top
国際誌

 

プロセス技術と基礎物性

 

1. T. Hong, K. Choi, K. Sim, T. Ha, B. C. Park, H. Yamamori, J. H. Kim,
   "Terahertz electrodynamics and superconducting energy gap of NbTiN,"

  J. Appl. Phys. 114, 243905 (2013); doi:10.1063/1.4856995.

 

2. M. Hidaka, S. Nagasawa, K. Hinode, and T. Satoh,
  “Device yield in Nb-nine-layer circuit fabrication process,”
  IEEE Trans. Appl. Supercond. 23, 1100906 (2013); doi:10.1109/TASC.2013.1137471.

 

3. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa,
   “Measurement of 10 zJ energy dissipation of adiabatic quantum-flux-parametron logic using a superconducting resonator,”

  Appl. Phys. Lett. 102, 052602 (2013); http://dx.doi.org/10.1063/1.4790276

 

4. S. Nagasawa, K. Hinode, T. Satoh, M. Hidaka, H. Akaike, A. Fujimaki, N. Yoshikawa, K. Takagi, and N. Takagi,
  “Nb 9-layer fabrication process for superconducting large-scale SFQ circuits and its process evaluation,”
  IEICE Transactions on Electronics, E97-C, (2014) (to be published).

 

センサーと検出器状態分析

 

1. N. Zen, S. Shiki, M. Ukibe, M. Koike, and M. Ohkubo,
   "Ion-induced dynamical change of supercurrent flow in superconducting strip ion detectors with parallel configuration,"

  Appl. Phys. Lett. 104, 012601 (2014); doi:10.1063/1.4861225.

 

2. Y. Tsuga, Y. Yamanashi, and N. Yoshikawa, “Asynchronous digital SQUID magnetometer with an

  on-chip magnetic feedback for improvement of magnetic resolution,”
  IEEE Trans. Appl. Supercond. 23, 1601405 (2013); doi:10.1109/TASC.2012.2235901.

 

3. M. Ukibe, G. Fujii, and M. Ohkubo,
  "Fabrication of Nb/Al superconducting tunnel junction using ozone gas,"
  J. Low Temp. Phys. (2014); doi:10.1007/s10909-013-1073-5 (published online).

 

4. G. Fujii, M. Ukibe, S. Shiki, and M. Ohkubo,
   "Toward 1000-pixel superconducting-tunnel-junction detectors for x-ray absorption fine structure spectroscopy,"

  J. Low Temp. Phys. (2014): doi:10.1007/s10909-014-1123-7 (published online).

 

5. S. Shiki, M. Ukibe, N. Matsubayashi, N. Zen, M. Koike, Y. Kitajima, and M. Ohkubo,
   "Current status of AIST X-ray-absorption-spectroscopy (XAFS) instrument with 100-pixel superconducting-tunnel-junction array detector,"

  J. Low Temp. Phys. (2014); doi:10.1007/s10909-013-1074-4 (published online).

 

6. M. Ohkubo, S. Shigetomo, M. Ukibe, G. Fujii, and N. Matsubayashi,
  “Superconducting tunnel junction detectors for analytical sciences,”
  IEEE Trans. Appl. Supercond. (invited, to be published).

 

信号読み出し回路

 

1. F. Hirayama, S. Kohjiro, D. Fukuda, H. Yamamori, S. Nagasawa, and M. Hidaka,
   “Microwave SQUID multiplexer for TES readout,”

  IEEE Trans. Appl. Supercond. 23, 2500405 (2013); doi:10.1109/TASC.2012.2237474.

 

2. S. Miyajima, T. Kusumoto, K. Ito, Y. Akita, I. Yagi, N. Yoshioka, T. Ishida, S. Miki, Z. Wang, and A. Fujimaki,
  “High-throughput RSFQ signal processor for a neutron diffraction system with multiple MgB2 detectors,”
  IEEE Trans. Appl. Supercond. 23, 1800505 (2013); doi:10.1109/TASC.2013.1800505.

