東海・伊豆地域等の地下水観測結果

【資料目次】

表紙 1. 東海地域中部 [榛原,静岡栗原(草薙)] 地下水;中期 2. 東海地域中部 [榛原,静岡栗原(草薙)] 地下水;長期 東海地域南部 [大東,小笠,浜岡,御前崎] 地下水;中期 3. 東海地域南部 [大東,小笠,浜岡,御前崎] 地下水;長期 4. 4-b. 東海地域南部 [浜岡] 地下水·沈下;長期 4-c. 東海地域南部 [掛川] 地下水·沈下;長期 5. 東海地域西部 [豊橋,豊橋多米(豊橋東)] 地下水·歪·傾斜;中期 5-b. 東海地域西部 [豊橋多米(豊橋東)] 歪等;中期 6. 東海地域西部 [豊橋·豊橋多米(豊橋東)] 地下水·歪·傾斜;長期 6-b. 東海地域西部 [豊橋多米(豊橋東)] 歪等;長期 7. 伊豆半島東部 [松原174,大室山北,冷川南] 地下水;中期 8. 伊豆半島東部 [松原174, 大室山北, 冷川南] 地下水; 長期 9. 関東地域 [つくば1] 地下水;中期

10. 関東地域 [つくば1] 地下水;長期

別紙

・榛原・浜岡の降雨グラフ

東海地域中部 中期

産業技術総合研究所資料 資料-1

東海地域中部 長期

産業技術総合研究所資料 資料-2

東海地域西部 (豊橋多米 歪) 中期 (時間値) $(2017/05/01 \ 00:00 - 2017/08/01 \ 00:00 \ (JST))$

東海地域西部 中期

資料-5b 産業技術総合研究所資料

東海地域西部 長期

産業技術総合研究所資料 資料-6

東海地域西部 長期

產業技術総合研究所資料 資料-6b

 (月初めの補止値のキャックは、 解析プログラムの見かけ上のものである.
 松原174号井は静岡県による観測.
 松原174の水位計が長期的にドリフトしていることが 分かったので、2014年7月4日に新たに水位計を 設置して平行観測している.2015年3月5日に
 旧水位計を新しい水晶式水位計に更新した.
 新しい水晶式水位計においてもドリフトが発生しており 2016年5月10日と2016年11月4日に改良版に交換したが 解決していない.更に2016年11月16日に交換した.

伊豆半島東部 中期

√室山北

松原1740

OO 冷川南

コメント:*;雨量補正不十分.\$;保守.?;不明.
 松原174号井は静岡県による観測.
 松原174の水位計が長期的にドリフトしていることが分かったので、2014年7月4日に新たに水位計を設置して平行観測している.2015年3月5日に旧水位計を新しい水晶式水位計に更新した.

コメント:*;雨量補正不十分. \$;保守.?;不明. つくば2~4の水位が,例年春~秋に低下するのは, 周囲の揚水によると考えられる. つくば3の水位が2014年10月7~16日に異常なのは, データロガーの不良のためと考えられる.

コメント:トレンドは、グラフに示している期間で求めている.

コメント:トレンドは、グラフに示している期間で求めている.

紀伊半島~四国の地下水・歪観測結果(2017年5月~2017年7月) 東海・紀伊半島・四国における短期的スロースリップイベント(2017年5月~2017年7月)

産業技術総合研究所

産業技術総合研究所(産総研)では,東海・紀伊半島・四国の地下水等総合観測施設20点において, 歪・地 下水等の観測を行っている. 観測点配置図を第1図に示す.

第2~38図には、2017年2月~2017年7月における歪・傾斜・地下水位の1時間値の生データ(上線)と補正 値(下線)を示す. 歪・傾斜の図において「N120E」などと示してあるのは、歪・傾斜の測定方向が北から120度 東方向に回転していることを示す. 補正値は、潮汐解析プログラムBAYTAP-G[Tamura *et al.*, 1991]によって、 気圧・潮汐・不規則ノイズの影響を除去した結果である. 歪・傾斜のグラフについては、直線トレンド(1次トレンド) を除去している.

第39~44図には、産総研で決定した、エンベロープ相関法による深部低周波微動の震源の時空間分布および個数を示す. 微動の地域分けについては、第39図(RT0~3)、第41図(RK0~4)、第43図(RS0~6)に示している. 東海全体(RT0~3)で微動の発生回数が125個/日以上の日を含む期間(その期間については、回数が50個/日以上で活動開始、50個/日未満で活動終了と判断する)については、第2~8図および第39~40図に灰色網掛けにてその期間を主な活動地域(RT0~3)と共に表示した. 紀伊半島全体(RK0~4)で微動の発生回数が150個/日以上の日を含む期間(その期間については、回数が60個/日以上で活動開始、60個/日未満で活動終了と判断する)については、第8~21図および第41~42図に灰色網掛けにてその期間を主な活動地域(RK0~4)と共に表示した. 四国東部(RS4~6)の合計で微動の発生回数が150個/日以上の日を含む期間(その期間については、回数が60個/日以上で活動開始、60個/日未満で活動終了と判断する)については、第22~30図、第37~38図および第43~44図に灰色網掛けにてその期間を主な活動地域(RS4~6)と共に表示した. 四国西部(RS0~3)の合計で微動の発生回数が300個/日以上の日を含む期間(その期間については、回数が60個/日以上で活動開始、60個/日未満で活動終了と判断する)については、第27~38図および第43~44図に灰色網掛けにてその期間を主な活動地域(RS0~3)と共に表示した.

