National Institute of Advanced Industrial Science and Technology

National Metrology Institute of Japan

Reference Material Certificate

NMIJ CRM 5007-a

No. +++

Poly(ethylene glycol) 1500

This certified reference material (CRM) is produced in accordance with the NMIJ's management system and is in compliance with ISO 17034 and ISO/IEC 17025. This CRM is intended for use in the calibration of instruments, the validation of measurements, and the evaluation of analytical performance used to determine the average molecular mass and molecular mass distribution of polymers.

Certified Values

(1) The certified values for the mass and number fractions of poly(ethylene glycol) with degrees of polymerization from 8 to 54 are given in the table below. The mass and number fractions were calculated from the compositions of degrees of polymerization from 8 to 54 as the mathematical summation equals to 1, and other compositions are not certified as zero contents. The uncertainty of the certified value is the half-width of the expanded uncertainty interval calculated using a coverage factor (k) of 2, which give a level of confidence of approximately 95 %.

Material		Poly(ethylene glycol) 1500			
		Certified Values			
Degree of	Relative			Expanded	Expanded
Polymeri	Molecular	Mass Fraction	Number Fraction	Uncertainty of	Uncertainty of
zation	Mass	w _i (kg/kg)	Xi	Mass Fraction	Number Fraction
i	Mi			U(wi) (kg/kg)	$U(x_i)$
8	370.44	0.00003	0.00012	0.00005	0.00020
9	414. <mark>49</mark>	0.00003	0.00012	0.00004	0.00017
10	458. <mark>5</mark> 4	0.00004	0.00012	0.00005	0.00017
11	502.60	0.00004	0.00013	0.00005	0.00016
12	546.65	0.00005	0.00013	0.00006	0.00017
13	590.70	0.00005	0.00014	0.00007	0.00018
14	634.75	0.00006	0.00014	0.00006	0.00015
15	678.81	0.00007	0.00016	0.00006	0.00014
16	722.86	0.00008	0.00018	0.00006	0.00013
17	766.91	0.00012	0.00024	0.00007	0.00014
18	810.97	0.00019	0.00036	0.00008	0.00016
19	855.02	0.00031	0.00056	0.00015	0.00028
20	899.07	0.00058	0.00101	0.00034	0.00058
21	943.12	0.00114	0.00189	0.00069	0.00114
22	987.18	0.00224	0.00354	0.00120	0.00190
23	1031.23	0.00410	0.00620	0.00187	0.00283
24	1075.28	0.00704	0.01022	0.00254	0.00367
25	1119.33	0.01100	0.01534	0.00318	0.00440

26	1163.39	0.01607	0.02156	0.00373	0.00496
20	1207.44	0.02211	0.02858	0.00421	0.00540
28	1251.49	0.02887	0.03600	0.00472	0.00583
29	1295.55	0.03606	0.04344	0.00521	0.00621
30	1339.60	0.04358	0.05077	0.00566	0.00654
31	1383.65	0.05063	0.05710	0.00627	0.00700
32	1427.70	0.05691	0.06221	0.00704	0.00757
33	1471.76	0.06211	0.06586	0.00796	0.00825
34	1515.81	0.06566	0.06760	0.00896	0.00895
35	1559.86	0.06737	0.06740	0.00983	0.00950
36	1603.92	0.06750	0.06567	0.01046	0.00980
37	1647.97	0.06614	0.06263	0.01040	0.01012
38	1692.02	0.06308	0.05818	0.01153	0.01012
39	1736.07	0.05861	0.05268	0.01187	0.01024
40	1780.13	0.05298	0.04645	0.01143	0.00971
41	1824.18	0.04679	0.04003	0.01086	0.00904
42	1868.23	0.04022	0.03360	0.01002	0.00818
43	1912.28	0.03355	0.02738	0.00910	0.00729
44	1956.34	0.02700	0.02154	0.00778	0.00613
45	2000.39	0.02099	0.01638	0.00645	0.00499
46	2000.00	0.01559	0.01190	0.00509	0.00387
47	2088.50	0.01099	0.00821	0.00378	0.00282
48	2132.55	0.00742	0.00543	0.00265	0.00194
49	2176.60	0.00485	0.00348	0.00182	0.00131
50	2220.65	0.00310	0.00218	0.00135	0.00095
51	2264.71	0.00193	0.00133	0.00085	0.00059
52	2308.76	0.00125	0.00085	0.00065	0.00044
53	2352.81	0.00088	0.00058	0.00049	0.00032
54	2396.87	0.00055	0.00036	0.00033	0.00022
	2000.01	0.00000	0.00000	0.00000	0.00022

(2) The certified values for the mass-average molecular mass and the number-average molecular mass are given in the table below, which were calculated from the values of the mass and number fractions with degrees of polymerization from 8 to 54. The uncertainties are the half-width of the expanded uncertainty intervals calculated using a coverage factor (k) of 2, which give a level of confidence of approximately 95 %.

