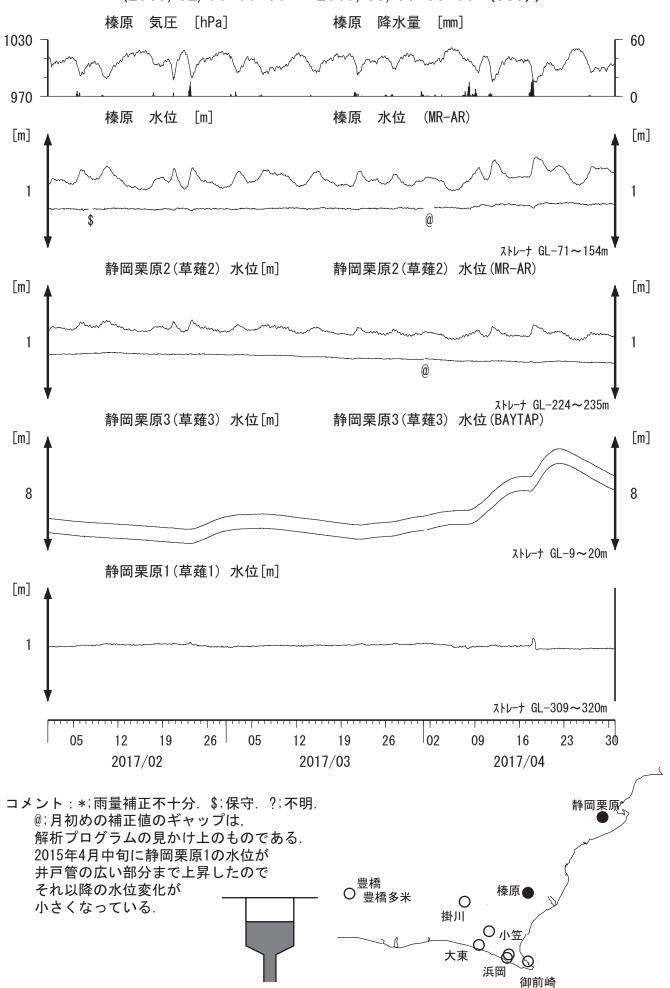
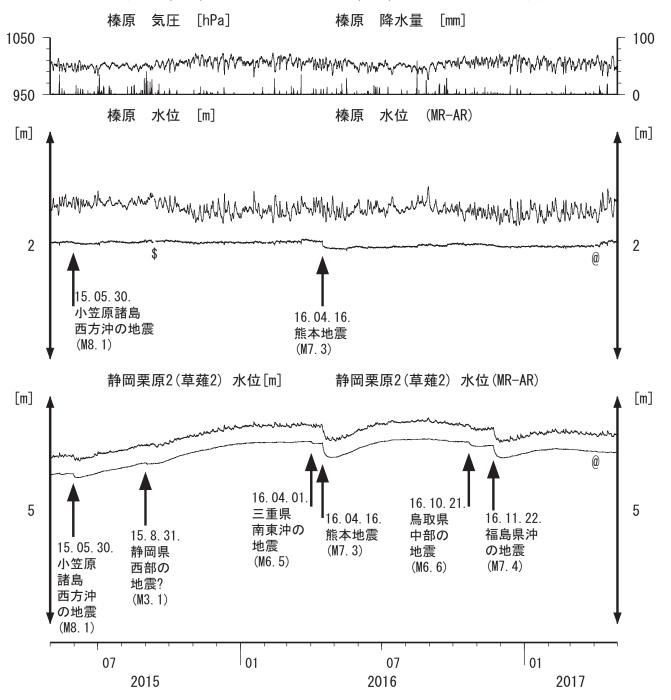
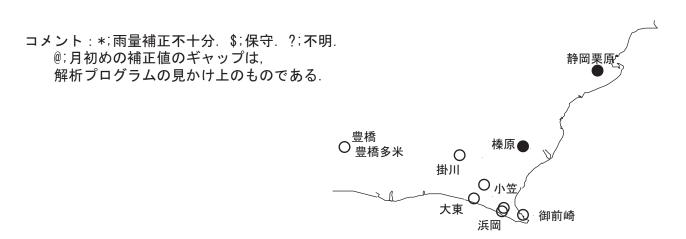

東海・伊豆地域等の地下水観測結果

【資料目次】

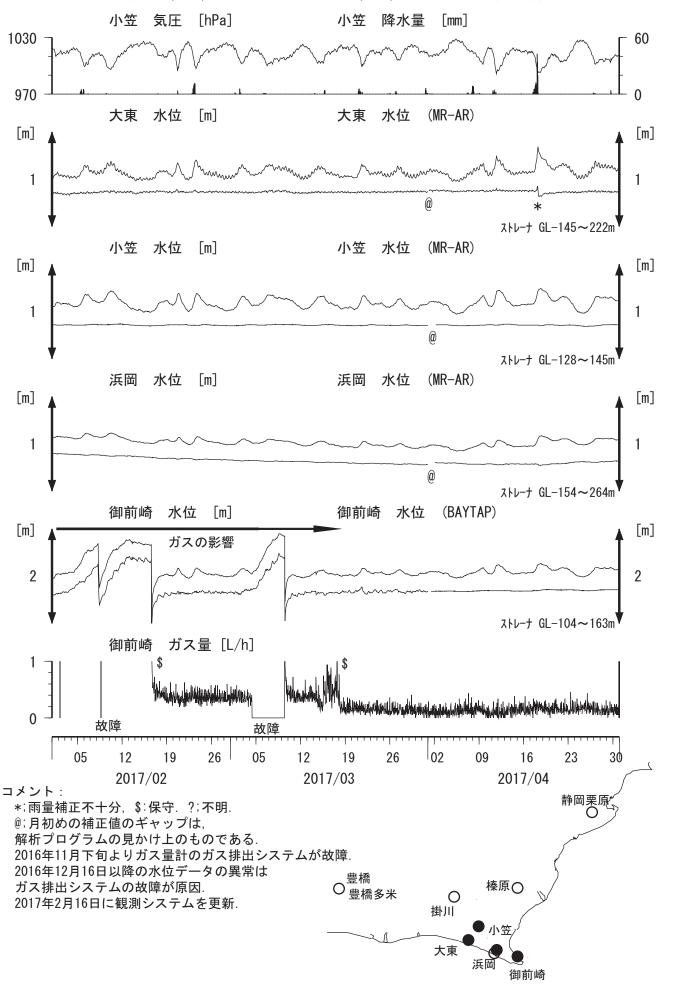

表紙

- 1. 東海地域中部 [榛原,静岡栗原(草薙)] 地下水;中期
- 2. 東海地域中部 [榛原, 静岡栗原(草薙)] 地下水;長期
- 3. 東海地域南部 [大東,小笠,浜岡,御前崎] 地下水;中期
- 4. 東海地域南部 [大東,小笠,浜岡,御前崎] 地下水;長期
- 4-b. 東海地域南部 [浜岡] 地下水·沈下;長期
- 4-c. 東海地域南部 [掛川] 地下水·沈下;長期
- 5. 東海地域西部[豊橋,豊橋多米(豊橋東)]地下水・歪・傾斜;中期
- 5-b. 東海地域西部[豊橋多米(豊橋東)] 歪等;中期
- 6. 東海地域西部 [豊橋·豊橋多米(豊橋東)] 地下水·歪·傾斜;長期
- 6-b. 東海地域西部 [豊橋多米(豊橋東)] 歪等;長期
- 7. 伊豆半島東部 [松原174, 大室山北, 冷川南] 地下水; 中期
- 8. 伊豆半島東部 [松原174, 大室山北, 冷川南] 地下水; 長期
- 9. 関東地域[つくば1]地下水;中期
- 10. 関東地域[つくば1]地下水;長期