歪・傾斜・地下水の変化から短期的SSEの断層モデルを推定したイベントについて,その解析結果を報告する.断層モデル推定手法については,解析結果の後に示す.

2017年4月20日から5月8日頃に紀伊半島で微動活動が観測された(図45)。図46は微動活動周辺の産総研・気象庁・防災科研の観測点における歪・傾斜・地下水の観測結果である。これらの結果はBAYTAP-Gにより気圧応答成分,潮汐成分およびホワイトノイズ成分を取り除き,2017年4月6日から4月19日のデータを用いて 1次トレンドを除去したものである。

図47-49はそれぞれ図46[A]-[C]の変化を説明する短期的SSEの推定結果(順にMw 5.8, 5.8, 5.5)である。 今回の活動域付近における最近の短期的SSEの活動は、2015年11月3日から5日(Mw 5.4;図47-49の灰色 矩形1)、2016年7月27日から31日(Mw 6.0;同2)、2016年8月12日午後から16日(Mw 5.6;同3)、2016年12 月9日から17日(順にMw 5.8, 5.8;同4, 5)、2017年3月2日午後から7日(Mw 5.8;同6)、および2017年3月28 日から4月3日(Mw 5.8;同7)である。

2017年5月17日から19日頃に愛知県で微動活動が観測された(図50)。図51は微動活動周辺の産総研・気象庁・防災科研の観測点における歪・傾斜の観測結果である。これらの結果はBAYTAP-Gにより気圧応答成分、潮汐成分およびホワイトノイズ成分を取り除き、2017年5月9日から16日のデータを用いて1次トレンドを除去したものである。

図52は図51[A]の変化を説明する短期的SSEの推定結果(Mw 5.5)である。今回の活動域付近における最近の短期的SSEの活動は、2016年10月16日午後から20日(順にMw 5.3 5.7;図52の灰色矩形1,2)、2017年2月13日午後から17日(Mw 5.8;同3)、2017年3月28日から4月3日(Mw 5.8;同4)、および2017年5月4日から8日(Mw 5.5;同5)である。

2017年5月22日から26日頃に奈良県南部で微動活動が観測された(図53)。図54は微動活動周辺の産総

研・防災科研の観測点における歪・傾斜の観測結果である。これらの結果はBAYTAP-Gにより気圧応答成分, 潮汐成分およびホワイトノイズ成分を取り除き,2017年5月14日から21日のデータを用いて1次トレンドを除去し たものである。

図55は図54[A]の変化を説明する短期的SSEの推定結果(Mw 5.7)である。今回の活動域付近における最近の短期的SSEの活動は、2015年11月3日から5日(Mw 5.4;図55の灰色矩形1)、2016年8月12日午後から16日(Mw 5.6;同2)、2017年3月2日午後から7日(Mw 5.8;同3)、および2017年4月20日から30日(順にMw 5.8, 5.8;同4, 5)である。

2017年5月30日から6月2日頃に愛媛県西部で微動活動が観測された(図56)。図57は微動活動周辺の産総研・防災科研の観測点における歪・傾斜の観測結果である。これらの結果はBAYTAP-Gにより気圧応答成分、潮汐成分およびホワイトノイズ成分を取り除き、2017年5月20日から29日のデータを用いて1次トレンドを除去したものである。

図58は図57[A]の変化を説明する短期的SSEの推定結果(Mw 5.4)である。今回の活動域付近における最近の短期的SSEの活動は、2016年11月5日から7日(Mw 5.6;図58の灰色矩形1)、および2017年2月8日から3月11日(順にMw 5.5, 5.8, 5.5, 5.4, 5.5, 5.7;同2-7)である。

2017年6月26日から29日午前に長野県南部で微動活動が観測された(図59)。図60は微動活動周辺の産総研・気象庁・静岡県の観測点における歪の観測結果である。これらの結果はBAYTAP-Gにより気圧応答成分、潮汐成分およびホワイトノイズ成分を取り除き、2017年6月10日から25日のデータを用いて1次トレンドを除去したものである。

図61は図60[A]の変化を説明する短期的SSEの推定結果(Mw 5.6)である。今回の活動域付近における最近の短期的SSEの活動は、2016年10月16日午後から18日午前(Mw 5.3;図26の灰色矩形1)、2017年2月13日午後から17日(Mw 5.8;同2)、2017年3月28日から4月3日(Mw 5.8;同3)、および2017年5月17日から19日(Mw 5.5;同4)である。

2017年7月20日から24日にかけて、四国西部で微動活動が観測された(図62)。図63は微動活動周辺の産総研・防災科研の観測点における歪・傾斜・地下水の観測結果である。これらの結果はBAYTAP-Gにより気圧応答成分、潮汐成分およびホワイトノイズ成分を取り除き、2017年7月10日から19日までのデータを用いて1次トレンドを除去したものである。

