@Article{ganesh:naco:2017, author = {Ganesh, Gowrishankar and Minamoto, Takehiro and Haruno, Masahiko}, title = {Activity in the dorsal ACC causes deterioration of sequential motor performance due to anxiety}, journal = {Nature Communications}, year = {2017}, volume = {10}, number = {1}, pages = {4287}, month = {September}, doi = {10.1038/s41467-019-12205-6.}, url = {https://www.researchgate.net/publication/335914619\_Activity\_in\_the\_dorsal\_ACC\_causes\_deterioration\_of\_sequential\_motor\_performance\_due\_to\_anxiety}, abstract = {Performance anxiety can profoundly affect motor performance, even in experts such as professional athletes and musicians. Previously, the neural mechanisms underlying anxiety-induced performance deterioration have predominantly been investigated for individual one-shot actions. Sports and music, however, are characterized by action sequences, where many individual actions are assembled to develop a performance. Here, utilizing a novel differential sequential motor learning paradigm, we first show that performance at the junctions between pre-learnt action sequences is particularly prone to anxiety. Next, utilizing functional magnetic resonance imaging (fMRI), we reveal that performance deterioration at the junctions is parametrically correlated with activity in the dorsal anterior cingulate cortex (dACC). Finally, we show that 1 Hz repetitive transcranial magnetic stimulation of the dACC attenuates the performance deterioration at the junctions. These results demonstrate causality between dACC activity and impairment of sequential motor performance due to anxiety, and suggest new intervention techniques against the deterioration.}, publisher = {Nature Publishing Group}, address = {MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND} }