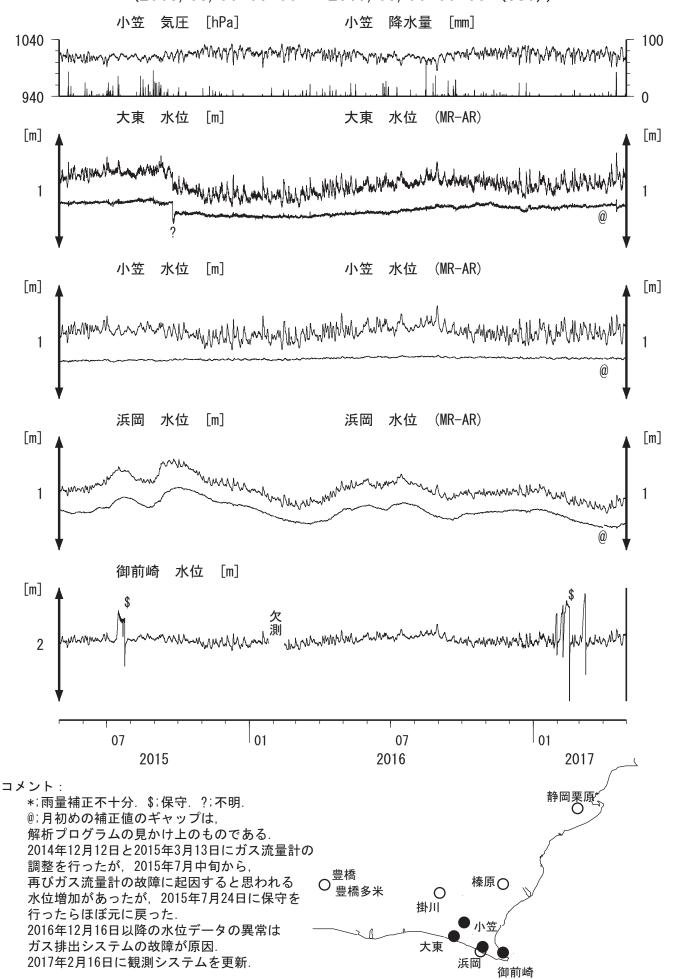

別紙

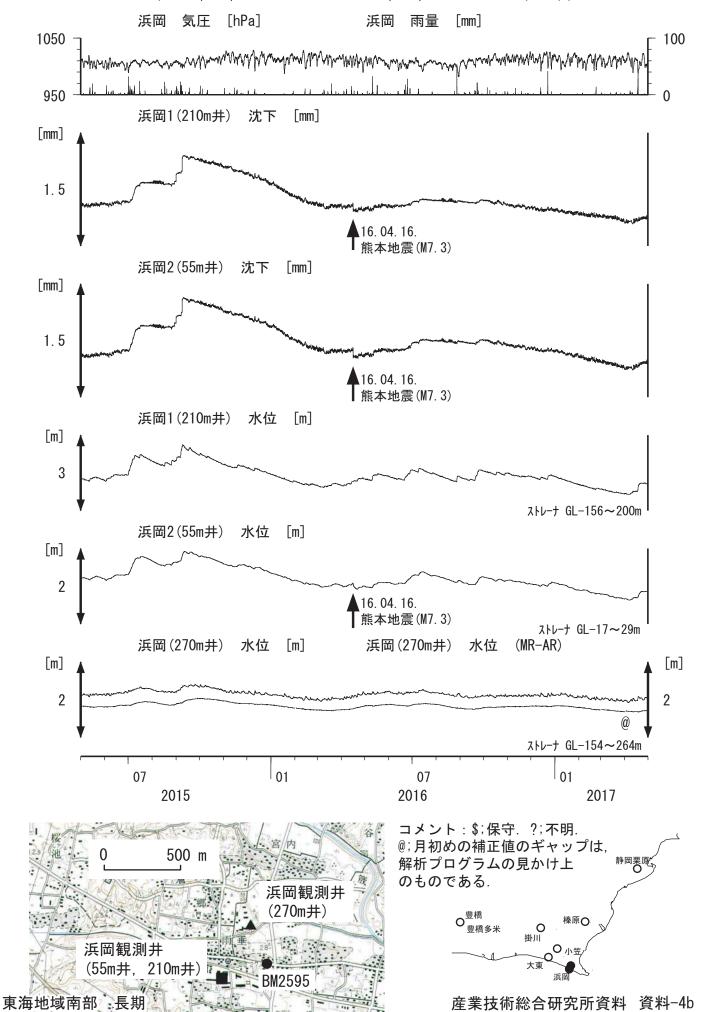

・榛原・浜岡の降雨グラフ

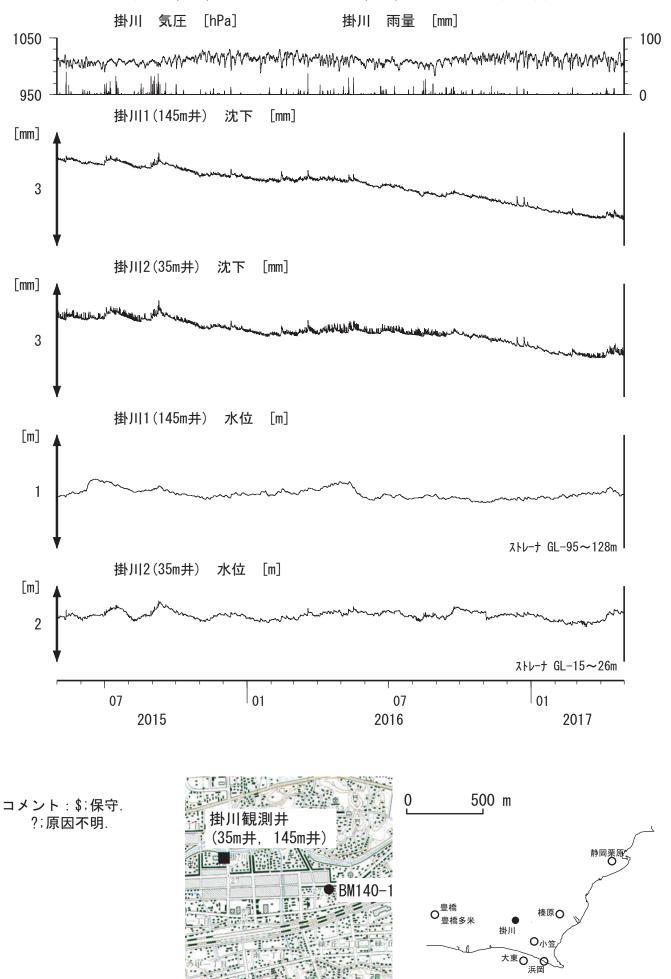
東海地域中部(榛原·草薙)中期 (時間値) (2017/02/01 00:00 - 2017/05/01 00:00 (JST))



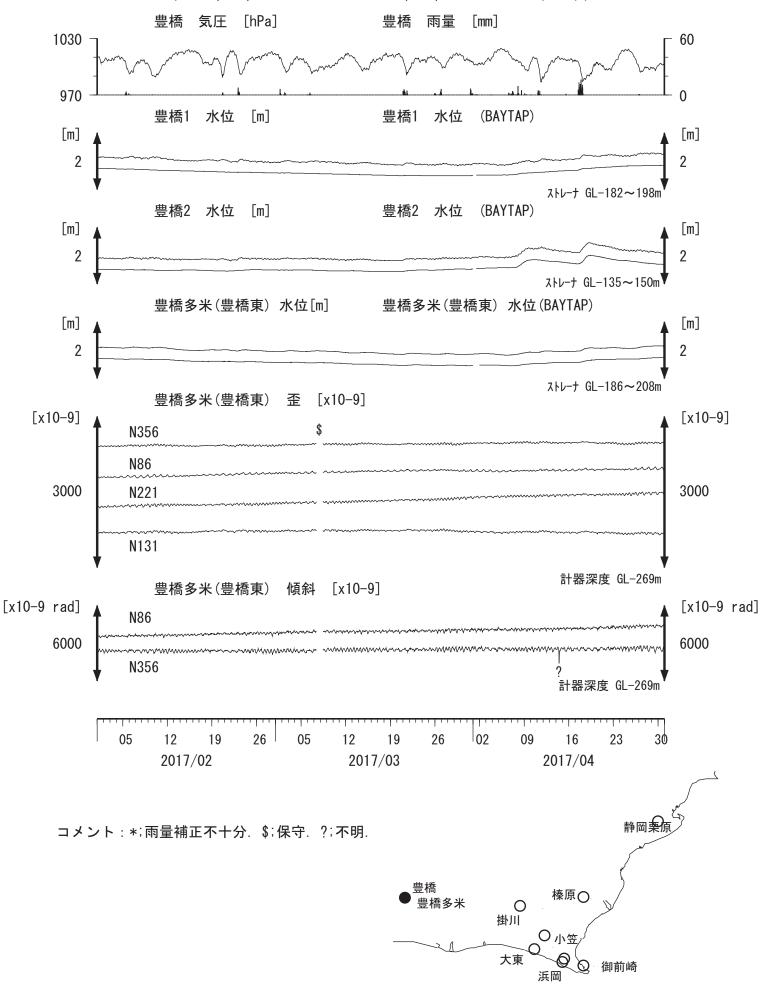
東海地域中部(榛原·草薙)長期 (時間値) (2015/05/01 00:00 - 2017/05/01 00:00 (JST))

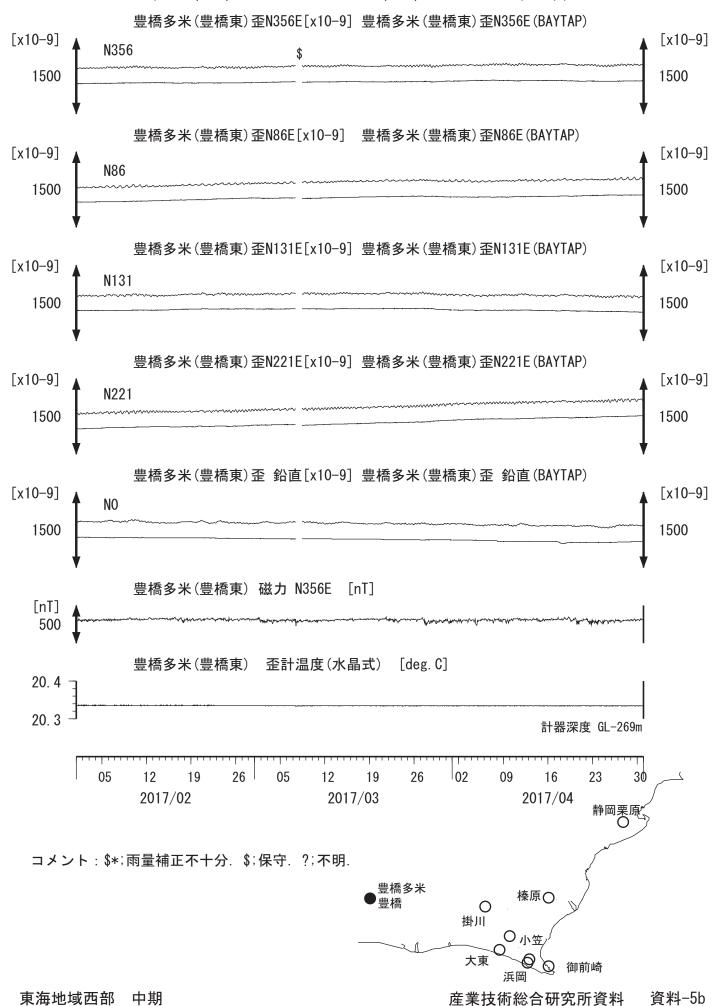



東海地域南部 地下水観測結果 中期 (時間値) (2017/02/01 00:00 - 2017/05/01 00:00 (JST))

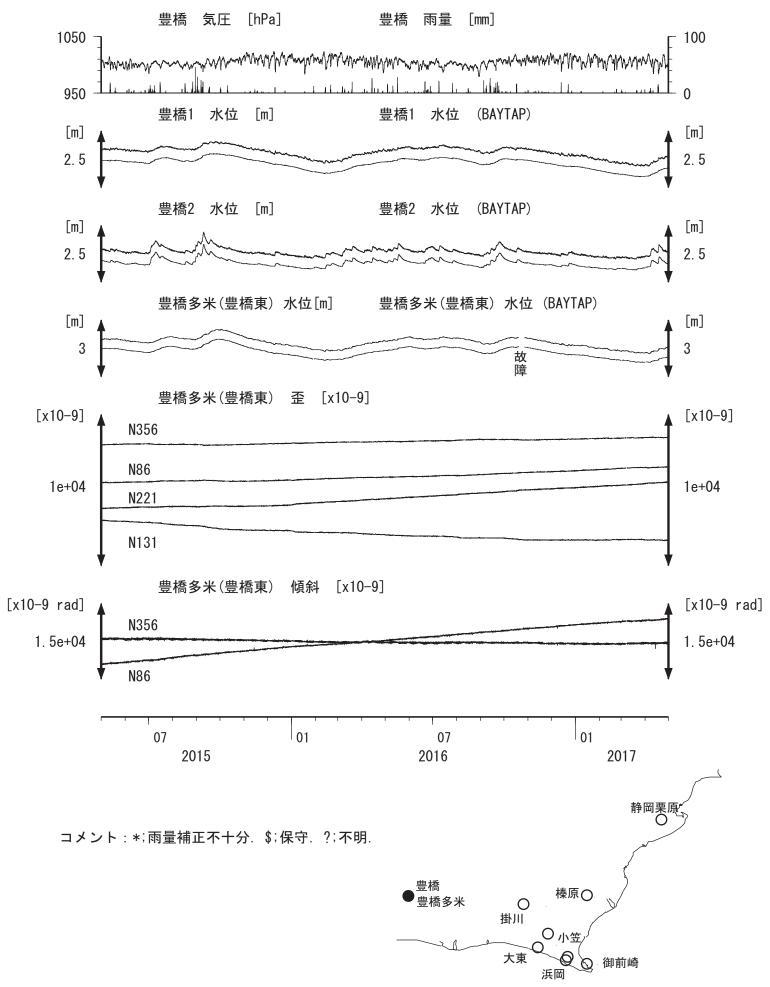

東海地域南部 地下水観測結果 長期 (時間値) (2015/05/01 00:00 - 2017/05/01 00:00 (JST))

浜岡沈下·水位 (時間値) (2015/05/01 00:00 - 2017/05/01 00:00 (JST))