図64-65は図63[A]-[B]の変化を説明する短期的SSEの推定結果(順にMw 5.8, 5.8)である。今回の活動域 付近における最近の短期的SSEの活動は、2016年11月5日から7日(Mw 5.6;図64-65の灰色矩形1)、2017 年2月22日午後から24日午前(Mw 5.8;同2)、2017年2月27日から28日(Mw 5.5;同3)、2017年3月2日午後 から11日(順にMw 5.4, 5.5, 5.5;同4-6)、および2017年5月30日から6月2日(Mw 5.4;同7)である。

2017年7月25日午後から27日午前にかけて、和歌山県中部で微動活動が観測された(図66)。図67は微動 活動周辺の産総研の観測点における歪の観測結果である。これらの結果はBAYTAP-Gにより気圧応答成分、 潮汐成分およびホワイトノイズ成分を取り除き、2017年7月15日から25日午前までのデータを用いて1次トレンド を除去したものである。

図68は図67[A]の変化を説明する短期的SSEの推定結果(Mw 5.5)である。今回の活動域付近における最近の短期的SSEの活動は、2015年11月3日から5日(Mw 5.4;図68の灰色矩形1)、2017年4月20日から30日(順にMw 5.8, 2.8;同2-3)、および2017年5月22日から26日(Mw 5.7;同4)である。

解析方法

短期的SSEの断層面推定には、それぞれの観測点の水平歪4成分(一部の気象庁観測点では8成分)・体積 歪・地下水圧・傾斜2成分の記録を用いる.地下水圧は、O1およびM2分潮の振幅をBAYTAP-G [Tamura et al., 1991]により計算し、GOTIC2 [Matsumoto et al., 2001]により推定した地球固体潮汐および海洋荷重潮 汐(O1およびM2分潮)との振幅比を用いて、体積歪に変換する.歪・地下水・傾斜ともに、観測波形から BAYTAP-Gにより、気圧応答成分、潮汐成分およびホワイトノイズ成分を取り除く.また、イベント直前の期間を 用いて1次トレンドも取り除く.微動活動も参考にして、数時間~半日単位で活動開始・終了時期を判断し、その 期間の変化量を短期的SSEによる変化量とする.その際、歪についてはMatsumoto et al. [2010]の手法で理 論潮汐歪を用いてキャリブレーションを行っている.

断層面の推定は、計算時間の短縮と、推定された結果の一意性を確認するために2段階で行う. 断層面推定 は板場ほか[2012]の手法を用いた.フィリピン海プレート境界面上[弘瀬ほか, 2007]に多数の断層面を仮定し てグリッドサーチにより推定する. 仮定した断層面上のすべりによって各観測点で期待される歪変化の計算には Okada [1992]のプログラムを用いる. 1段階目には、断層面のサイズは固定(幅・長さ共に20km)、断層面の位 置(0.1°間隔)およびすべり量(1~100mmの間で1mm間隔)のみ可変として広範囲で計算を行う. 1段階目の結 果を示す図では、それぞれの断層面において最適なすべり量を与えたときの、観測値と計算値(期待値)との残 差分布を示している. これにより、短期的SSEが生じている可能性が高い領域を絞り込むとともに、推定された 結果の任意性を確認することが出来る. 2段階目には、1段階目で絞り込んだ領域(=残差が小さい領域)付近 で、位置及びすべり量に加えて、断層面の長さを10~80km、幅を10~50km、それぞれ1km間隔で可変とし て計算を行なう. その結果、観測値との残差が最小となる断層面が1つ計算されるが、計算に使用している観測 点数が少ない場合や、断層面と観測点配置の関係によっては任意性が高くなるので注意が必要である. なお、 異種観測値を統合して解析するため、観測点ごとに残差をノイズレベルによって規格化している. ノイズレベル は、気圧応答、潮汐成分およびホワイトノイズ成分を取り除いた後(微動活動が活発な期間および周辺の日雨量 50mmを超える時期を除く)の24時間階差の2□とした.

深部低周波微動の検出・震源決定には,エンベロープ相関法を用いている.

謝辞

短期的SSEの断層モデル推定には,防災科研Hinet高感度加速度計(傾斜計)および気象庁,静岡県の多 成分歪計および体積歪計の記録を使用しました.気象庁の歪計データを解析する際には,気象庁によるキャリ ブレーション係数を使用しました.微動の解析には,防災科研Hinet,気象庁,東京大学,京都大学,名古屋 大学,高知大学,九州大学の地震波形記録を使用しました.低周波地震の震央位置表示には,気象庁の一元 化カタログを使用しました.ここに記して感謝します.

