest igat ion problem using s ta t is t ica l  pat ter n 

classification, in which various conventional classifiers 

have been employed to classify echo spectra obtained 

from healthy/defective concretes. The representative 

machine learning models for impact-echo are Gaussian 

mixture models (GMM)87), Artificial Neural Network 

(ANN)87) and Suppor t Vector Machines (SVM)84), to 

characterize discriminant information of healthy/defective 

echoes. In recent years, significant progress has been 

made in noise robust echo feature representation 

learning. Advanced signal descriptors developed by the 

bag-of-words model (BoW model)88) and sparse coding 

approaches89) has been proved to be ef fective for 

anomalous echo identification under hostile acoustic 

environment. It is noteworthy that these literatures 

commonly assume that all training and test hammer 

responses are sampled from same population; the 

experimental dataset was confined to be the laboratory-

scale as well. It is anticipated to be problematic when we 

directly apply the analysis model trained by lab-scale data 

to practical hammer sounding test, because the pre-

collected training data is quite limited to render sufficient 

discriminant information to deal with complex real 

echoes. How to deal with incremental data of impact-echo 

test can be one interesting theme which has both 

research significance and application impact.

4.  AI-enabled NDE applications: open challenges and 
potential solutions

Based on the above-presented sur vey, we outline 

several common issues in AI-enabled NDE system 

development together with several possible research 

directions to leverage the issues.

4. 1 Computerized non-destructive test data analysis 
with upgradable design

Current machine learning schemes applied for the 

non-destructive evaluation are restricted to the standard 

batch setting, which assumes that both training and 

testing data reside in the same feature space with the 

static statistical characteristic; hence, model training can 

be per formed over the pre-collected laboratory-scale Figure 11　Diagram of AI-enabled impact-echo system
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constrained by the size and flatness of defect area, e.g. it is only valid for the case that void 
is parallel to surface, otherwise the echo resonance will behave differently from Eq. 9. Such 
limitation opens doorway to data-driven statistical pattern analysis of echo signals for defect 
detection.

Figure 11. Diagram of AI-enabled impact-echo system

The initial systems commonly deal with echo investigation problem using statistical pattern
classification, in which various conventional classifiers have been employed to classify echo 
spectra obtained from healthy/defective concretes. The representative machine learning 
models for impact-echo are Gaussian mixture models (GMM) [87], Artificial Neural Network
(ANN) [87] and Support Vector Machines (SVM) [84], to characterize discriminant 
information of healthy/defective echoes. In recent years, significant progress has been made 
in noise robust echo feature representation learning. Advanced signal descriptors developed 
by the bag-of-words model (BoW model) [88] and sparse coding approaches [89] has been 
proved to be effective for anomalous echo identification under hostile acoustic environment. 
It is noteworthy that these literatures commonly assume that all training and test hammer 
responses are sampled from same population; the experimental dataset was confined to be 
the laboratory-scale as well. It is anticipated to be problematic when we directly apply the 
analysis model trained by lab-scale data to practical hammer sounding test, because the pre-
collected training data is quite limited to render sufficient discriminant information to deal 
with complex real echoes. How to deal with incremental data of impact-echo test can be one 
interesting theme which has both research significance and application impact.

4. AI-enabled NDE applications: open challenges and potential solutions

Based on the above-presented survey, we outline several common issues in AI-enabled NDE 
system development together with several possible research directions to leverage the issues. 

4.1 Computerized non-destructive test data analysis with upgradable design

Current machine learning schemes applied for the non-destructive evaluation are restricted 
to the standard batch setting, which assumes that both training and testing data reside in 
the same feature space with the static statistical characteristic; hence, model training can 
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database 60), 65), 67), 68), 72), 73), 75), 78), 84), 88), 89). In practice, however, 

such an assumption does not hold. The patterns of onsite 

NDE data can alter significantly with the specifications of 

testing objectives, such as material, shape and years of 

service83). From the viewpoint of statistical learning, these 

factors would make the posterior distribution of the test 

data drift from that of the pre-collected training samples; 