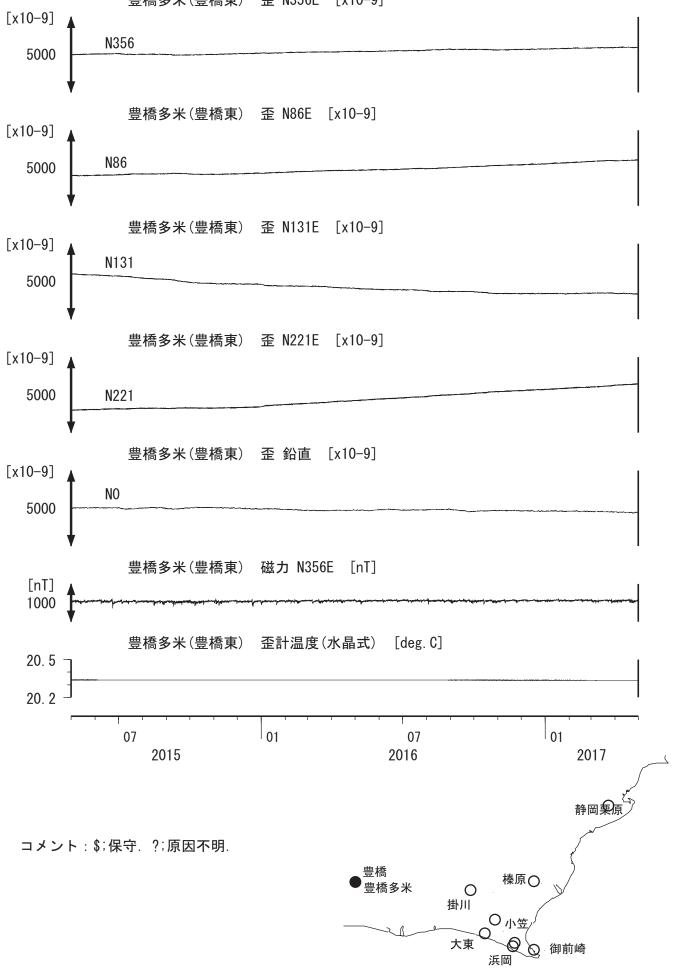

掛川沈下・水位 (時間値) (2015/05/01 00:00 - 2017/05/01 00:00 (JST))


東海地域南部 長期

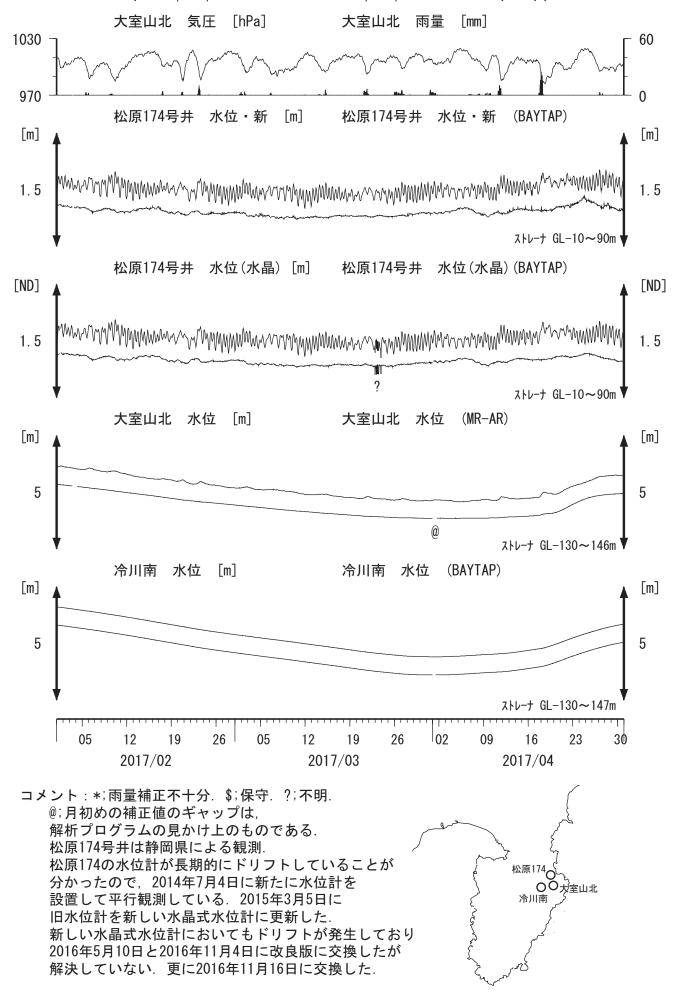
産業技術総合研究所資料 資料-4c


東海地域西部(豊橋・豊橋多米)中期 (時間値) (2017/02/01 00:00 - 2017/05/01 00:00 (JST))

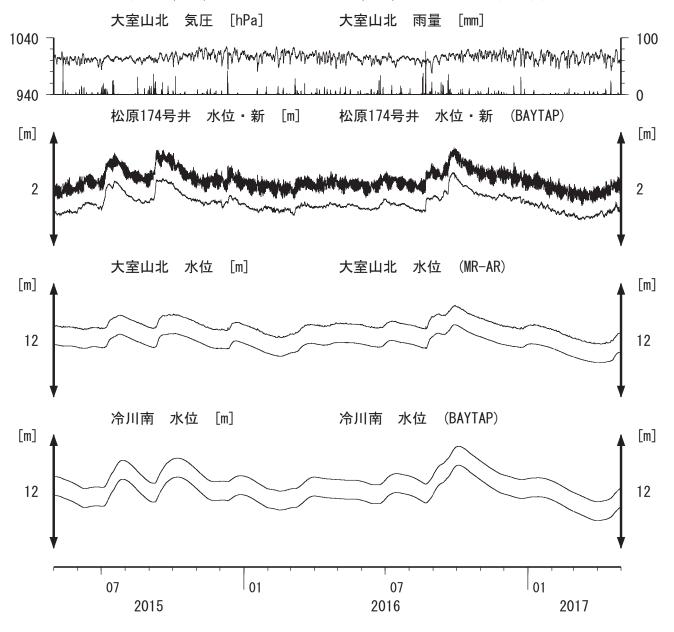
東海地域西部(豊橋多米 歪)中期 (時間値) (2017/02/01 00:00 - 2017/05/01 00:00 (JST))



東海地域西部(豊橋・豊橋多米)長期 (時間値) (2015/05/01 00:00 - 2017/05/01 00:00 (JST))

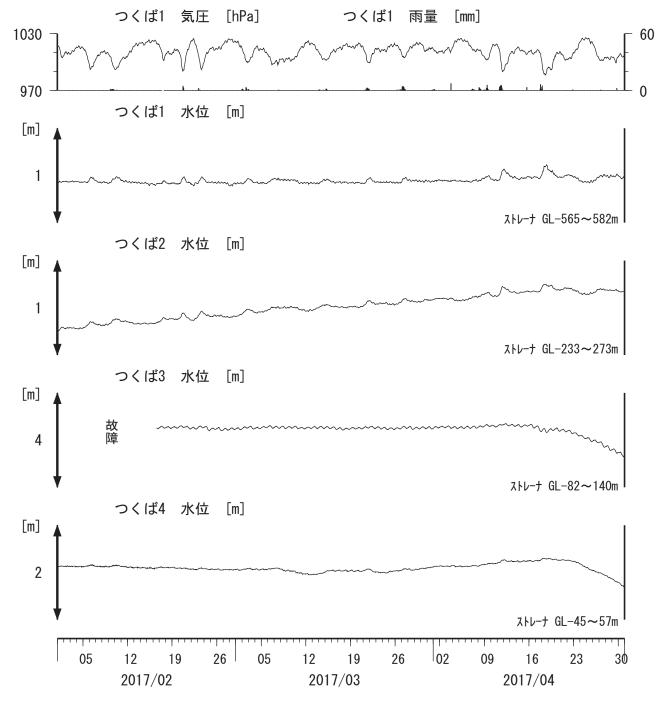


東海地域西部(豊橋多米 歪)長期 (時間値) $(2015/05/01\ 00:00\ -\ 2017/05/01\ 00:00\ (JST))$


豊橋多米(豊橋東) 歪 N356E [x10-9]

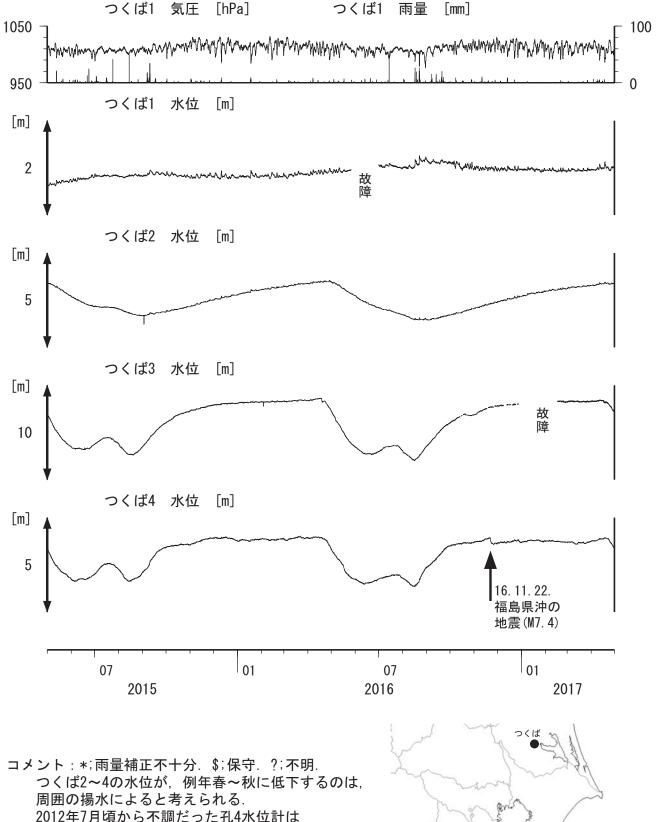
伊豆半島東部 地下水位 中期 (時間値) (2017/02/01 00:00 - 2017/05/01 00:00 (JST))

伊豆半島東部 地下水位 長期 (時間値) (2015/05/01 00:00 - 2017/05/01 00:00 (JST))

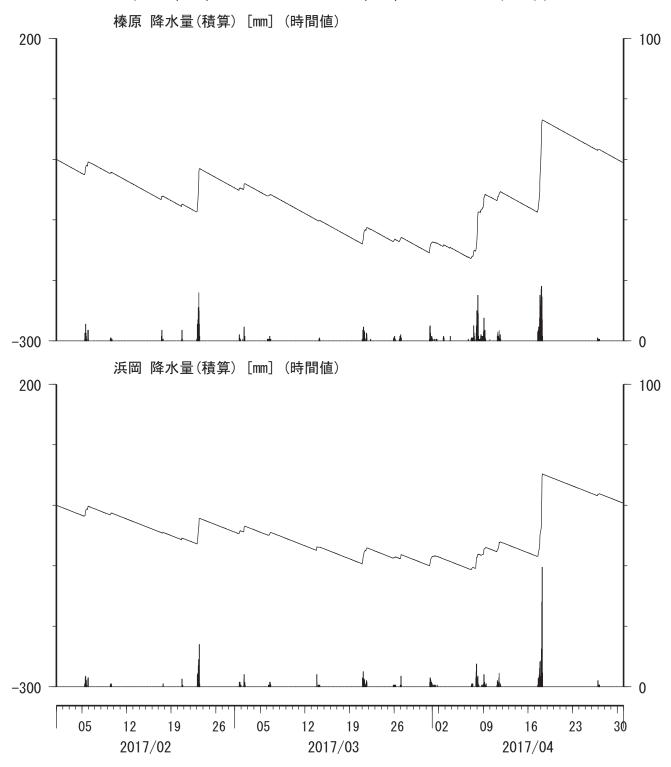


コメント:*;雨量補正不十分. \$;保守. ?;不明. 松原174号井は静岡県による観測. 松原174の水位計が長期的にドリフトしていることが 分かったので、2014年7月4日に新たに水位計を 設置して平行観測している. 2015年3月5日に 旧水位計を新しい水晶式水位計に更新した.