(北川有一・落唯史・板場智史・武田直人・松本則夫・木口努)

参考文献

- 弘瀬冬樹, 中島淳一, 長谷川昭 (2007), Double-Difference Tomography法による西南日本の3次元地震波 速度構造およびフィリピン海プレートの形状の推定, 地震2, 60, 1-20.
- 板場智史, 松本則夫, 北川有一, 小泉尚嗣, 松澤孝紀, 歪・傾斜・地下水統合解析による短期的スロースリップイベントのモニタリング, 日本地球惑星連合2012年大会, 千葉, 5月, 2012.
- Matsumoto, K., T. Sato, T. Takanezawa, and M. Ooe, GOTIC2: A Program for Computation of Oceanic Tidal Loading Effect, *J. Geod. Soc. Japan*, **47**, 243-248, 2001.
- Matsumoto, N., O. Kamigaichi, Y. Kitagawa, S. Itaba, and N. Koizumi (2010), In-situ Calibration of Borehole Strainmeter Using Green's Functions for Surface Point Load at a Depth of Deployment, *Eos, Trans. AGU*, Abstract G11A-0626.

Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, *Bull. Seismol. Soc. Am.*, **82**, 1018-1040.

Tamura, Y., T. Sato, M. Ooe and M. Ishiguro (1991), A procedure for tidal analysis with a Bayesian information criterion, *Geophys. J. Int.*, **104**, 507-516.

第1図: 地下水位観測点の分布図(●・■・▲)。●はデジタル方式の石井式歪計・傾斜計を している新規観測点、■はGladwin式歪計・ミツトヨ式傾斜計を併設している新規観測点、▲はア ナログ方式の石井式歪計を併設している既存の観測点。灰色の領域は短期的SSE及び深部低周波微 動が定常的に発生していると考えられる地域。

第1表:産総研観測点の新名称。平成23年1月17日から「市町村名」+「町・字名等」を基本とする名称に変更している。なお、3文字コードは変更していない。

3文字コード (変更無し)	旧名称		新名称	新名称 ふりがな	市区町村	区
TYS	豊田下山	\rightarrow	豊田神殿	とよたかんどの	愛知県豊田市	2,3
NSZ	西尾善明	変更無し	西尾善明	にしおぜんみょう	愛知県西尾市	4,5
TYE	豊橋東	\rightarrow	豊橋多米	とよはしため	愛知県豊橋市	6,7
HTS	秦荘	\rightarrow	愛荘香之庄	あいしょうこのしょう	滋賀県愛知郡愛荘町	8
ANO	安濃	\rightarrow	津安濃	つあのう	三重県津市	9,10
ITA	飯高赤桶	\rightarrow	松阪飯高	まつさかいいたか	三重県松阪市	11,12
MYM	海山	\rightarrow	紀北海山	きほくみやま	三重県北牟婁郡紀北町	13,14
ICU	井内浦	\rightarrow	熊野磯崎	くまのいそざき	三重県熊野市	15,16
HGM	本宮三越	\rightarrow	田辺本宮	たなべほんぐう	和歌山県田辺市	17,18
KST	串本津荷	変更無し	串本津荷	くしもとつが	和歌山県東牟婁郡串本町	19,20
NGR	根来	\rightarrow	岩出東坂本	いわでひがしさかもと	和歌山県岩出市	21
BND	板東	\rightarrow	鳴門大麻	なるとおおあさ	徳島県鳴門市	22
ANK	阿南桑野	変更無し	阿南桑野	あなんくわの	徳島県阿南市	23,24
MUR	室戸	\rightarrow	室戸岬	むろとみさき	高知県室戸市	25,26
KOC	高知市	\rightarrow	高知五台山	こうちごだいさん	高知県高知市	27,28
SSK	須崎	\rightarrow	須崎大谷	すさきおおたに	高知県須崎市	29,30
TSS	土佐清水	\rightarrow	土佐清水松尾	とさしみずまつお	高知県土佐清水市	31,32
UWA	宇和	\rightarrow	西予宇和	せいようわ	愛媛県西予市	33,34
MAT	松山	\rightarrow	松山南江戸	まつやまみなみえど	愛媛県松山市	35,36
NHK	新居浜黒島	変更無し	新居浜黒島	にいはまくろしま	愛媛県新居浜市	37,38

第3図 Tilt and groundwater level at TYS(時間値) (2017/02/01 00:00 - 2017/08/01 00:00(JST))

上: 1次トレンドを除去 下: BAYTAP-Gにより潮汐・気圧応答・ノイズ成分を除去後、1次トレンドも除去

第16図 Tilt and groundwater level at ICU (時間値) (2017/02/01 00:00 - 2017/08/01 00:00 (JST)) RK3 RK2 RK4 ICU atmospheric pressure, rainfall 1030 100 W [hPa] [[mm/h] 980 0 ICU1 tilt-X (+:N141E up) 5. Ox 10-6 [rad] **₽**c ₽ ICU1 tilt-Y (+:N231E up) **₽**_D 05 07 06 A:2017/02/08 四国沖の地震 M4.2 R:2017/05/27 福井県沖の地震 M5.1 C:2017/06/14 高知県中部の地震 M4. D:2017/06/25 長野県南部の地震 M5.6

下: BAYTAP-Gにより潮汐・気圧応答・ノイズ成分を除去後、tiltは1次トレンドも除去

下: BAYTAP-Gにより潮汐・気圧応答・ノイズ成分を除去後、tiltは1次トレンドも除去

100

[[mm/h]

