Date of Shipment: Xxxxxx XX, 20XX

National Institute of Advanced Industrial Science and Technology
National Metrology Institute of Japan

Reference Material Certificate
NMIJ CRM 8005-a
No. +++

Fine Silicon Nitride Powder for Fine Ceramics (Liquid Interfacial Reaction)

This certified reference material (CRM) was produced in accordance with the NMIJ’s management system and in compliance with ISO GUIDE 34:2000. This CRM is intended for use in controlling the precision of analysis and confirming the validity of analytical methods and instruments during the quantitative determination of main constituents and trace elements in silicon nitride.

Certified Values
The certified values of 6 elements in this CRM are given in the two Tables below. The drying method is described in this certificate. The uncertainty of the certified value is the half-width of the expanded uncertainty interval calculated using a coverage factor (k) of 2, which gives a level of confidence of approximately 95%.

Main constituents

<table>
<thead>
<tr>
<th>Element</th>
<th>Certified value, mass fraction (%)</th>
<th>Expanded uncertainty, mass fraction (%)</th>
<th>Analytical method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Si</td>
<td>59.41</td>
<td>0.15</td>
<td>condensation / gravimetric method with correction by inductively coupled plasma atomic emission spectrometry</td>
</tr>
<tr>
<td>Total N</td>
<td>38.70</td>
<td>0.21</td>
<td>pressurized acid digestion - Kjeldahl distillation / acidimetric titration method</td>
</tr>
</tbody>
</table>

Trace metals

<table>
<thead>
<tr>
<th>Element</th>
<th>Certified value, mass fraction (mg/kg)</th>
<th>Expanded uncertainty, mass fraction (mg/kg)</th>
<th>Analytical method *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>2.27</td>
<td>0.27</td>
<td>1), 2), 3), 4), 5)</td>
</tr>
<tr>
<td>Fe</td>
<td>10.05</td>
<td>0.94</td>
<td>1), 2), 3), 5)</td>
</tr>
<tr>
<td>Mn</td>
<td>0.142</td>
<td>0.031</td>
<td>1), 3), 5)</td>
</tr>
<tr>
<td>Mo</td>
<td>0.095</td>
<td>0.013</td>
<td>1), 2), 5)</td>
</tr>
</tbody>
</table>

*Analytical methods
1) pressurized acid digestion / inductively coupled plasma mass spectrometry, 2) pressurized acid digestion / isotope dilution – inductively coupled plasma mass spectrometry, 3) pressurized acid digestion / inductively coupled plasma optical emission spectrometry, 4) alkaline fusion / inductively coupled plasma optical emission spectrometry, 5) alkaline fusion / inductively coupled plasma mass spectrometry.

Analysis
Each certified value was determined as a weighted mean of multiple analytical results. The main constituents were determined by a primary method of measurement. The metal impurities were determined by combination of a primary method of measurement and other methods proved to be valid or combination of more than two methods proved to be valid. The analytical methods of metal impurities include multiple digestion methods and multiple instrumental measurements.

The expanded uncertainty includes the combined uncertainty due to analytical results obtained by multiple analytical methods, homogeneity and stability.
Metrological Traceability
The certified value of total Si was determined by the gravimetric analysis as a primary method of measurement. The certified value of total N was determined by acidimetric titration method with NMJJ CRM 3001-a (potassium hydrogen phthalate) as a primary reference material. Each certified value of metal impurities was determined by multiple methods including the isotope dilution – mass spectrometry as a primary method of measurement with NMJJ primary standard solutions, JCSS standard solutions, or NIST SRM standard solutions. The certified values are traceable to the International System of Units (SI).

Indicative Values
The indicative values of 6 kinds of elements in this CRM are given in the two Tables below. The expanded uncertainty (a coverage factor, $k = 2$) includes the uncertainty due to the analytical result, homogeneity and stability.