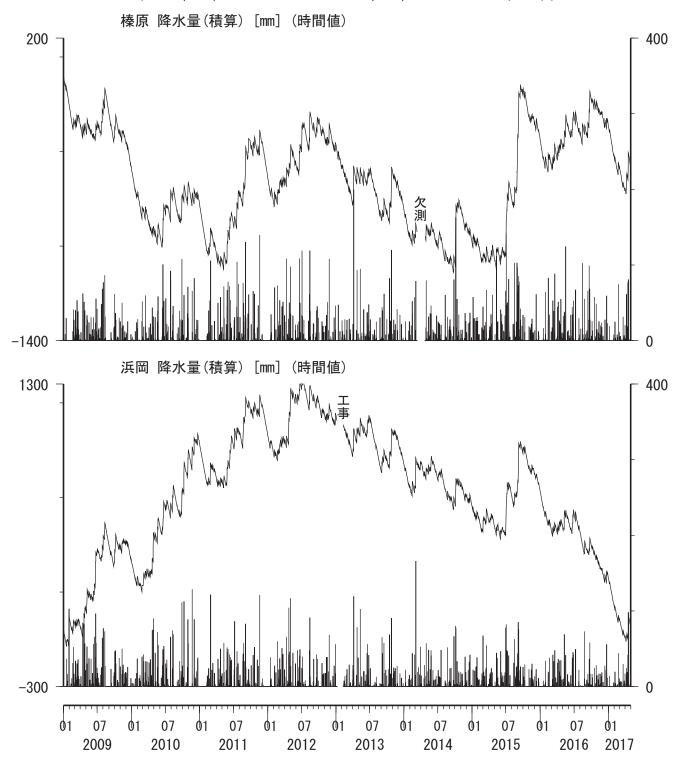
産業技術総合研究所資料


関東地域 地下水観測結果 中期 (時間値) (2017/02/01 00:00 - 2017/05/01 00:00 (JST))

コメント:*;雨量補正不十分. \$;保守. ?;不明. つくば2~4の水位が, 例年春~秋に低下するのは, 周囲の揚水によると考えられる. つくば3の水位が2014年10月7~16日に異常なのは, データロガーの不良のためと考えられる.


関東地域 地下水観測結果 長期 (時間値) $(2015/05/01\ 00:00\ -\ 2017/05/01\ 00:00\ (JST))$

2012年7月頃から不調だった孔4水位計は 2013年3月13日に交換した. つくば3の水位が2014年10月7~16日に異常なのは、 データロガーの不良のためと考えられる.



榛原・浜岡観測井 直近3ヶ月の積算降雨量トレンド除去グラフ [mm] (2017/02/01 00:00 - 2017/05/01 00:00 (JST))

コメント:トレンドは、グラフに示している期間で求めている.

榛原・浜岡観測井 降雨量の積算からトレンド除去後のグラフ [mm] (2009/01/01 00:00 - 2017/05/01 00:00 (JST))

コメント:トレンドは、グラフに示している期間で求めている.

近畿地域の地下水位・歪観測結果(2017年2月~2017年4月)

産業技術総合研究所

2017年2月~2017年4月の近畿地域におけるテレメータによる地下水位およびボアホール型歪計による地設歪(水平3成分)の観測結果を報告する。観測点は12点(観測井は14井戸)である(第1図)。同期間中に第1図で示す範囲内で、M4以上で深さ30kmより浅い地震は無かった。

第2~5図には、2016年11月~2017年4月における地下水位 1 時間値の生データ(上線)と補正値(下線)を示す。ボアホール型歪計が併設してある観測点については、同期間における歪 3 成分の観測値(生データ)も示す。歪の図において「N120」などと示してあるのは、歪の方向が北から120度東方向に回転していることを示す。水位補正値(corrected)は、潮汐解析プログラムBAYTAP-Gによって、気圧・潮汐・不規則ノイズの影響を除去した結果である。なお、hno・sed・tkz・ysk・yst1・yst2およびyst3は地上より上に水位が来るので、井戸口を密閉して水圧を測定し、それを水位に換算している。hksではケーシングを二重にして、外管で浅い方の地下水位(hks-o)を、内管で深い方の地下水位(hks-i)をそれぞれ測定していたが、今はhks-iのみ測定を行なっている。hks-iでは2016年5月11日にパッカーで井戸を密閉した。

yst1の地下水位の2017年2月26日頃からの低下は井戸の密閉が不十分のために水抜けが発生したと思われる(第2図)。tkzの歪の2016年11月26日から2017年2月13日までの欠測は故障のため(第3図)。hrbの地下水位の短期的な上下変化は口元から雨が流れ込んだためと思われる(第3図)。ikdの地下水位の2016年3月14日以降の欠測は観測井での調査(揚水試験)に伴って一時的に水位が低下したためであるが、2017年1月20日に水位計の故障が判明したので、2017年2月14日に水位計を交換した。(第3図)。hnoの地下水位と歪の2017年1月26日から2017年3月27日までの欠測は瞬間停電で機器が停止したため(第5図)。

これらのデータ(グラフ等)は、https://www.gsj.jp/wellweb/で公開されている。 (北川有一・松本則夫・佐藤努・板場智史・落唯史・木口努)

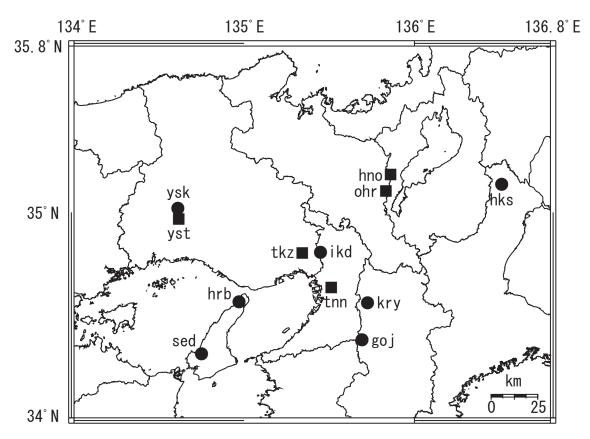
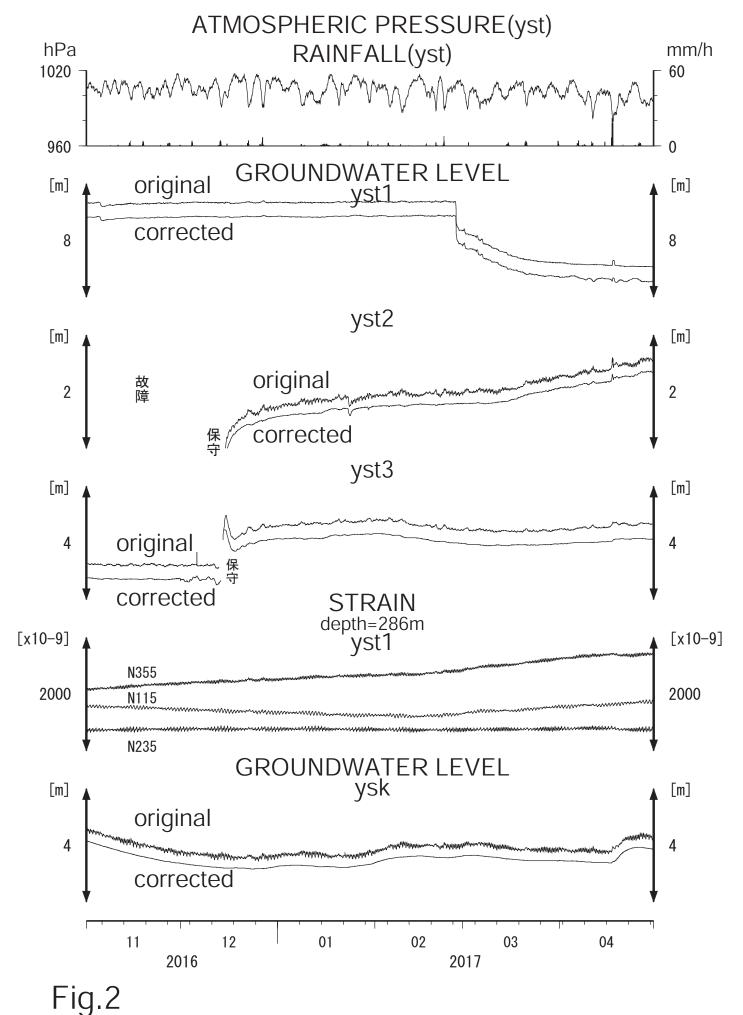