0

07 下: BAYTAP-Gにより潮汐・気圧応答・ノイズ成分を除去後、tiltは1次トレンドも除去

NHK3 : Screen depth = 25.6-36.5 [GL-m] 上: tiltは1次トレンドを除去

下: BAYTAP-GIにより潮汐・気圧応答・ノイズ成分を除去後、tiltは1次トレンドも除去

第39図 東海地方における深部低周波微動の時空間分布図(産総研による決定)

第41図 紀伊半島における深部低周波微動の時空間分布図(産総研による決定)

第43図 四国地方における深部低周波微動の時空間分布図(産総研による決定)

- 2017/4/6 0:00-5/14 0:00の紀伊半島における深部低周波微動の時空間分布 図45 図。エンベロープ相関法により決定。 (観測点名) TYS : 豊田神殿,NSZ : 西尾善明,ANO : 津安濃,ITA: 松阪飯高,
- MYM :紀北海山,ICU:熊野磯崎,HGM :田辺本宮,KST :串本津荷

[A] 2017/4/20-25AM

- 図47 2017/4/20-25AM の歪・傾斜・地下水変化(図46[A])を説明する断層モデル。
 - (a) プレート境界面に沿って分布させた20x20km(大きさ固定)の矩形断層面に対して、おのおのの断層面で最適なすべり量を選んだときの残差の総和をその断層面の位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
 - (b1) (a)の断層面付近をグリッドサーチして推定した断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。 1:2015/11/3-5 (Ww 5.4), 2:2016/7/27-31 (Ww 6.0), 3:2016/8/12PM-16 (Ww 5.6), 4:2016/12/9-11 (Ww 5.8),
 - 5: 2016/12/15-17 (Mw 5.8), 6: 2017/3/2PM-7 (Mw 5.8), 7: 2017/3/28-4/3 (Mw 5.8)
 - (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。
 - (b3) 体積歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

[B] 2017/4/25PM-30

図48 2017/4/25PM-30の歪・傾斜・地下水変化(図46[B])を説明する断層モデル。

(a) プレート境界面に沿って分布させた20x20km(大きさ固定)の矩形断層面に対して、おのおのの断層面で最適なすべり量を選んだときの残差の総和をその断層面の位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。

(b1)(a)の断層面付近をグリッドサーチして推定した断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。

1: 2015/11/3-5 (Mw 5.4), 2: 2016/7/27-31 (Mw 6.0), 3: 2016/8/12PM-16 (Mw 5.6), 4: 2016/12/9-11 (Mw 5.8), 5: 2016/12/15-17 (Mw 5.8), 6: 2017/3/2PM-7 (Mw 5.8), 7: 2017/3/28-4/3 (Mw 5.8), A: 2017/4/20-25AN (Mw 5.8)

- (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。
- (b3) 体積歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

[C] 2017/5/4-8

- 図49 2017/5/4-8 の歪・傾斜・地下水変化(図46[C])を説明する断層モデル。
 - (a) プレート境界面に沿って分布させた20x20km(大きさ固定)の矩形断層面に対して、おのおのの断層面で最適なすべり量を選んだときの残差の総和をその断層面の位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
 - (b1) (a)の断層面付近をグリッドサーチして推定した断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。 1:2015/11/3-5 (Ww 5.4), 2:2016/7/27-31 (Ww 6.0), 3:2016/8/12PM-16 (Ww 5.6), 4:2016/12/9-11 (Ww 5.8),
 - 5: 2016/12/15-17 (Mw 5.8), 6: 2017/3/2PM-7 (Mw 5.8), 7: 2017/3/28-4/3 (Mw 5.8), A: 2017/4/20-25AM (Mw 5.8), B: 2017/4/25PM-30 (Mw 5.8)
 - (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。
 - (b3) 体積歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

図50 2017/5/9 0:00-5/22 0:00の東海地方における深部低周波微動の時空間分布 図。エンベロープ相関法により決定。 (観測点名) TYS: 豊田神殿,NSZ: 西尾善明,ANO: 津安濃,ITA: 松阪飯高

図51 東海地方における歪・傾斜観測結果(2017/5/9 0:00 - 2017/5/22 0:00 (JST))

- 図52 2017/5/17-19 の歪・傾斜変化(図51[A])を説明する断層モデル。
 - (a) プレート境界面に沿って分布させた20x20km(大きさ固定)の矩形断層面に対して、おのおのの断層面で最適なすべり量を選んだときの残差の総和をその断層面の位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
 - (b1) (a)の断層面付近をグリッドサーチして推定した断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。
 - $1:\ 2016/10/16\text{PM-18AM} \ (\text{Mw}\ 5.3), \ 2:\ 2016/10/18\text{PM-20} \ (\text{Mw}\ 5.7), \ 3:\ 2017/2/13\text{PM-17} \ (\text{Mw}\ 5.8), \ 4:\ 2017/3/28\text{-}4/3 \ (\text{Mw}\ 5.8), \ 5:\ 2017/5/4\text{-}8 \ (\text{Mw}\ 5.5)$
 - (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。
 - (b3) 体積歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