Average Molecular Mass	Certified Value	Expanded Uncertainty
Mass-average Molecular Mass <i>M</i> w	1601.0	66.8
Number-average Molecular Mass <i>M</i> n	1560.6	60.0

Analysis

The mass fraction of this CRM was measured by the supercritical fluid chromatography (SFC) with the evaporative light scattering detector (ELSD) calibrated by using uniform poly(ethylene glycol) oligomers. The number fraction x_i was calculated from the mass fraction w_i by the following equation:

$$x_i = \frac{w_i / M_i}{\sum_i \left(w_j / M_j \right)}$$

The mass- and number-average molecular masses, M_w and M_n , of this CRM were calculated from the mass fraction w_i and the number fraction x_i by the following equations:

$$M_{n} = \sum_{i} x_{i} M_{i}$$
$$M_{w} = \sum_{i} w_{i} M_{i}$$

Metrological Traceability

The relative sensitivities of the SFC-ELSD to poly(ethylene glycol) as a function of the degree of polymerization were needed to determine the mass fraction of the poly(ethylene glycol) of the specified degree of polymerization. The relative sensitivities were evaluated by comparing the relative peak intensities measured by the SFC-ELSD for an equimass solution that consisted of poly(ethylene glycol)s of different degrees of polymerization. The equimass solution was prepared by (1) making solutions of poly(ethylene glycol) of a certain degree of polymerization that ranged from 6 to 42, (2) measuring the mass concentration of each solution by total organic carbon (TOC) measurement of which the linearity was verified independently, and (3) mixing the solutions to contain equimass poly(ethylene glycol)s of different degrees of polymerization. Weighting were carried out by a JCSS-calibrated balance. The molecular mass of each component was calculated using "ATOMIC WEIGHT OF THE ELEMENTS 2001" published by IUPAC.

Expiration of Certification

This certification is valid for one year from the date of shipment, provided that the material is stored in accordance with the instructions given in this certificate.

Sample Form

This CRM is in the form of a wax like material at room temperature. This CRM of ca. 1 g in net volume is kept in a polypropylene bottle with dry argon gas.

Homogeneity

The homogeneity of this CRM was evaluated by the SFC-ELSD analysis for 7 bottles picked up from 300 bottles. The analysis of variance applied to the SFC chromatograms proved the homogeneity of this CRM.

Instructions for Storage

This CRM should be stored at a temperature of 25 °C or below in a clean place and shielded from light. However, in case of long-term storage of 1 month and more, the CRM should be stored in a clean place at a temperature of 5 °C or below.

Instructions for Use

This CRM is for laboratory use only. The CRM should be used promptly as possible once the bottle is opened.

Precautions for Handling

Keep away from fire, heat and sparks. Use under open air. Wear suitable protective clothing and gloves. Avoid any contamination. Store and dispose of the CRM in accordance with relevant laws. Refer to the safety data sheet (SDS) on this CRM before use.

Preparation

This poly(ethylene glycol) 1500 was prepared by Wako Pure Chemical Industries, Ltd., Osaka, Japan.

NMIJ Analysts

The technical manager is KINUGASAS. The production manager is SHIMADAK. The analyst is SHIMADAK.

Information

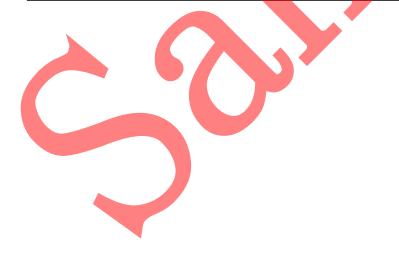
If substantive technical changes occur that affect the certification before the expiration of this certificate, NMIJ will notify the registered customer. Customer registration on the NMIJ Website (given below) will facilitate notification. Technical reports regarding this CRM can be obtained from the contact details given below.

Reproduction of Certificate

In reproducing this certificate, it should be clearly indicated that the document is a copy.

April 1, 2020

President


ISHIMURA Kazuhiko

National Institute of Advanced Industrial Science and Technology

If you have any questions about this CRM, please contact: National Institute of Advanced Industrial Science and Technology, National Metrology Institute of Japan, Center for Quality Management of Metrology, Reference Materials Office, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan Phone: +81-29-861-4059; Fax: +81-29-861-4009, https://unit.aist.go.jp/nmij/english/refinate/

Revision history

April 1, 2015:	"Metrology Management Center" was renamed to "Center for Quality Management of Metrology."
July 15, 2015:	The description in "Expiration of Certification" was changed to "one year from the date of shipment."
June 9, 2020:	The description in "Instructions for Storage" was revised."