Fig. 1 観測点分布図 (●・■)。 ●は地下水のみの観測点で、■はボアホール型歪計を併設している観測点。

産業技術総合研究所資料

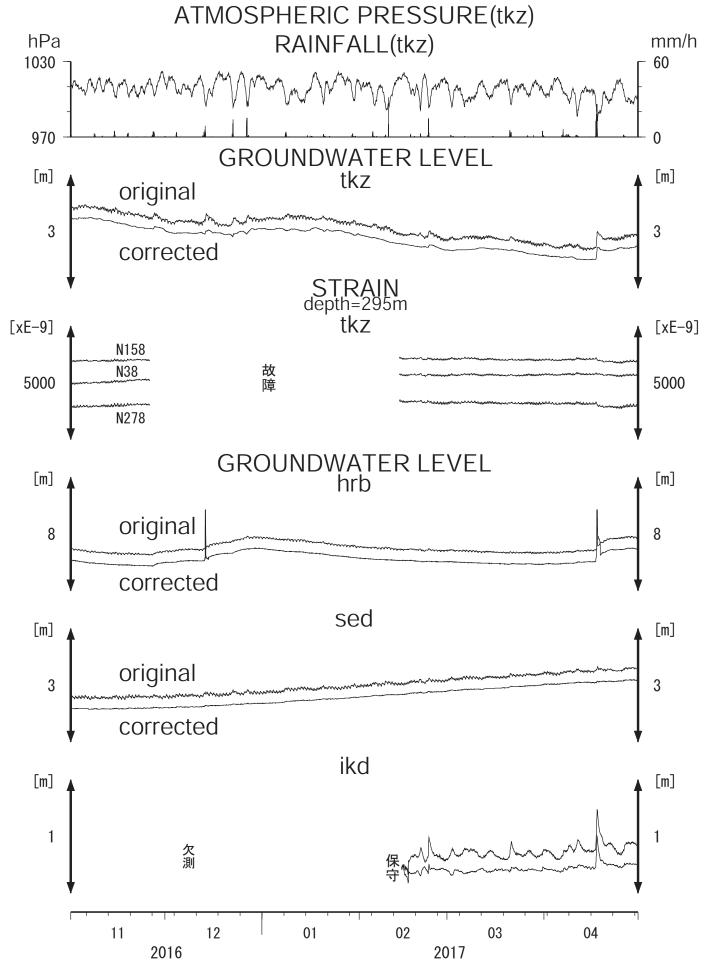


Fig.3

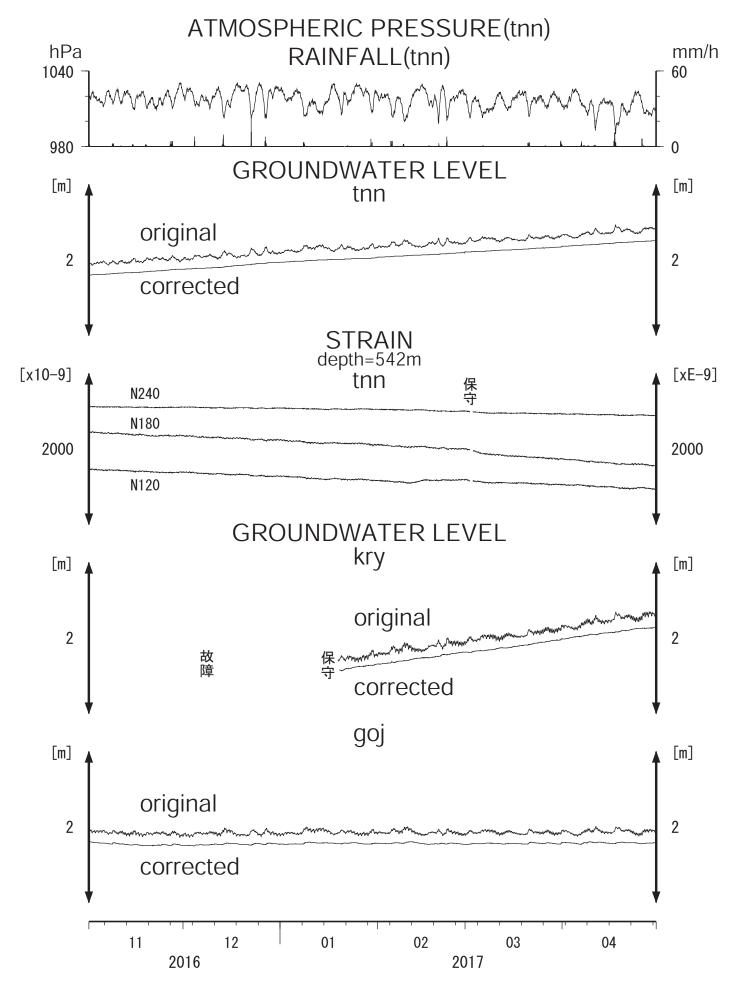


Fig.4

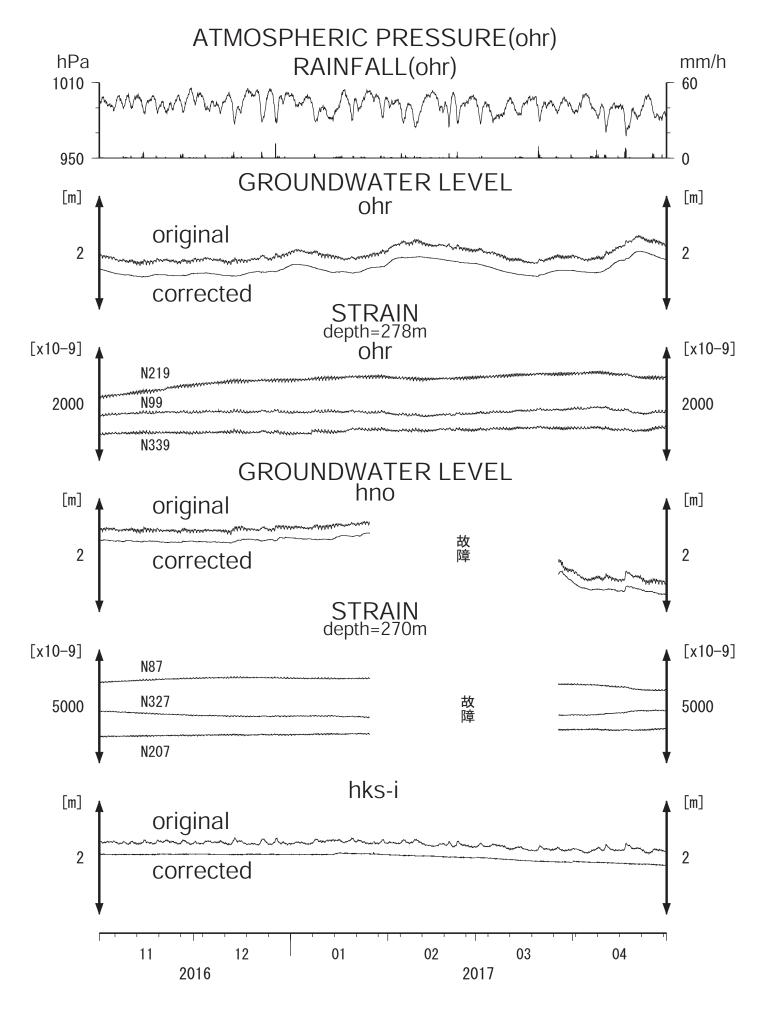


Fig.5

紀伊半島~四国の地下水·歪観測結果(2017年2月~2017年4月) 東海·紀伊半島・四国における短期的スロースリップイベント(2017年2月~2017年4月)

産業技術総合研究所

産業技術総合研究所(産総研)では、東海・紀伊半島・四国の地下水等総合観測施設20点において、歪・地下水等の観測を行っている。観測点配置図を第1図に示す。

第2~38図には、2016年11月~2017年4月における歪・傾斜・地下水位の1時間値の生データ(上線)と補正値(下線)を示す。 歪・傾斜の図において「N120E」などと示してあるのは、 歪・傾斜の測定方向が北から120度東方向に回転していることを示す。 補正値は、潮汐解析プログラムBAYTAP・G[Tamura et al., 1991]によって、気圧・潮汐・不規則ノイズの影響を除去した結果である。 歪・傾斜のグラフについては、直線トレンド(1次トレンド)を除去している。

第39~44図には、産総研で決定した、エンベロープ相関法による深部低周波微動の震源の時空間分布および個数を示す。微動の地域分けについては、第39図(RT0~3)、第41図(RK0~4)、第43図(RS0~6)に示している。東海全体(RT0~3)で微動の発生回数が125個/日以上の日を含む期間(その期間については、回数が50個/日以上で活動開始、50個/日未満で活動終了と判断する)については、第2~8図および第39~40図に灰色網掛けにてその期間を主な活動地域(RT0~3)と共に表示した。紀伊半島全体(RK0~4)で微動の発生回数が150個/日以上の日を含む期間(その期間については、回数が60個/日以上で活動開始、60個/日未満で活動終了と判断する)については、第8~21図および第41~42図に灰色網掛けにてその期間を主な活動地域(RK0~4)と共に表示した。四国東部(RS4~6)の合計で微動の発生回数が150個/日以上の日を含む期間(その期間については、回数が60個/日以上で活動開始、60個/日未満で活動終了と判断する)については、第22~30図、第37~38図および第43~44図に灰色網掛けにてその期間を主な活動地域(RS4~6)と共に表示した。四国西部(RS0~3)の合計で微動の発生回数が300個/日以上の日を含む期間(その期間については、回数が60個/日以上で活動開始、60個/日未満で活動終了と判断する)については、第27~38図および第43~44図に灰色網掛けにてその期間を主な活動地域(RS0~3)と共に表示した。

歪・傾斜・地下水の変化から短期的SSEの断層モデルを推定したイベントについて、その解析結果を報告する. 断層モデル推定手法については、解析結果の後に示す.

2017年2月8日~10日頃,22日午後~24日午前,27~28日頃,および3月2日午後~11日頃に,四国西部~中部にかけて微動活動が観測された(第45図).第46図は微動活動周辺の産総研・防災科研の観測点における多成分歪・地下水・傾斜の観測結果である.これらの結果はBAYTAP・Gにより気圧応答成分,潮汐成分およびホワイトノイズ成分を取り除き,2017年1月25日~2月7日のデータを用いて1次トレンドを除去したものである

第47-52図は、第46図[A], [B], [C], [D], [E], および[F]の変化を説明する短期的SSEの推定結果(それぞれMw 5.5, 5.8, 5.5, 5.4, 5.5, および5.7)である. [A]を含む領域では、2016年10月25日午後~26日および12月19日~22日にMw 5.5および5.6(第47図(b1)の灰色矩形3および6)の、[B]を含む領域では、2016年10月23日午後~25日午前にMw5.8(第48図(b1)の灰色矩形2)の、[C]を含む領域では、2016年10月23日午後~25日午前、10月25日午後~26日および10月27日~28日にMw 5.8, 5.5および5.2(第49図(b1)の灰色矩形2、3および4)の、[D]を含む領域では、2016年10月25日午後~26日および10月27日~28日にMw 5.5および5.2(第50図(b1)の灰色矩形3および4)の、[E]を含む領域では、2016年8月17日~21日および11月5日~7日にMw 5.3および5.6(第51図(b1)の灰色矩形1および5)の、[F]を含む領域では、2016年8月17日~21日および12月19日~22日にMw 5.3および5.5(第52図(b1)の灰色矩形1および6)の短期的SSEが、それぞれ発生したと推定されている。

2017年2月13日午後~17日頃に愛知県中部~長野県境付近で活発な微動活動が観測された(第53図). 第54図は微動活動周辺の産総研・気象庁・防災科研の観測点における多成分歪・傾斜の観測結果である.これらの結果はBAYTAP-Gにより気圧応答成分、潮汐成分およびホワイトノイズ成分を取り除き、2017年1月30日~2月13日午前のデータを用いて1次トレンドを除去したものである. 第55図は第54図[A]の変化を説明する短期的SSEの推定結果(Mw5.8)である。[A]を含む領域では、2016年10月24日~25日午前にMw5.4(第55図(b1)の灰色矩形5)の、10月25日午後~26日にMw5.2(第55図(b1)の灰色矩形6)の短期的SSEが、それぞれ発生したと推定されている。

2017年3月2日午後~7日頃に奈良県南部で活発な微動活動が観測された(第56図). 第57図は微動活動周辺の産総研・防災科研の観測点における多成分歪・傾斜の観測結果である. これらの結果はBAYTAP・Gにより気圧応答成分、潮汐成分およびホワイトノイズ成分を取り除き、2017年2月16日~3月2日午前のデータを用いて1次トレンドを除去したものである.

第58図は第57図[A]の変化を説明する短期的SSEの推定結果(Mw 5.8)である. 奈良県南部では, 2016年10月2日~3日にMw 5.5(第58図(b1)の灰色矩形2)の短期的SSEが発生したと推定されている.

2017年3月28日~4月3日頃に伊勢湾周辺で小規模な微動活動が観測された(第59図). 第60図は微動活動周辺の産総研・気象庁・防災科研の観測点における多成分歪・体積歪・傾斜の観測結果である. これらの結果はBAYTAP・Gにより気圧応答成分、潮汐成分およびホワイトノイズ成分を取り除き, 2017年3月15日~3月27日のデータを用いて1次トレンドを除去したものである.

第61図は第60図[A]の変化を説明する短期的SSEの推定結果(Mw 5.8)である. 伊勢湾では, 2016年8月1日~6日にMw 5.8(第61図(b1)の灰色矩形2)の短期的SSEが発生したと推定されている.

2017年4月20日から30日頃に三重県中部で微動活動が観測された(第62図). 第63図は微動活動周辺の産総研・防災科研の観測点における歪・傾斜・地下水の観測結果である. これらの結果はBAYTAP・Gにより気圧応答成分, 潮汐成分およびホワイトノイズ成分を取り除き, 2017年4月6日から4月19日のデータを用いて1次トレンドを除去したものである.