図53 2017/5/14 0:00-5/31 0:00の紀伊半島における低周波イベントの時空間分布 図。(気象庁カタログを使用)

図54 紀伊半島における歪・傾斜観測結果(2017/5/14 0:00 - 2017/5/31 0:00 (JST))

[A] 2017/5/22-26

- 図55 2017/5/22-26 の歪・傾斜変化(図54 [A])を説明する断層モデル。
 - (a) プレート境界面に沿って分布させた20x20km(大きさ固定)の矩形断層面に対して、おのおのの断層面で最適なすべり量を選んだときの残差の総和をその断層面の位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
 - (b1) (a)の断層面付近をグリッドサーチして推定した断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。 1: 2015/11/3-5 (Mw 5.4), 2: 2016/8/12PM-16 (Mw 5.6), 3: 2017/3/2PM-7 (Mw 5.8),
 - $4: \ 2017/4/20 25 \text{AM} \ (\text{Mw} \ 5. \ 8) \,, \quad 5: \ 2017/4/25 \text{PM} 30 \ (\text{Mw} \ 5. \ 8) \,$
 - (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

図56 2017/5/20 0:00-6/5 0:00の四国西部における深部低周波微動の時空間分布 図。エンベロープ相関法により決定。 (観測点名) NHK : 新居浜黒島,KOC : 高知五台山,SSK : 須崎大谷,MAT : 松山南江戸, TSS : 土佐清水松尾,UWA : 西予宇和

図58 2017/5/30-6/2 の歪・傾斜変化(図57 [A])を説明する断層モデル。

- (a) プレート境界面に沿って分布させた20x20km(大きさ固定)の矩形断層面に対して、おのおのの断層面で最適なすべり量を選んだときの残差の総和をその断層面の位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
- (b1) (a)の断層面付近をグリッドサーチして推定した断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。
- (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

図59 2017/6/10 0:00-7/2 0:00の東海地方における深部低周波微動の時空間分布 図。エンベロープ相関法により決定。 (観測点名) TYS:豊田神殿,NSZ:西尾善明

図60 東海地方における歪観測結果(2017/6/10 0:00 - 2017/7/2 0:00 (JST))

[A] 2017/6/26-29AM

- 図61 2017 /6/26-29AM の歪変化(図60 [A])を説明する断層モデル。
 - (a) プレート境界面に沿って分布させた20x20km (大きさ固定)の矩形断層面に対して、おのおのの断層面で最適なすべり量を選んだときの残差の総和をその断層面の位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
 - (b1)(a)の断層面付近をグリッドサーチして推定した断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。 1:2016/10/16PM -18AM (M w 5.3), 2:2017/2/13PM -17 (M w 5.8), 3:2017 /3/28-4/3 M w 5.8), 4:2017/5/17-19 (W w 5.5)
 - (b2) 主歪の観測値と b1) に示した断層モデルから求めた計算値との比較。

図62 2017/07/10 0:00 - 08/01 0:00 の四国西部~中部における深部低周波微動の時空間分 布図。エンベロープ相関法により決定。

(観測点名) NHK: 新居浜黒島, MAT: 松山南江戸, KOC: 高知五台山, SSK: 須崎大谷, UWA: 西予宇和, TSS: 土佐清水松尾

図63 四国西部における歪・傾斜・地下水観測結果(2017/07/10 00:00 - 2017/08/01 00:00 (JST))

図64 2017/07/20-21の歪・傾斜・地下水変化(図63[A])を説明する断層モデル。

(a) プレート境界面に沿って分布させた20×20km(大きさ固定)の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
(b1)(a)の断層面付近でのグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。

1: 2016/11/05-07 (Mw5.6), 2: 2017/02/22PM-24AM (Mw5.8), 3: 2017/02/27-28 (Mw5.5), 4: 2017/03/02PM-03AM (Mw5.4), 5: 2017/03/03PM-06 (Mw5.5), 6: 2017/03/07-11 (Mw5.5), 7: 2017/05/30-06/02 (Mw5.4)

(b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

(b3) 体積歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。地下水圧は体積歪に変換して計算している。

[B] 2017/07/22-24 (a) 断層の大きさを固定した場合の断層モデルと残差分布

図65 2017/07/22-24の歪・傾斜・地下水変化(図63[B])を説明する断層モデル。

(a) プレート境界面に沿って分布させた20×20km(大きさ固定)の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
 (b1)(a)の断層面付近でのグリッドサーチにより推定された断層面(赤色矩形)と断層バラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。

1: 2016/11/05-07 (Mw5.6), 2: 2017/02/22PM-24AM (Mw5.8), 3: 2017/02/27-28 (Mw5.5), 4: 2017/03/02PM-03AM (Mw5.4), 5: 2017/03/03PM-06 (Mw5.5), 6: 2017/03/07-11 (Mw5.5), 7: 2017/05/30-06/02 (Mw5.4), A: 2017/07/20-21 (Mw5.8) (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

(b3) 体積歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。地下水圧は体積歪に変換して計算している。