 

3. Y. Tsuchiya, Y. Nakajima, T. Tamegai, S. Nagasawa, and M. Hidaka,

  "Origin of diagonal flux penetration into square superconducting networks”,

  Physics Procedia 45, 121 (2013); doi:10.1016/j.phpro.2013.04.067.

 

4. S. Tada, Y. Tsuchiya, Y. Nakajima, T. Tamegai, S. Nagasawa, and M. Hidaka,

  “Flux penetration into three-dimensional superconducting strip array”,

   Physica C 494, 113 (2013); doi:10.1016/j.physc.2013.04.036.

 

5. K. Sakai, Y. Takei, R. Yamamoto, N.Y. Yamasaki, K. Mitsuda, M. Hidaka, S. Nagasawa, S. Kohjiro, and T. Miyazaki,
  “Baseband feedback frequency-division multiplexing with low-power dc-SQUID and digital electronics for TES X-ray microcalorimeters,”
  J. Low Temp. Phys. (2014); doi:10.1007/s10909-013-1040-1 (published online).

 

6. R. Yamamoto, K. Sakai, Y. Takei, N.Y. Yamasaki, and K. Mitsuda,
  "Performance of frequency division multiplexing readout system for ac-biased transition-edge sensor X-ray microcalorimeters,"
  J. Low Temp. Phys. (2014); doi:10.1007/s10909-014-1128-2 (published online).

 

7. Y. Tsuchiya, Y. Nakajima, T. Tamegai, S. Nagasawa, and S. Hidaka,

  Anisotropic Flux Penetration into Square Superconducting Networks”,

   Supercond. Sci. Tech. (to be published).

 

8. S. Kohjiro, F. Hirayama, H. Yamamori, S. Nagasawa, D. Fukuda, M. Hidaka,
   “White noise of Nb-based microwave SQUID multiplexers with NbN coplanar resonators for readout of transition edge sensors,”

     J. Appl. Phys., 115, 223902_1-9 (2014); Doi: 10.1063/1.4882118.

 

デジタル回路

 

1.  N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa,  

  “An adiabatic quantum flux parametron as an ultra-low-power logic device,”

  Supercond. Sci. Tech. 26, 035010 (2013); doi:10.1088/0953-2048/26/3/035010.

 

2. T. Mukaiyama, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, 

   “Design and demonstration of an on-chip ac power source for adiabatic quantum-flux-parametron logic,”

   Supercond. Sci. Tech. 26, 035018(2013); doi:10.1088/0953-2048/26/3/035018.

 

3. N. Takeuchi, K. Ehara, K. Inoue, Y. Yamanashi, and N. Yoshikawa,

  “Margin and energy dissipation of adiabatic quantum-flux-parametron logic at finite temperature,”

  IEEE Trans. Appl. Supercond. 23, 1700304 (2013); doi:10.1109/TASC.2012.2232336.

 

4. K. Inoue, N. Takeuchi, K. Ehara, Y. Yamanashi, and N. Yoshikawa,

  “Simulation and experimental demonstration of logic circuits using an ultra-low-power adiabatic quantum-flux-parametron,”

  IEEE Trans. Appl. Supercond. 23, 1301105 (2013); doi:10.1109/TASC.2012.2236133.

 

5. K. Kuwabara, H. Jin, Y. Yamanashi, and N. Yoshikawa,
   “Design and implementation of 64-kb CMOS static RAMs for Josephson-CMOS hybrid memories,”

  IEEE Trans. Appl. Supercond. 23, 1700704 (2013); doi:10.1109/TASC.2012.2229331.

 

6. K. Ehara, A. Takahashi, Y. Yamanashi, and N. Yoshikawa,

  “Development of pulse transfer circuits for serially biased SFQ circuits using the Nb 9-layer 1-μm process,”

   IEEE Trans. Appl. Supercond. 23, 1300504 (2013); doi:10.1109/TASC.2012.2233535.