**Trace metals**

<table>
<thead>
<tr>
<th>Element</th>
<th>Indicative value, mass fraction (mg/kg)</th>
<th>Expanded uncertainty, mass fraction (mg/kg)</th>
<th>Analytical method*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>3.64</td>
<td>0.82</td>
<td>1)</td>
</tr>
<tr>
<td>Cu</td>
<td>0.088</td>
<td>0.022</td>
<td>1), 2), 5)</td>
</tr>
<tr>
<td>Ni</td>
<td>0.88</td>
<td>0.14</td>
<td>1), 2), 3), 5)</td>
</tr>
</tbody>
</table>

*Analytical method
1) pressurized acid digestion / inductively coupled plasma mass spectrometry, 2) pressurized acid digestion / isotope dilution – inductively coupled plasma mass spectrometry, 3) pressurized acid digestion / inductively coupled plasma optical emission spectrometry, 5) alkaline fusion / inductively coupled plasma mass spectrometry.

**Trace non-metals**

<table>
<thead>
<tr>
<th>Element</th>
<th>Indicative value, mass fraction (mg/kg)</th>
<th>Expanded uncertainty, mass fraction (mg/kg)</th>
<th>Analytical method</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>56.8</td>
<td>4.2</td>
<td>Pyrohydrolysis / ion-chromatography</td>
</tr>
<tr>
<td>Cl</td>
<td>66.2</td>
<td>5.4</td>
<td>Pyrohydrolysis / ion-chromatography</td>
</tr>
<tr>
<td>S</td>
<td>16.6</td>
<td>1.4</td>
<td>Pyrohydrolysis / ion-chromatography</td>
</tr>
</tbody>
</table>

Expiration of Certification
This certificate is valid for one year from the date of shipment, provided that the material remains unopened and is stored in accordance with the instructions given in this certificate.

Sample Form
This CRM is in the form of a fine powder and it of ca. 25 g in net volume is kept in a glass bottle.

Homogeneity
The homogeneities of the trace metal elements in the CRM were determined by analyzing 16 bottles selected from approximately 400 bottles. The elements were determined by pressurized acid digestion / inductively coupled plasma optical emission spectrometry. The homogeneities of main constituents and non-metal elements were evaluated from the repeatability of quantitative analysis. The homogeneity of each element is reflected to the uncertainty of the certified value and the indicative value.

Instructions for Storage
This CRM should be tightly sealed, stored at a temperature between 15 °C and 35 °C away from a high humidity and shielded from light.
Instructions for Use
(1) Prior to use, the sample should be mixed by slow rolling; however, it should not be mixed vigorously in order to minimize the risk of shaving the container wall.
(2) From the homogeneity, the recommended sample mass for one analysis is 300 mg or more for total Si, 150 mg or more for total N, 15 mg or more for O, and 500 mg or more for the others.
(3) The certified values and information ones are shown as those for the dried material. The recommended drying condition is as follows:
   ① The material should be dried for two hours at 110 degree °C.
   ② The material should be stood at room temperature in magnesium perchlorate desiccator and weighed as soon as possible after cooling.

Precautions for Handling
Refer to the safety data sheet (SDS) on this CRM before use.

Preparation
A typical commercial fine silicon nitride powder for fine ceramics, produced by the liquid interfacial reaction, was purchased. The material of 25 g each was packed in approximately 400 glass bottles.

Technical Information
The oxygen in this CRM determined by inert gas fusion / IR spectrometry was 1.2 % as mass fraction at the stability monitoring on February 2016.

NMIJ Analysts
The technical managers were Y. Uwamino and A. Hioki, the production manager was Y. Uwamino, and the analysts were Y. Uwamino, A. Hioki, A. Tsuge, H. Morikawa and N. Nonose.

Information
If substantive technical changes occur that affect the certification before the expiration of this certificate, NMIJ will notify the registered customer. Customer registration on the NMIJ Website (given below) will facilitate notification. Technical reports regarding this CRM can be obtained from the contact details given below.

Reproduction of Certificate
In reproducing this certificate, it should be clearly indicated that the document is a copy.

April 1, 2015
Ryoji Chubachi
President
National Institute of Advanced Industrial Science and Technology
### Revision history

**April 1, 2015:** “Metrology Management Center” was renamed to “Center for Quality Management of Metrology.”

**July 19, 2016:** The values of oxygen and fluorine impurities were changed from “Indicative value” to “Information.” Identified figures of the certified values were changed as a result of rounding to two significant figures of their uncertainties.

The description in “Expiration of Certification” was changed to “one year after the date of shipment.”