図66 2017/07/15 0:00 - 08/01 0:00 の紀伊半島周辺における深部低周波微動の時空間分布 図。エンベロープ相関法により決定。 (観測点名) ITA: 松阪飯高, MYM: 紀北海山, ICU: 熊野磯崎, HGM: 田辺本宮, KST: 串本津荷

図67 紀伊半島における歪観測結果(2017/07/15 00:00 - 2017/08/01 00:00 (JST))

[A] 2017/07/25PM-27AM

(a) 断層の大きさを固定した場合の断層モデルと残差分布

図68 2017/07/25午後-27午前の歪変化(図67[A])を説明する断層モデル。

(a) プレート境界面に沿って分布させた20×20km(大きさ固定)の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
 (b1) 微動発生領域においてグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。

1: 2015/11/03-05 (Mw5.4), 2: 2017/04/20-25AM (Mw5.8), 3: 2017/04/25PM-30 (Mw5.8), 4: 2017/05/22-26 (Mw5.7) (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

近畿地域の地下水位・歪観測結果(2017年5月~2017年7月)

産業技術総合研究所

2017年5月~2017年7月の近畿地域におけるテレメータによる地下水位およびボアホール型歪計による 地殻歪(水平3成分)の観測結果を報告する。観測点は12点(観測井は14井戸)である(第1図)。同 期間中に第1図で示す範囲内で、M4以上で深さ30kmより浅い地震は無かった。

第2~5図には、2017年2月~2017年7月における地下水位1時間値の生データ(上線)と補正値(下線)を示す。ボアホール型歪計が併設してある観測点については、同期間における歪3成分の観測値(生データ)も示す。歪の図において「N120」などと示してあるのは、歪の方向が北から120度東方向に回転していることを示す。hks-i以外の水位補正値(corrected)は、潮汐解析プログラムBAYTAP-Gによって、気圧・潮汐・不規則ノイズの影響を除去した結果である。hks-iの水位補正値(corrected)は、時系列解析プログラムMRARによって、気圧・潮汐・降雨の影響を除去した結果である。なお, hno・sed・tkz・ysk・yst1・yst2およびyst3は地上より上に水位が来るので,井戸口を密閉して水圧を測定し,それを水位に換算している。hksではケーシングを二重にして,外管で浅い方の地下水位(hks-o)を,内管で深い方の地下水位(hks-i)をそれぞれ測定していたが,今はhks-iのみ測定を行なっている。hks-iでは2016年5月11日にパッカーで井戸を密閉した。

hrbの地下水位の短期的な上下変化は口元から雨が流れ込んだためと思われる(第3図)。sedの地下水位の2017年7月14日から19日までの欠測は通信機器の故障のため(第3図)。

これらのデータ(グラフ等)は、https://www.gsj.jp/wellweb/で公開されている。 (北川有一・松本則夫・佐藤努・板場智史・落唯史・木口努)

Fig.1 観測点分布図(●・■)。●は地下水のみの観測点で,■はボアホール型歪計を併設している観測点。

Fig.3

Fig.4

Fig.5

岐阜県東部の活断層周辺における地殻活動観測結果 (2017年5月~2017年7月)

Observation of Tectonic Activities around the Active Faults in Eastern Gifu Region (May, 2017~July, 2017)

産業技術総合研究所

Geological Survey of Japan, AIST

1. 観測概要

産業技術総合研究所は跡津川断層沿いの宮川において地殻活動総合観測設備を設置している(第1 図). 宮川は深度約300mの坑井を掘削し, 坑底に3成分ひずみ計・高感度地震計(1Hz,3成分速度 計)を設置. 深度256.78~267.66mの滞水層での地下水位と体積温度計の計測も行なっている.

2. 観測結果概要

宮川(第2図、第3図) :水位, 歪計は潮汐変化を書く. 降雨の影響が大きい. 2017年6月25日長野
 県南部の地震 Mw5.2 時に歪計2成分で6~7E-9程度の歪ステップと地震後30分で
 約3mmの水位低下が観測された.7月18日アリューシャン列島の地震 Mw7.8では歪
 計のステップ及び地下水位の変化は見られない.

(木口努・今西和俊・松本則夫)

第1図 跡津川断層沿いの宮 川における地殻活動総合観測 点位置

Fig.1 Location map of the observation borehole at Miyagawa along the Atotsugawa fault.

神奈川県西部地域の地下水位観測(2017年5月~2017年7月)

神奈川県温泉地学研究所 産業技術総合研究所

1. はじめに

神奈川県温泉地学研究所では、神奈川県西部地震の予知研究の一環として、第1図・第1表に示した 6ヶ所に地下水位観測施設を整備し地下水位の連続観測を行っている。2017年5月~2017年7月の期 間に重点を置いた観測結果を報告する。

2. 観測

第1図の6ヶ所の観測点では、地下水位の他,気圧・降水量が1秒サンプリングで観測され、神奈川県 温泉地学研究所にリアルタイム送信されている。通常の解析には、これをもとに作成した1分値や1時間 値を用いている。

結果 3.