 

7. K. Aoki, Y. Yamanashi, and N. Yoshikawa,

   “Multiplexing techniques of single flux quantum circuit based readout circuit for a multi-channel sensing system,”

  IEEE Trans. Appl. Supercond., 23, 2500204 (2013); doi:10.1109/TASC.2012.2230679.

 

8. M. Otsubo, Y. Yamanashi, and N. Yoshikawa,

   “Improvement of operating margin of sfq circuits by controlling dependence of signal propagation time on bias voltage,”

   IEEE Trans. Appl. Supercond. 23, 1300904 (2013); doi:10.1109/TASC.2012.2234176.

 

9. Y. Yamanashi, K. Umeda, and N. Yoshikawa,

  “Pseudo sigmoid function generator for a superconductive neural network,”

   IEEE Trans. Appl. Supercond. 23, 1701004 (2013); doi: 10.1109/TASC.2012.2228531.

 

10. M. Dorojevets, C. L. Ayala, N. Yoshikawa, and A. Fujimaki,
  “16-bit wave-pipelined sparse-tree RSFQ adder,”

   IEEE Trans. Appl. Supercond. 23, 1700605 (2013); doi:10.1109/TASC.2012.2233846.

 

11. M. Dorojevets, A. K. Kasperek, Member, N. Yoshikawa, and A. Fujimaki,

  “20-GHz 8 × 8-bit parallel carry-save pipelined RSFQ multiplier,”

   IEEE Trans. Appl. Supercond. 23, 1300104 (2013); doi:10.1109/TASC.2012.2227648.

 

12. M. Dorojevets, C. L. Ayala, N. Yoshikawa, and A. Fujimaki,

   “8-bit asynchronous sparse-tree superconductor RSFQ arithmetic-logic unit with a rich set of operations,”

  IEEE Trans. Appl. Supercond. 23, 1700104 (2013); doi:10.1109/TASC.2012.2229334.

 

13. T. Mukaiyama, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa,
  “Operation of an adiabatic quantum-flux-parametron gate using an on-chip ac power source,”

  IEEE Trans. Appl. Supercond., 23, 1301605 (2013); doi:10.1109/TASC.2013.2251465.

 

14. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa,
  “Simulation of sub-kBT bit-energy operation of adiabatic quantum-flux parametron logic with low bit-error-rate,”
  Appl. Phys. Lett. 103, 062602 (2013); doi:10.1063/1.4817974.

 

15. M. Tanaka, A. Kitayama, T. Koketsu, M. Ito, and A. Fujimaki,
  “Low-energy consumption RSFQ circuits driven by low voltages,”
  IEEE Trans. Appl. Supercond., 23, 1701104 (2013); doi:10.1109/TASC.2013.171104.

 

16. Y. Sato, M. Moriya, H. Shimada, Y. Mizugaki, and M. Maezawa,
  “Design and operation of 1000-fold voltage multiplier based double-flux-quantum amplifier,”
  Physics Procedia, 45, 221 (2013); doi:10.1016/j.phpro.2013.05.007.

 

17. Y. Mizugaki, K. Kuroiwa, M. Moriya, H. Shimada, and M. Maezawa,
  “5-bit quasi-sinusoidal voltage waveform synthesized using single-flux-quantum pulse-frequency modulation”
  IEEE Trans. Appl. Supercond. 23, 1300804 (2013). doi:10.1109/TASC.2012.2234362.

 

18. Y. Tsuchiya, Y. Mawatari, J. Ibuka, S. Tada, S. Pyon, S. Nagasawa, M. Hidaka, M. Maezawa, and T. Tamegai,
  "Flux avalanches in Nb superconducting shifted strip arrays,”
  Supercond. Sci. Technol. 26, 095004 (2013); doi:10.1088/0953-2048/26/9/095004.