第64,65図は順に第63図[A](4月20日から25日午前)と[B](4月25日午後から30日)の変化を説明する短期的SSEの推定結果(順にMw5.8,5.8)である。今回の活動域付近における最近の短期的SSEの活動は、2015年11月3日から5日(Mw5.4;第64,65図の灰色矩形1)、2016年7月27日から31日(Mw6.0;同2)、2016年8月12日午後から16日(Mw5.6;同3)、2016年12月9日から17日(順にMw5.8,5.8;同4,5)、2017年3月2日午後から7日(Mw5.8;同6)、および2017年3月28日から4月3日(Mw5.8;同7)である。

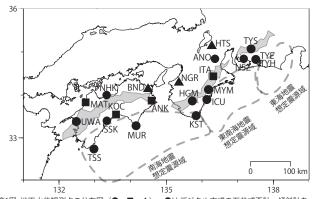
解析方法

短期的SSEの断層面推定には、それぞれの観測点の水平歪4成分(一部の気象庁観測点では8成分)・体積 歪・地下水圧・傾斜2成分の記録を用いる。地下水圧は、O1およびM2分潮の振幅をBAYTAP-G [Tamura et al., 1991]により計算し、GOTIC2 [Matsumoto et al., 2001]により推定した地球固体潮汐および海洋荷重潮汐(O1およびM2分潮)との振幅比を用いて、体積歪に変換する。歪・地下水・傾斜ともに、観測波形からBAYTAP-Gにより、気圧応答成分、潮汐成分およびホワイトノイズ成分を取り除く。また、イベント直前の期間を用いて1次トレンドも取り除く。微動活動も参考にして、数時間~半日単位で活動開始・終了時期を判断し、その期間の変化量を短期的SSEによる変化量とする。その際、歪についてはMatsumoto et al. [2010]の手法で理論潮汐歪を用いてキャリブレーションを行っている。

断層面の推定は、計算時間の短縮と、推定された結果の一意性を確認するために2段階で行う。断層面推定は板場ほか[2012]の手法を用いた。フィリピン海プレート境界面上[弘瀬ほか、2007]に多数の断層面を仮定してグリッドサーチにより推定する。仮定した断層面上のすべりによって各観測点で期待される歪変化の計算にはOkada [1992]のプログラムを用いる。1段階目には、断層面のサイズは固定(幅・長さ共に20km)、断層面の位置(0.1°間隔)およびすべり量(1~100mmの間で1mm間隔)のみ可変として広範囲で計算を行う。1段階目の結果を示す図では、それぞれの断層面において最適なすべり量を与えたときの、観測値と計算値(期待値)との残差分布を示している。これにより、短期的SSEが生じている可能性が高い領域を絞り込むとともに、推定された結果の任意性を確認することが出来る。2段階目には、1段階目で絞り込んだ領域(=残差が小さい領域)付近で、位置及びすべり量に加えて、断層面の長さを10~80km、幅を10~50km、それぞれ1km間隔で可変として計算を行なう。その結果、観測値との残差が最小となる断層面が1つ計算されるが、計算に使用している観測点数が少ない場合や、断層面と観測点配置の関係によっては任意性が高くなるので注意が必要である。なお、異種観測値を統合して解析するため、観測点ごとに残差をノイズレベルによって規格化している。ノイズレベル

は、気圧応答、潮汐成分およびホワイトノイズ成分を取り除いた後(微動活動が活発な期間および周辺の日雨量 50mmを超える時期を除く)の24時間階差の2sとした.

深部低周波微動の検出・震源決定には、エンベロープ相関法を用いている.

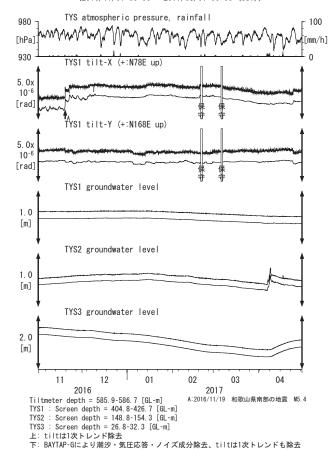

謝辞

短期的SSEの断層モデル推定には、防災科研Hi-net高感度加速度計(傾斜計)および気象庁、静岡県の多成分歪計および体積歪計の記録を使用しました. 気象庁の歪計データを解析する際には、気象庁によるキャリブレーション係数を使用しました. 微動の解析には、防災科研Hi-net、気象庁、東京大学、京都大学、名古屋大学、高知大学、九州大学の地震波形記録を使用しました. 低周波地震の震央位置表示には、気象庁の一元化カタログを使用しました. ここに記して感謝します.

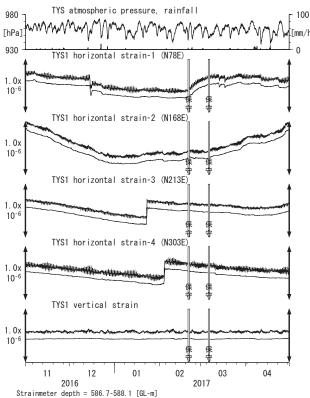
(落唯史·板場智史·北川有一·武田直人·松本則夫·木口努)

参考文献

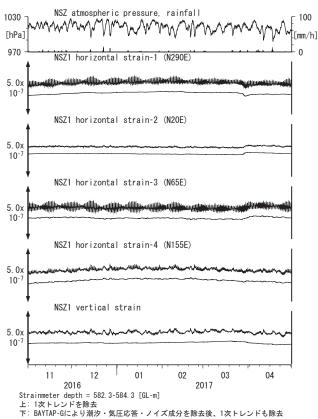
- 弘瀬冬樹, 中島淳一, 長谷川昭 (2007), Double-Difference Tomography法による西南日本の3次元地震波速度構造およびフィリピン海プレートの形状の推定, 地震2, **60**, 1-20.
- 板場智史,松本則夫,北川有一,小泉尚嗣,松澤孝紀,歪・傾斜・地下水統合解析による短期的スロースリップイベントのモニタリング,日本地球惑星連合2012年大会,千葉,5月,2012.
- Matsumoto, K., T. Sato, T. Takanezawa, and M. Ooe, GOTIC2: A Program for Computation of Oceanic Tidal Loading Effect, *J. Geod. Soc. Japan*, **47**, 243-248, 2001.
- Matsumoto, N., O. Kamigaichi, Y. Kitagawa, S. Itaba, and N. Koizumi (2010), In-situ Calibration of Borehole Strainmeter Using Green's Functions for Surface Point Load at a Depth of Deployment, *Eos, Trans. AGU*, Abstract G11A-0626.
- Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, *Bull. Seismol. Soc. Am.*, **82**, 1018-1040.
- Tamura, Y., T. Sato, M. Ooe and M. Ishiguro (1991), A procedure for tidal analysis with a Bayesian information criterion, *Geophys. J. Int.*, **104**, 507-516.

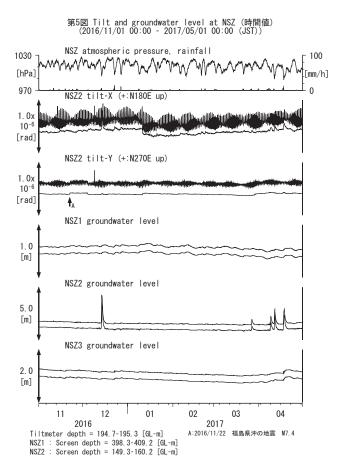


第1図: 地下水位観測点の分布図(●・■・▲)。●はデジタル方式の石井式歪計・傾斜計をしている新規観測点、■はGladwin式歪計・ミツトヨ式傾斜計を併設している新規観測点、▲はアナログ方式の石井式歪計を併設している既存の観測点。灰色の領域は短期的SSE及び深部低周波微 動が定常的に発生していると考えられる地域。


第 1 表:産総研観測点の新名称。平成 23 年 1 月 17 日から「市町村名」+「町・字名等」を基本とする名称に変更している。なお、3 文字コードは変更していない。

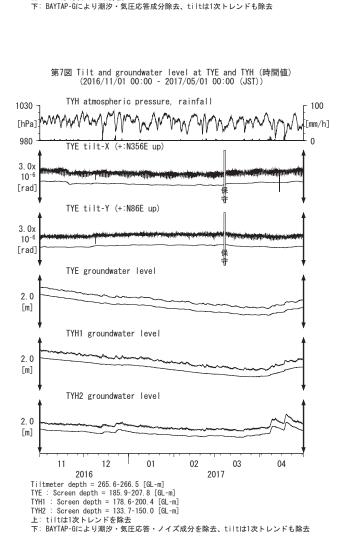
3文字コード (変更無し)	旧名称		新名称	新名称 ふりがな	市区町村	図
TYS	豊田下山	\rightarrow	豊田神殿	とよたかんどの	愛知県豊田市	2,3
NSZ	西尾善明	変更無し	西尾善明	にしおぜんみょう	愛知県西尾市	4,5
TYE	豊橋東	\rightarrow	豊橋多米	とよはしため	愛知県豊橋市	6,7
HTS	秦荘	\rightarrow	愛荘香之庄	あいしょうこのしょう	滋賀県愛知郡愛荘町	8
ANO	安濃	\rightarrow	津安濃	つあのう	三重県津市	9,10
ITA	飯高赤桶	\rightarrow	松阪飯高	まつさかいいたか	三重県松阪市	11,12
MYM	海山	\rightarrow	紀北海山	きほくみやま	三重県北牟婁郡紀北町	13,14
ICU	井内浦	\rightarrow	熊野磯崎	くまのいそざき	三重県熊野市	15,16
HGM	本宮三越	\rightarrow	田辺本宮	たなべほんぐう	和歌山県田辺市	17,18
KST	串本津荷	変更無し	串本津荷	くしもとつが	和歌山県東牟婁郡串本町	19,20
NGR	根来	\rightarrow	岩出東坂本	いわでひがしさかもと	和歌山県岩出市	21
BND	板東	\rightarrow	鳴門大麻	なるとおおあさ	徳島県鳴門市	22
ANK	阿南桑野	変更無し	阿南桑野	あなんくわの	徳島県阿南市	23,24
MUR	室戸	\rightarrow	室戸岬	むろとみさき	高知県室戸市	25,26
KOC	高知市	\rightarrow	高知五台山	こうちごだいさん	高知県高知市	27,28
SSK	須崎	\rightarrow	須崎大谷	すさきおおたに	高知県須崎市	29,30
TSS	土佐清水	\rightarrow	土佐清水松尾	とさしみずまつお	高知県土佐清水市	31,32
UWA	宇和	\rightarrow	西予宇和	せいようわ	愛媛県西予市	33,34
MAT	松山	\rightarrow	松山南江戸	まつやまみなみえど	愛媛県松山市	35,36
NHK	新居浜黒島	変更無し	新居浜黒島	にいはまくろしま	愛媛県新居浜市	37,38

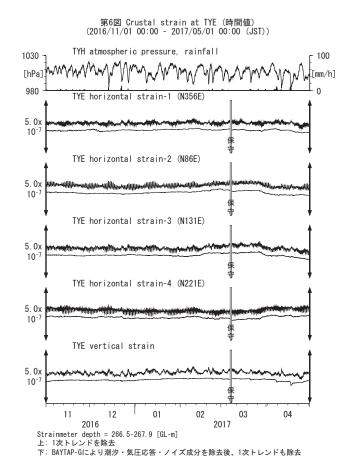


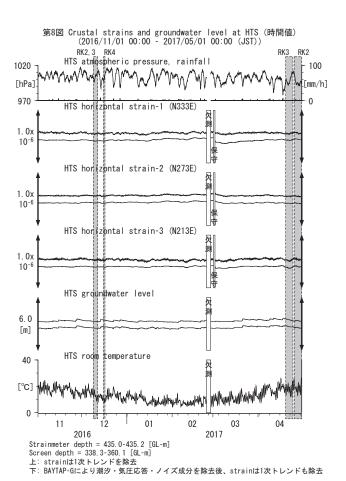


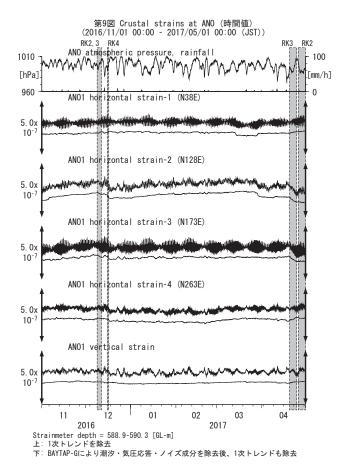
Strainmeter depth = 58 上: 1次トレンドを除去

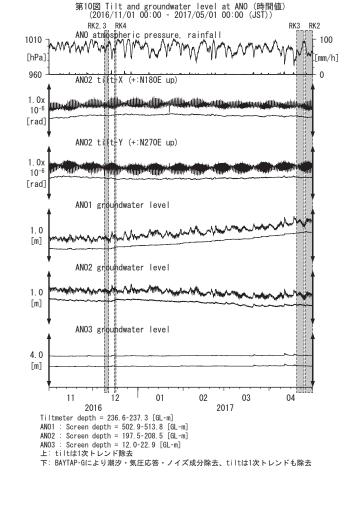
下: BAYTAP-Gにより潮汐・気圧応答・ノイズ成分を除去後、1次トレンドも除去

