液体流量測定における物性値

産業技術総合研究所
工学計測標準研究部門
液体流量標準研究グループ

嶋田 隆司
流体の密度・粘度

動粘度(m²/s) = 粘度(Pa·s)/密度(kg/m³)

<table>
<thead>
<tr>
<th></th>
<th>密度 (kg/m³)</th>
<th>動粘度 (cSt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気</td>
<td>1.2</td>
<td>15</td>
</tr>
<tr>
<td>水 @ 20 ℃</td>
<td>998</td>
<td>1</td>
</tr>
<tr>
<td>水 @ 70 ℃</td>
<td>978</td>
<td>0.4</td>
</tr>
<tr>
<td>エタノール</td>
<td>790</td>
<td>1.5</td>
</tr>
<tr>
<td>LPG</td>
<td>500 ~ 600</td>
<td>0.4 ~ 0.6</td>
</tr>
<tr>
<td>ガソリン</td>
<td>720 ~ 760</td>
<td>0.6 ~ 0.7</td>
</tr>
<tr>
<td>灯油</td>
<td>780 ~ 800</td>
<td>1.5 ~ 2</td>
</tr>
<tr>
<td>軽油</td>
<td>800 ~ 840</td>
<td>4 ~ 8</td>
</tr>
<tr>
<td>重油</td>
<td>800 ~ 960</td>
<td>10 ~ 1000</td>
</tr>
</tbody>
</table>

1 cSt = 1 mm²/s = 1 × 10⁻⁶ m²/s

石油連盟HP等より

日本機械学会 流体の熱物性値集より
概要

液体の物性値（密度、粘度）

✓ 流量計の特性に及ぼす影響
 • 容積流量計、タービン流量計、超音波流量計、コリオリ流量計

✓ 流量計の校正に及ぼす影響
 • 流量計校正設備の例として、通液式静的秤量法
容積流量計の流量特性に及ぼす影響

(株)オーバル殿提供

動粘度

• 軽油 20 ℃
• 軽油 35 ℃
• 灯油 20 ℃
• 灯油 35 ℃

T. Shimada et al. FLOMEKO2005

国立研究開発法人 産業技術総合研究所 2017.1.30 第13回NMIJ流量計測クラブ 4
容積流量計のRe特性

石油流量国際比較
- CCM.FF-K2.2015
- APMP.M.FF-K2.a

仲介器
- スクリュー型容積流量計
- 口径: 150 mm
- 流量: ≈ 300 m³/h

管レイノルズ数, \(Re = \frac{Ud}{v} \)

図際比較試験結果, CCM.FF-K2.2015

参加機関

➢ BEV（オーストリア）
➢ CENAM（メキシコ）
➢ CMS（台湾）
➢ NEL（イギリス）
➢ NMIA（オーストラリア）
➢ NMIJ（日本）
➢ TRAPIL（フランス）

国立研究開発法人 産業技術総合研究所 2017.1.30 第13回NMIJ流量計測クラブ 6
タービン流量計のRe特性

図1 タービン流量計のRe特性

\[(K_{20} - K_{\text{nom}}) / K_{\text{nom}} \] (%)

\[u(Re) = 5 \% \rightarrow u_{Re} = 0.1 \% \]

T. Shimada et al. FLOMEKO2005
超音波流量計のRe特性

図8.2.1 超音波流量計測定原理

流量計の実用ナビより

超音波流量計(1) 超音波流量計(2)

*Re = 5% → u_{Re} = 0.05%

0.4%

0.4%
コリオリ流量計の粘度影響

コリオリ式質量流量計の測定原理

流量計の実用ナビより

G.Miller and B.Belshaw, 26th NSFMW(2008)
コリオリ流量計のRe数依存性

1 %

T. Leenhoven et al., EFMWS (2016)
Figure 8: (a) The computed oscillatory secondary flow in moving-frame of reference at the position where sensor is located, (b) a schematic representation of the oscillatory mechanism responsible for Reynolds effect.

V. Kumer et al., FLOMEKO2010
コリオリ流量計のRe特性

Figure 14 Calibration of a 4" Coriolis Meter Vs Reynolds Number

T. Cousins, 32nd NSFMW (2014)
流量計の実流校正

流量計の実流校正:
質量保存則により、標準器（参照標準）等を用いて推定される「流量計を通過する標準流量」で流量計に値付け（流量計の指示値の比較）

<table>
<thead>
<tr>
<th>標準器</th>
<th>流量計</th>
<th>質量への換算</th>
</tr>
</thead>
<tbody>
<tr>
<td>質量（はかり、質量流量計）</td>
<td>質量</td>
<td>なし</td>
</tr>
<tr>
<td>体積</td>
<td>流量計での密度</td>
<td></td>
</tr>
<tr>
<td>体積（体積タンク、体積管、体積流量計等）</td>
<td>質量</td>
<td>標準器での密度</td>
</tr>
<tr>
<td>体積</td>
<td>密度差（流量計及び標準器での密度）</td>
<td></td>
</tr>
</tbody>
</table>
被校正流量計を通過する体積流量

通液式静的秤量法

- 被校正流量計から転流器ノズル出口までの管路間に試験液の漏れや気相の発生、減少がないと仮定
- 質量保存則
 \[\rho_{LFM} q_{FM} = \rho_{NZ} q_{NZ} + \frac{\partial (\rho_{DV} V_{DV})}{\partial t} \]
 接続管路体積（デッドボリューム）
 密度 (kg/m³) \(\rho_{DV} \)
 体積 (m³) \(V_{DV} \)

- 流入時間で時間平均化された流量計を通過する体積流量
 \[\frac{M_L + \Delta M_{LDV}}{\rho_{LFM} \cdot t_D} \]
 密度と流量変動の相関の影響
 デッドボリュームの影響
 流量計を通過する試験液の密度

計測開始から終了までの秤量タンクへの流入質量
\[M_L = \int_{t_s}^{t_f} \rho_{NZ} q_{NZ} dt \]
被校正流量計内の密度

流量計を通過する試験液の密度の推定

推定式

\[\rho_{LFM} = \rho_{L}(T_{FM}, p_{FM}) \]

サンプリング

\[
\rho_{LFM} = \rho_{L0}\left\{ 1 + \frac{\partial \rho_{L}}{\partial T} (T_{FM} - T_{0}) \right\} \left\{ 1 + \frac{\partial \rho_{L}}{\partial p} (p_{FM} - p_{0}) \right\}
\]

密度の測定値 : 温度補正 : 壓力補正

密度計による測定

サンプリング

密度 \(\rho_{L0} \) 温度 \(T_{0} \)

圧力 \(p_{0} \)

推定

<table>
<thead>
<tr>
<th></th>
<th>熱膨張係数 (\frac{1}{\rho_{L}} \frac{\partial \rho_{L}}{\partial T}) (%/K)</th>
<th>壓縮率 (\frac{1}{\rho_{L}} \frac{\partial \rho_{L}}{\partial p}) (%/MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>-0.02</td>
<td>0.045</td>
</tr>
<tr>
<td>油</td>
<td>-0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
密度の推定（灯油）

- JIS K2249（原油及び石油製品－密度試験方法及び密度・質量・容量換算表）
 - 密度(15 ℃)から温度に対する密度を換算

- 測定値
 - 振動式密度計による測定

- 測定値とJISの密度差（%）
表面張力（微小流量校正設備の例）

Fig. 1. Schematic of the outlet tube inserted into the working liquid at the top of the inner overflow cylinder.

ご静聴ありがとうございました