Performance Limit of Parallel Electric Field Tunnel FET and Improvement by Modified Gate and Channel Configurations

Yukinori Morita, Takahiro Mori, Shinji Migita, Wataru Mizubayashi, Akihito Tanabe, Koichi Fukuda, Takashi Matsukawa, Kazuhiko Endo, Shin-ichi O’uchi, Yongxun Liu, Meishoku Masahara, and Hiroyuki Ota

Green Nanoelectronics Center (GNC)
Nanoelectronics Research Institute (NeRI)
AIST Japan
Outline

Background
- Why tunnel FET (TFET)
- Parallel electric field TFET (PE-TFET)

Performance of PE-TFET
- Device fabrication
- Experimental results

Proposal of Synthetic electric field TFET (SE-TFET)
- Device fabrication
- Experimental results

Summary
Conventionally, V_{dd} scaling causes a significant increase in I_{off} due to the lower limit of SS (~60mV/dec.) V_{dd} scaling without I_{off} increase can be done by steepening the SS
Why tunnel FET?

MOSFET

- Carrier flow is determined by thermal-injection mechanism
- $SS > 60\text{mV/dec.}$

Tunnel FET

- Carrier flow is determined by BTBT transport mechanism
- $SS < 60\text{mV/dec.}$
Lateral & vertical TFETs

- Two TFET architectures

Lateral (conventional) TFET

Vertical (parallel electric field) TFET

BTBT is limited in interface

\[\text{L}_{\text{OV}}: \text{Overlap length} \]

\[\Rightarrow \text{Small } I_D \]

BTBT area is enlarged

Y. Morita et al., Jpn. J. Appl. Phys. 52, 04CC25 (2013)
Objective of this work

- Performance of the parallel electric field TFET (PE-TFET), relation between ON current and overlap length, is analyzed.

- Proposal of modified TFET architecture to improve electrostatics (Synthetic electric field TFET)
Performance of the PE-TFET
Fabrication of PE-TFET with epichannel

S/D first & "Junction-last" TFET process

- SOI mesa etching (a)
- P I/I (b)
- BF₂ I/I (c)
- Activation (1000 °C)

- Si epitaxial growth, high-k and gate (d)
- Gate stack etch
- Contact
- Sintering

(a) SOI mesa etching

(b) P ion implantation

(c) BF₂ ion implantation

(d) Si epitaxial growth, high-k and gate

(e) Gate stack etch

BF₂ ion implantation

SOI mesa etching
Operation of p- & n-PE-TFETs

I_D-V_G

EOT = 1.3 nm Lg = 1000 nm Lov = 150 nm

p-TFET

V_D = -1 V

n-TFET

V_D = 1 V

V_D = -0.2 V

SS_{min} = 112

V_D = 0.2 V

SS_{min} = 72

G

High-k

S

D

S

D

n-TFET

p-TFET

BOX
Effect of L_{OV} increase

Relation between I_D and L_{OV}

Confirming I_D increase with increasing L_{OV}
ON current degraded at $L_{OV} > 1000$ nm
Effect of L_{OV} increase

Analysis using a distributed-element circuit

In ideal case ($R_S \sim 0$), $i-v$ relation can be describes as,

\[
\begin{align*}
- \frac{dv(x)}{dx} &= R_c i(x) \\
- \frac{di(x)}{dx} &= G v(x)
\end{align*}
\]
Effect of L_{OV} increase

Relation between I_D and L_{OV}

$\tau = \sqrt{\frac{1}{GR_C}} \sim \sqrt{\frac{G}{R_C}} V_D$

Ideal case ($R_S = 0$)

Considering R_S

Upper limit of ON current! $\sim \sqrt{\frac{G}{R_C}} V_D$
Limit of drain current in PE-TFET

\[I_{\text{ONMAX}} \sim \sqrt{\frac{G}{R_C}} V_D \]

--->> Self-voltage-drop effect in thin channel

Trade off
Enhancing G <<<--> Reducing R_C

Balance between tunnel conductance and channel resistance is critical.
Proposal of modified TFET architecture
Proposal of synthetic electric field TFET

- Multiplication of lateral & vertical electric fields

(a) Lateral TFET

(b) Parallel electric field TFET

(c) Synthetic electric field TFET

(d) Ultrathin undoped channel

High-k
Fabrication of SE-TFET with epichannel

- Based on source/drain-first CMOS process
Device structures

- Small amount of defects at epitaxial channel/source interface
Operation mechanism

Conventional (lateral) TFET

SE-TFET

BTBT window

Top E-field

Side + Top E-fields
Simulation of electric field

- Electric field at edges is enlarged by SE-effect.
- Scaling of channel thickness and width enhances SE-effect

Electric field distribution

- Electric field (V/cm)
- $W_{CH} = 20\,\text{nm}$, $D_{EPI} = 10\,\text{nm}$
- $W_{CH} = 50\,\text{nm}$, $D_{EPI} = 50\,\text{nm}$
Impact of channel width

- Better performance in narrower channel device

![Graph showing I_D vs V_G for different channel widths and parameters.](image)

- $W_{CH} = 0.17 \, \mu\text{m}$
- $W_{CH} = 1 \, \mu\text{m}$
- $W_{CH} = 10 \, \mu\text{m}$

- $D_{EPI} = 10 \, \text{nm}$
- $V_D = -0.05 \, \text{V}$
- $L_{OV} = 400 \, \text{nm}$

- $SS_{MIN} = 52$

![Graph showing SS_{MIN} vs W_{CH} for different D_{EPI} and V_D.](image)
- I_D at $W_{CH} = 0$ corresponds to the edge current.

![Impact of channel width](image)

- $L_{OV} = 400$ nm
- $V_D = -1$ V
- $V_G = -2$ V

- $D_{Epi} = 10$ nm
- 0.1 uA/um
- $D_{Epi} = 16$ nm
- 5.4×10^{-3} uA/um
• Edge current is enhanced by D_{EPI} scaling.

0.7 uA
0.2 uA

$L_{OV} = 400$ nm

$V_D = -1$ V
$V_G = -2$ V

$D_{EPI} = 10$ nm
0.1 uA/um

$D_{EPI} = 16$ nm

5.4×10^{-3} uA/um
Scaling of both D_{EPI} and W_{CH} enhance performance.

- $D_{\text{EPI}} = 16 \text{ nm}$
- 4 nm (Prediction)
- 10 nm

FinFET-like structure is better.
Performance of SE-tunnel FinFET

Significant performance

SS_{MIN} = 58, I_D = 4 \text{ uA/um} @ (V_G, V_D) = (-0.5, -0.2 \text{ V})

400 \text{ uA/um} @ (V_G, V_D) = (-2, -1 \text{ V})
Summary

Parallel electric field TFET
• Limit of ON current
• Balance between tunnel conductance and channel resistance is critical

Synthetic electric field TFET
• Scaling induced performance enhancement
• FinFET-like slim device is promising.
• Significant performance in small voltage
 \[SS_{\text{MIN}} = 58, \quad I_D = 4 \text{ uA/um} @ (V_G, V_D) = (-0.5, -0.2 \text{ V}) \]
 \[400 \text{ uA/um} @ (V_G, V_D) = (-2, -1 \text{ V}) \]
• The concept can be applicable to Ge or III-V TFETs.
Acknowledgement

This research was supported by JSPS through the First Program, “Development of Core Technologies for Green Nanoelectronics”.

Thank you for your kind attention.
Benchmark

Our data
(No strain, no Ge, no metal SD, only by device consideration)