138.9

結果を第2図(原則1時間値、真鶴・二宮のみ24時間平均値)と第3図(原則0時の瞬時値)に示す。第1 図の範囲内(北緯35~35.5度、東経138.9~139.4度)では、2017年5月~2017年7月に深さ30km以浅 でM4以上の地震はない。同期間に観測点周辺で震度2以上の揺れをもたらした地震を表2に示す。 この期間では、6月25日の長野県南部の地震(M5.6)、7月20日の福島県沖の地震(M5.8)の際に、大井 観測点において、それぞれ5cm程度、3cm程度のコサイスミックと見られる水位の上昇が観測された。

139.4 35.5 KANAGAWA PREFECTURE 参考論文 6 SAGAMI BAY SHIZUOKA PREFECTURE

(板寺一洋·原田昌武·松本則夫)

横山尚秀・他, 1995, 神奈川県西部地震予知のための地下水位観測 施設と地下水位解析,温泉地学研究所報告,26,21-36.

表1 観測点の情報

毎 別占	標高	井戸深さ	スクリーン	センサー
宽则吊	(m)	(m)	深さ (m)	深度 (m)
大井	47	300	270-300	15
小田原	22	300	270-300	15
南足柄	143	150	120-150	32
湯本	67	300	250-300	20
真鶴	40	300	250-300	43
二宮	51	500	450-500	13

第1図 地下水観測点の分布 (●)^{10km}

●1:大井,●2:小田原,●3:南足柄,●4:湯本,

●5:真鶴,●6:二宮.

35.0

No.	地震発生日時	震央地名	М	深さ	観測点最大震度
1	2017/5/3 22:19	静岡県東部	M2.6	0km	2
2	2017/5/28 15:18	埼玉県南部	M4.0	123km	2
3	2017/7/20 9:11	福島県沖	M5.8	46km	2

表2 観測点に震度2以上の揺れを与えたと推定される地震

神奈川県温泉地学研究所·産業技術総合研究所 資料

神奈川県西部地域 長期

神奈川県温泉地学研究所·産業技術総合研究所 資料

鳥取県・岡山県・島根県における温泉水・地下水変化(201年2月~2017年7月)

鳥取大学工学部・産業技術総合研究所

1. はじめに

鳥取県・島根県・岡山県は温泉が多く、その所在も地震活動と関連していると考えられる。この地方の特徴を生かし、国際ロータリー第2690地区、鳥取県西部地震義援金事業の一環として、温泉水観測網を山陰地方(鳥取県西部地震周辺及び鳥取県東部・岡山県北部地域)に整備し、地震活動と温泉水変化との関連を調べている。

2. 観測

現在観測を行っている地点は7点である(第1図)。観測方法としては、温泉井に水位計や温度計(分解能:1/100℃)を設置し、測定値をデータロガーに収録、定期的に現地集録して、鳥取大学工学部でデータ処理し、温泉データと地震データ等との比較により関係を調べる。解析の結果は、速報として観測センターのホームページで公開している(http://www.geosd.jp/onsen_k/)。

水位・水温の測定インターバルは10秒で1分間の平均値を記録している。温度センサーは,事前の温 度検層により,湯谷温泉等を除いて,最も温度変化の大きい位置(深さ)に設置している(鳥取温泉 175m,岩井温泉150m,三朝温泉25m,奥津温泉130m等)。なお,湯谷(第1図の6)では2012年度から ,その他の点では2016年6月からデータをテレメーター集録から現地集録に切り替えている。

3. 結果(第2~4図)

結果(原則として1時間値)を第2~4図に示す。気圧や気温の記録は、鳥取や松江の気象台の測定 値を用いている。吉岡温泉の水温は48~49℃と42~44℃を行き来する時期と41~42℃で落ち着く時期 を繰り返している。岩井温泉や鷺の湯温泉の水位は降雨によって上昇することがある。鳥取温泉の水 位は2016/10/21以降、上昇して振り切れたままであったため、4/28に水位計の設置深度を変更(以前 より2.07m引き上げた位置で固定)して測定を再開した。三朝温泉の水温は4/17-5/1と6/1-8/4の間、 計測のトラブルにより欠測である。湯谷温泉の水温は6/7-8/4の間、計測のトラブルにより欠測であ る。鷺の湯温泉の2/14の水位・水温変化は大雪の影響と思われるが、詳細は不明である。

2017年2月~2017年7月の間に, 第1図の範囲内(北緯34.8~35.8度, 東経132.4~134.6度)で深さ 30km以浅でM4以上の地震は無かった。M4未満で観測点周辺に震度2以上の揺れをもたらした地震は, 2017年2月に1回(震度3が1回), 3月に1回(震度2が1回), 4月に2回(震度3が1回, 震度2が1回), 7月に1回(震度3が1回)発生した。第1図の範囲外では, 2017年5月27日の福井県沖の地震(M5.1)が観測点周辺で震度2の揺れをもたらした。以上の地震に関連した明瞭な変化は見られなかっ た。

(野口竜也・香川敬生・西田良平・北川有一)

第1図
鳥取気象台(□)と松江気象台(△)および温泉水・地下水観測点(●)の分布。
1:鳥取温泉,2:岩井温泉,3:三朝温泉,4:奥津温泉,5:鷺の湯温泉,6:湯谷温泉,7:吉岡温泉

