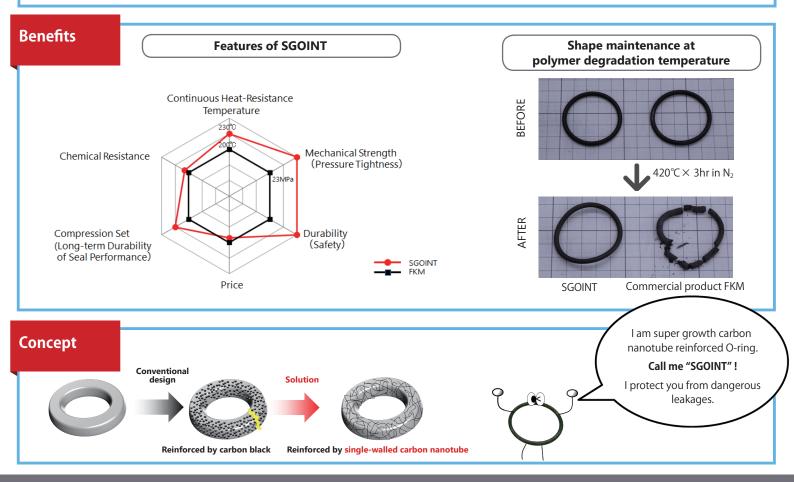
Evaluation Sample Available

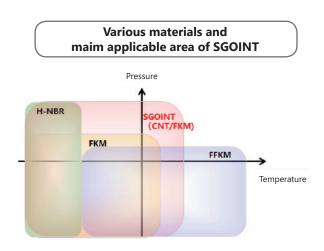
Contact Us : cnt-comp-info-ml@aist.go.jp


Heat-Resistant & Low-Cost Carbon Nanotube Reinforced O-ring

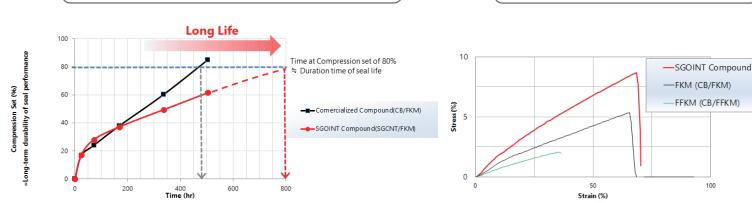
Description

SGOINT is a new concept heat-resistant O-ring using peroxide-curable fluoroelastomer (FKM) matrix with highly pure and long single-walled carbon nanotube known as SGCNT as reinforcing filler.

SGOINT is developed to meet the needs of :


- Using O-ring in high-temperature environment up to about 230 degrees C;
- Using O-ring under high-pressure condition than ever before;
- Curbing operational costs by reducing O-ring exchange frequency;
- Replacing metallic sealing with easy to care and safer rubber O-ring; and
- High-performance O-ring in the price range of FKM.

Technical Details of SGOINT


Standard O-ring	Standard		AS568-223		
	Width (Cross Section)		3.53±0.01	mm	
	Inside diameter		40.87±0.38	mm	
Normal physical properties	Hardness (IRHD M-method)		85±5	-	
	Strength	Tensile Strength	20<	MPa	
		Elongation	150<	%	
		100% Young's Modulus	10<	MPa	
Air heating aging test	Temperature		230	°C	
	Time		336	hrs	
	Change of Hardness (pt)		<10	pt	
	Change of Tensile strength (%)		<20	%	
	Change of Elongation (%)		<45	%	
Compression Set	Temperature		230	°C	
	Time		336	hrs	
	Compression Set %		<60	%	
Chemical resistance ^(*)	20 % Diethanolamine (90℃×72hr)		goo	good	
	50 % Diethanolamine (90℃×72hr)		goo	good	
	100 % Diethanolamine (90℃×72hr)		fai	fair	

(*) Change of Tensile Strength : <30 % (good) ; < 50 % (fair) ; > 50 % (poor)

Note: Each characteristic value of the table is the representing value by actual measurement and does not warrant quality.

Time dependence of compression set at 230 degrees C

Sample Availability

AS568-223, AS568-214, AS568-312, AS568-343

* Please contact us for other shape of samples.

More About Our Product

- O "Development of rubber material resistant to various environments at the world's highest level " (JPN) http://www.aist.go.jp/aist_j/press_release/pr2016/pr20160125_2/pr20160125_2.html
- O "Develop tough and safer O-ring which maintains shape in high-temperature" (JPN) http://www.aist.go.jp/aist_j/press_release/pr2017/pr20170608/pr20170608.html
- O "Development of durable and economically efficient heat-resistant O-ring" (JPN) http://www.aist.go.jp/aist_j/press_release/pr2018/pr20180208/pr20180208.html
- O Team of Application for Carbon nanotubes Composite, National Institute of Advanced Industrial Science and Technology https://www.nanocarbon.jp/tacc/

(NEDO) This document is based on results obtained from a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

Mechanical strength at 230 degrees C