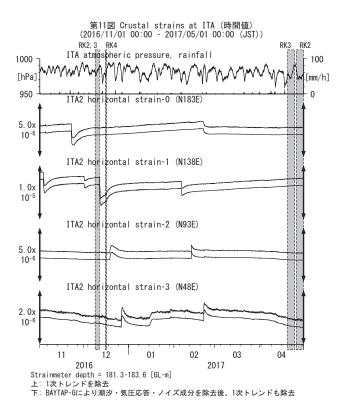

第4図 Crustal strains at NSZ (時間値) (2016/11/01 00:00 - 2017/05/01 00:00 (JST))

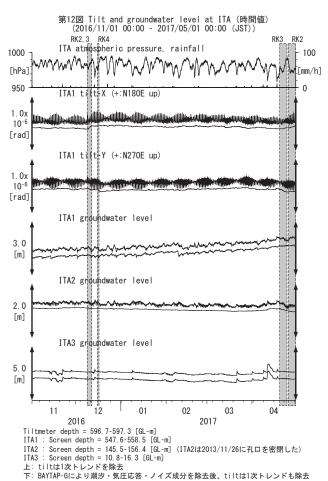


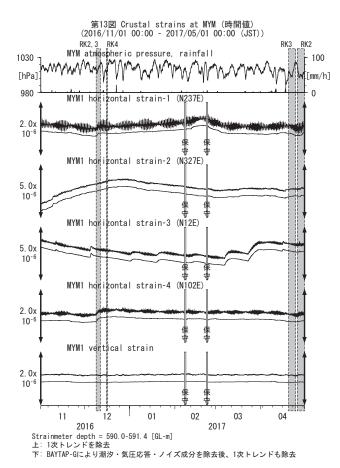


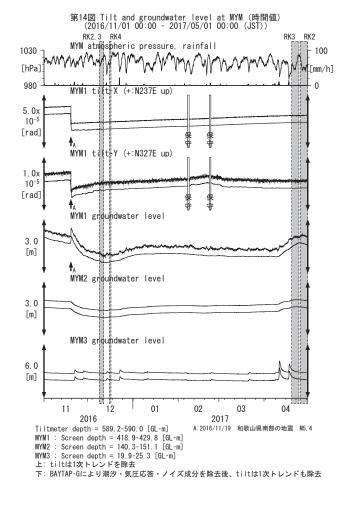

3 : Screen depth = 25.6-31.1 [GL-m] tiltは1次トレンド除去

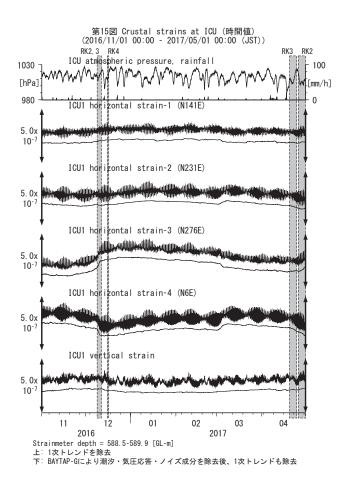

NSZ3

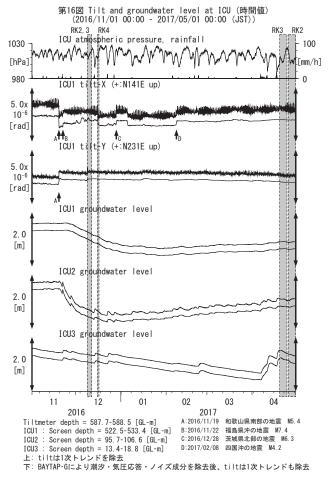




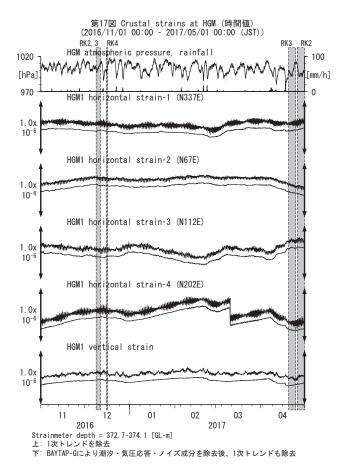


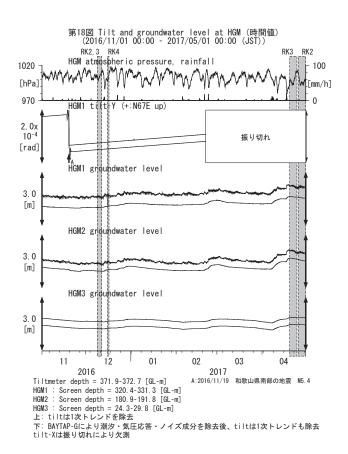


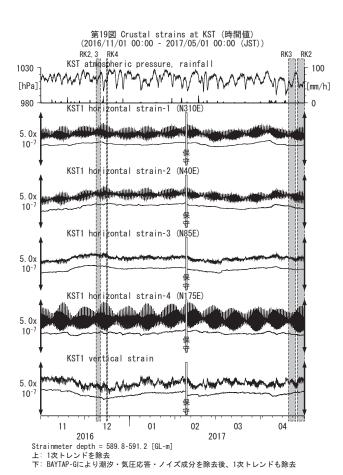


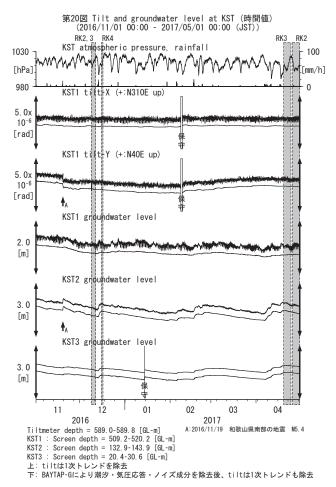


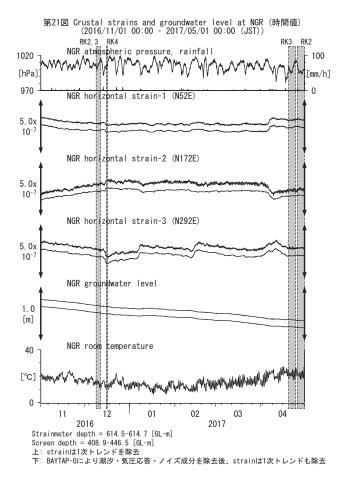
第215回地震予知連絡会資料 產業技術総合研究所

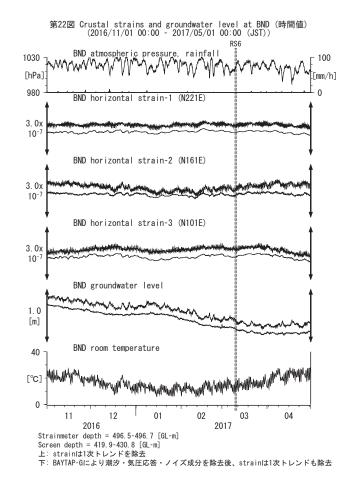


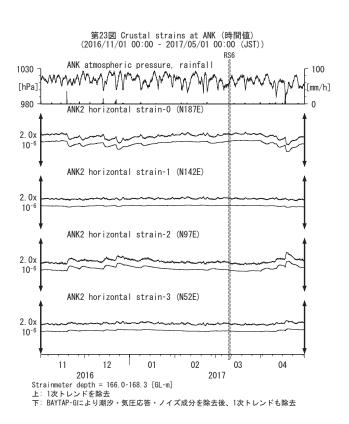


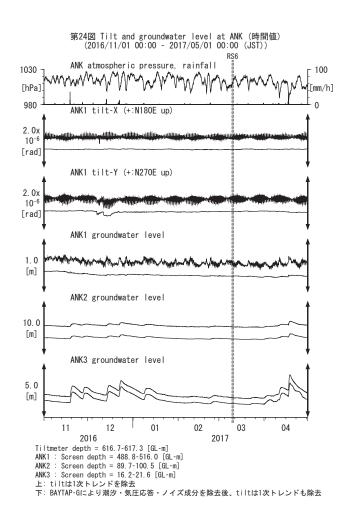


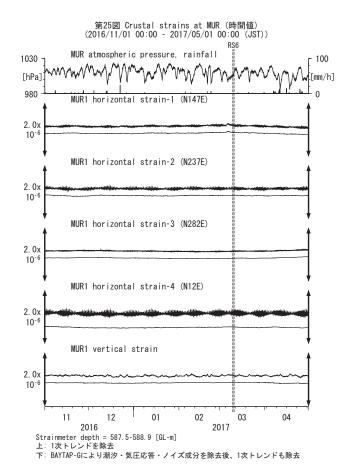


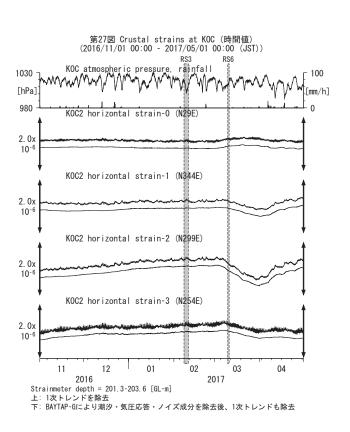

第215回地震予知連絡会資料 産業技術総合研究所

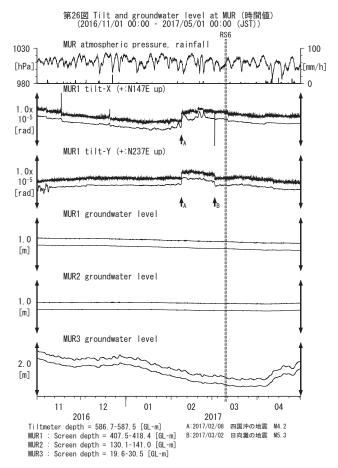


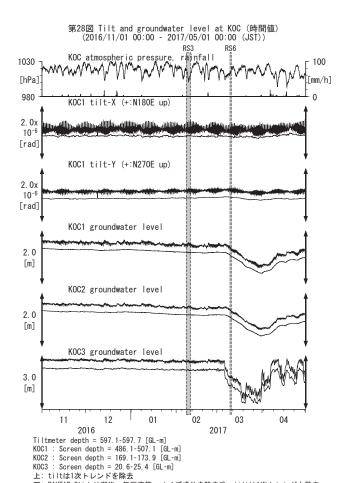


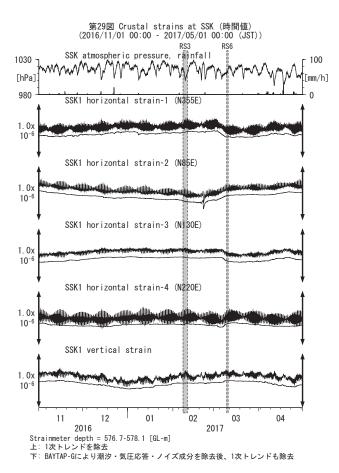


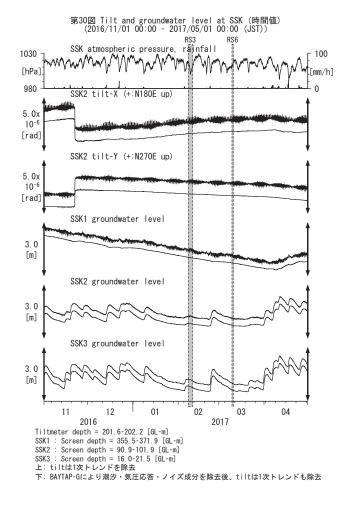


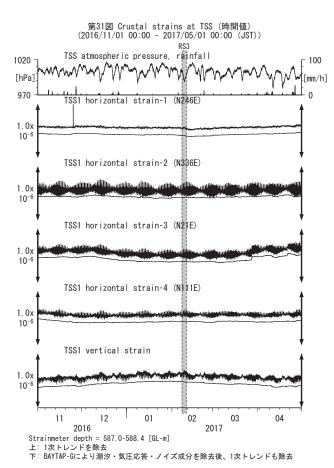


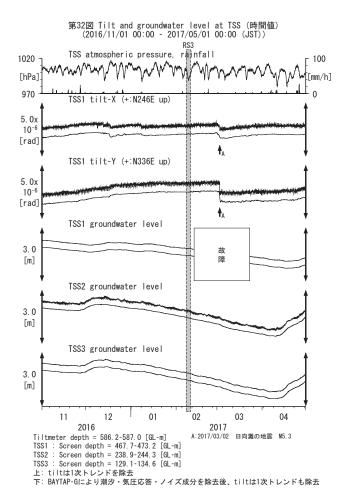


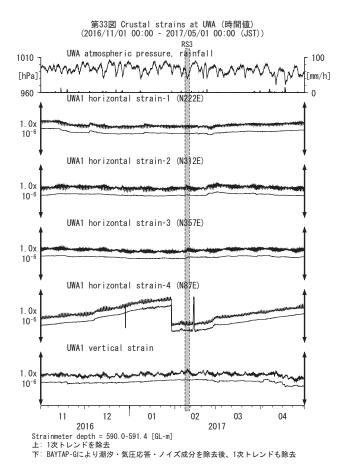


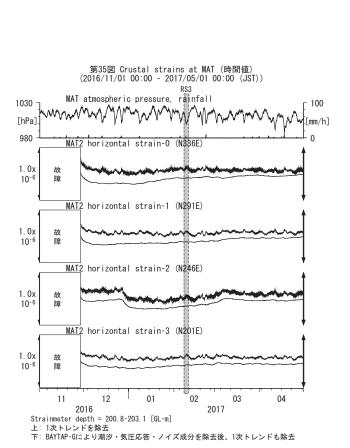


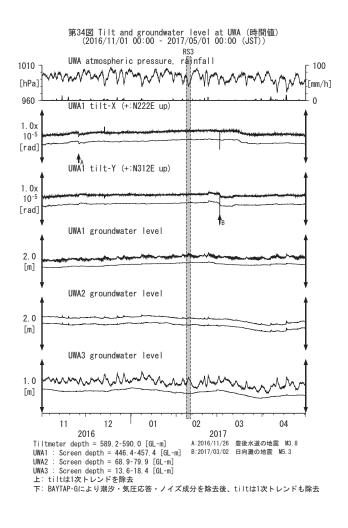


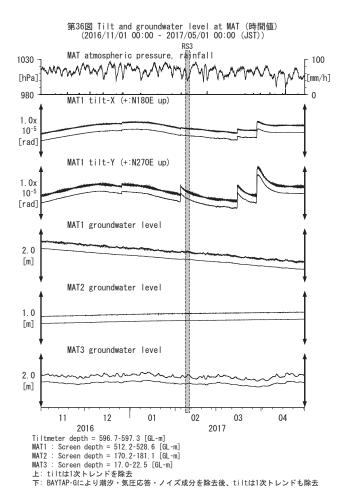


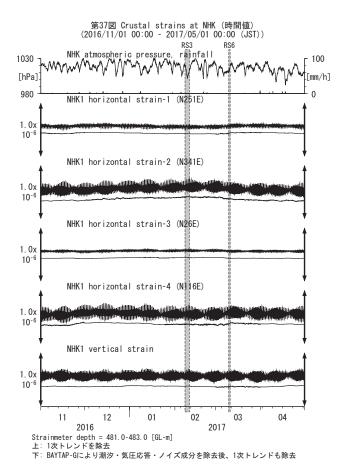

上: tiltは1次トレンドを除去 下: BAYTAP-Gにより潮汐・気圧応答・ノイズ成分を除去後、tiltは1次トレンドも除去