thus ,  degrading  the  hea l thy/defect ive  pa t ter n 

discrimination performance. In real application scenario, 

it is indispensable to adopt an alternative hypothesis 

which inherently admits that the pre-collected training 

dataset only covers small range of the whole real-world 

data distribution. To this end, a new formulation of NDE 

data pattern classification with the online learning 

paradigm is essential, in which efficient model updating 

schemes have been exploited to minimize the cumulative 

prediction loss suffered along with the continuous input 

of data. Online learning is a well-established learning 

scheme which has both theoretical and practical 

appeals90), 91) and it is particularly well-suited to the non-

destructive test data investigation, since the large-scale 

response data can be accessed only in a sequential way. 

4. 2 Efficient pattern characterization from limit data 
with annotations

Fueled by several factors, the AI technologies already 

pervade our lives92). One of the foremost factors is the 

large-scale data collection, such as the ImageNet dataset 

utilized for computer vision research consists of 14 million 

images from 21841 classes41).  However, as for the 

application of non-destructive test, huge amount of data 

collection with expert labels are usually infeasible due to 

the high-cost of time and budget. Through this survey, we 

had been looking at current trends in the machine 

learning research and searching for key areas that could 

indeed leverage the limit in data capture.

4. 3 Semi-supervised learning scheme.
Conventional machine learning systems developed for 

non-destructive test mainly adopted supervised learning 

scheme, in which a completely labelled dataset is provided 

in advance and statistical learning is highly tailored to 

particular tasks, i.e. impact-echo89) and ultrasonic data 

interpretation77). However, manual labelling often takes 

considerable efforts from skilled human agent and thus it 

can be unaffordable to generate annotations to all the 

instances. Latest machine-learning research have proved 

that unlabeled data, when used in conjunction with a small 

amount of labeled data, can produce superior results in 

pattern investigation accuracy93), 94). Since acquisition of 

unlabeled data is relatively inexpensive compared to the 

fully labelled data collection, semi-supervised learning 

can be of remarkable practical value. Another reason to 

assume that semi-supervised methods will possess a 

significant role to play is the analogue to human 

learning95), which seems to be much more data efficient; 

we can learn to recognize objects and structures without 

knowing the all the labels. Instead, we only need very 

limited supervision at the beginning for the task. Semi-

supervised learning is also of theoretical interest in deep 

learning context96).

4. 4 Data augmentation using GANs.
Another way to tackle lack of data issue is to generate 

fake data which is expected to be helpful to train efficient 

model for NDE data pattern investigation. There are two 

novel strategies which could have an impact: variational 

auto-encoders (VAEs), introduced by Kingma and 

Welling97) and generative adversarial networks (GANs), 

introduced by Goodfellow et al.98). The former embedded 

variational Bayesian graphical models into neural 

networks as encoders/decoders. The latter employs two 

competing convolutional neural networks where one is to 

generate ar tificial data instances and the other is 

discriminating fake from real samples. Both networks are 

generative networks with stochastic components. Most 

importantly, they can be trained in an end-to-end fashion 

and the features can be learnt without supervision99). As 

mentioned in previous paragraphs, unlabeled data is 

much easier to collect can therefore VAEs and GANs 

could optimally leverage this wealth of information. One 

successful application for aircraft engines failure 

predication had been reported in100).

5. Conclusion

Machine learning algorithms, in particular the latest 

convolutional networks with deep-stacking structures, 

have emerged as a solid selection for non-destructive 

evaluation data analysis. This study reviewed the latest 
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progress of machine learning techniques introduced to 

the non-destructive evaluation field, most of which have 

been released within the last 5 years. We survey the 

advancement of machine learning techniques from both 

theor y and real application perspectives. Also, we 

examined the published literatures on the use of machine 

learning for two applications of our interest: ultrasonic 

inspection data investigation and computerized impact-

echo test. Based on concise over views, we outlined 

common challenges for development of AI-enabled non-

destructive test systems. Furthermore, we pointed out 

several inspiring research directions to tackle those 

challenges.
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