 

19. A. Fujimaki, M. Tanaka, R. Kasagi, K. Takagi, M. Okada, Y. Hayakawa, K. Takata, H. Akaike, N. Yoshikawa, S. Nagasawa, K. Takagi, and N. Takagi,
   "Large-Scale integrated circuit design based on a Nb nine-layer structure for reconfigurable data-path processors,"

  IEICE Trans. Electron. E97-C (2014) (to be published)

 

20. M. Tanaka, A. Kitayama, M. Okada, T. Kouketsu, T. Takinami, M. ITO, and A. Fujimaki,
   “High-Speed operation of 0.25-mv RSFQ arithmetic logic unit based on 10-ka/cm2 Nb process technology,”

  IEICE Trans. Electron. E97-C (2014) (to be published).

 

21. T. Onomi and K. Nakajima,
  “Neuron circuit using coupled SQUIDs gate with flat output characteristics for superconducting neural network,”

 IEICE Trans. Electron. E97-C (2014) (to be published).

 

22. Y. Takahashi, H. Shimada, M. Maezawa,and Y. Mizugaki,

   “Demonstration of 6-bit, 0.20-mVpp quasi-triangle voltage waveform generator based on pulse-frequency modulation,”

  IEICE Trans. Electron. E97-C (2014) (to be published).

 

注:doiへのアクセスは、http://dx.doi.org/10.1063/1.4861225のように入力して下さい。

 


和文誌

 

プロセス技術と基礎物性

 

1.  Mr. CRAVITY,
 “低温超電導デバイス開発用、新クリーンルーム稼働開始 _産業技術総合研究所_,”
 SUPERCONDUCTIVITY COMMUNICATIONS, 22(2)April (2013);
 http://semrl.t.u-tokyo.ac.jp/SUPERCOM/121/121-5-1.html.

 

センサーと検出器

 

1. 全 伸幸、志岐 成友、藤井 剛、浮辺 雅宏、小池 正記、大久保 雅隆、 

 "超伝導ストリップイオン検出器による巨大分子の高感度質量分析," 

 信学技報 113 (232), 67 (2013); http://ci.nii.ac.jp/naid/40019868162.

 

2. 志岐 成友、浮辺 雅宏、松林 信行、小池 正記、北島 義典、大久保 雅隆、
  “超伝導検出器で可能になる微量軽元素の蛍光収量X線吸収分光,”

 PF NEWS, 31(3), 13 (2013); http://pfwww.kek.jp/publications/pfnews/31_3/saikin2.pdf

 

3. 大久保 雅隆
 “微量軽元素のナノ構造XAFS解析,”
 産総研TODAY 2013-04, 11 (2013);
 http://www.aist.go.jp/aist_j/aistinfo/aist_today/vol13_04/vol13_04_p11.pdf.

 

4. 大久保 雅隆
 “超電導検出器の最新状況と IEC 標準化活動 — 超伝導センサと検出器の標準化提案(通則) 国際投票開始!,”
 超電導Web21 2014年2月号, p. 1;

  http://www.istec.or.jp/web21/pdf/14_02/J5.pdf.

 

5. 大久保 雅隆
 “IEC-IEEE 合同超電導エレクトロニクス標準化会合」報告,”
 超電導Web21 2013年9月号, p. 8; http://www.istec.or.jp/web21/pdf/13_09/all.pdf.

 

信号読み出し回路

1.  神代暁、平山文紀、福田大治、山森弘毅、永沢秀一、日高睦夫、

 “マイクロ波共振に基く超伝導転移端検出器の周波数多重読出回路“
   低温工学、49(7) 345-351 (2014); Doi: 10.2221/jscj.49.345.

デジタル回路


受賞

 

1. 藤井 剛
2013年 第74回応用物理学会秋季学術講演会 ポスター賞
“軟X線分光のための400素子超伝導トンネル接合アレイ検出器”

 

2.  浮辺 雅宏
 2013年 学術振興会146委員会賞
 “大規模超伝導トンネル接合アレイ検出器の開発”