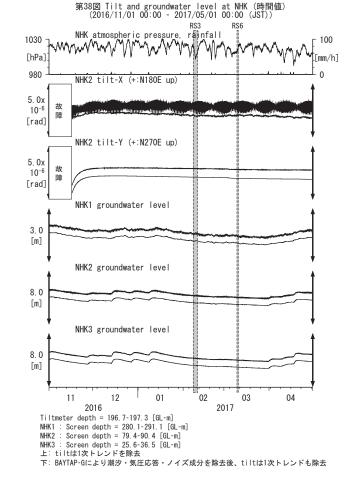


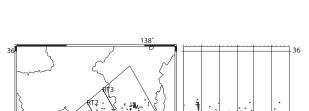


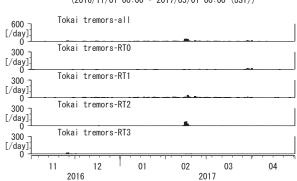


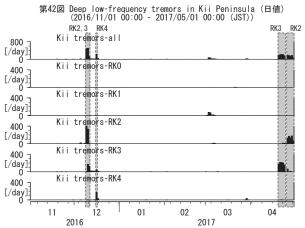




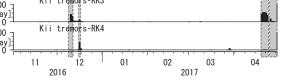


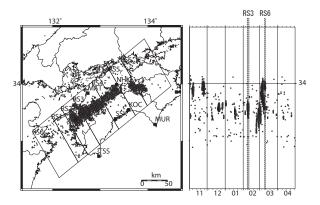


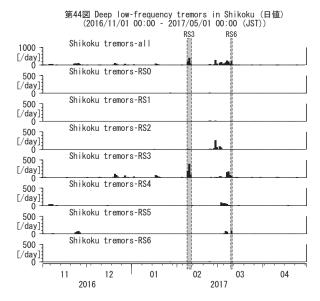


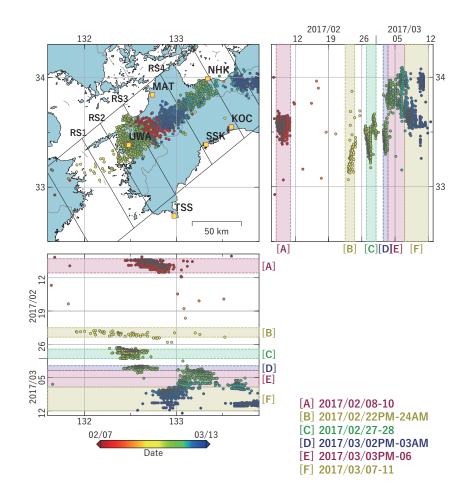


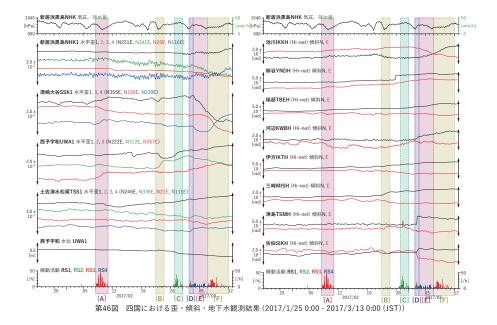
第39図 東海地方における深部低周波微動の時空間分布図(産総研による決定)

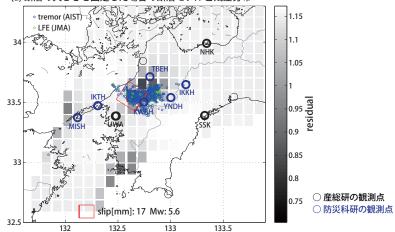


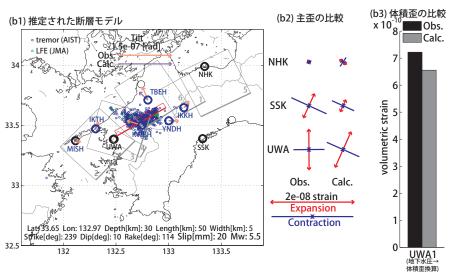



RK2, 3 RK4


RK3 RK2

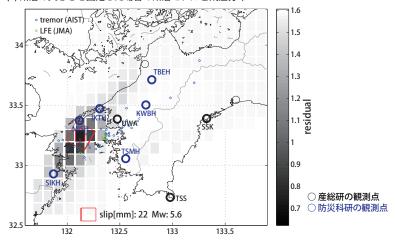

第43図 四国地方における深部低周波微動の時空間分布図(産総研による決定)


第45図 2017/2/7 0:00-3/13 0:00の四国西部~中部における深部低周波微動の時空間 分布図。エンベロープ相関法により決定。

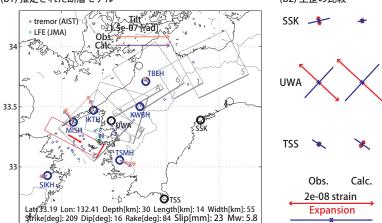

(観測点名) NHK: 新居浜黒島,MAT: 松山南江戸,KOC: 高知五台山,SSK: 須崎大谷,UWA: 西予宇和,TSS: 土佐清水松尾

[A] 2017/02/08-10

(a) 断層の大きさを固定した場合の断層モデルと残差分布


第47図: 2017/02/08-10の歪・傾斜・地下水変化(第46図[A]) を説明する断層モデル。

(a) プレート境界面に沿って分布させた20×20km (大きさ固定) の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの 残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。

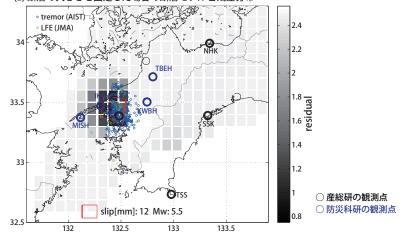

- (b1)(a)の断層面付近でのグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。 灰色矩形は最近周辺で発生した短期的SSEの推定断層面。
- 1: 2016/8/17-21 (Mw5.3), 2: 10/23午後-25午前 (Mw5.8), 3: 10/25午後-26 (Mw5.5) 4: 10/27-28 (Mw5.2) 5: 11/5-7 (Mw5.6) 6: 12/19-22 (Mw5.6)
- (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。
- (b3) 体積歪の観測値と(b1) に示した断層モデルから求めた計算値との比較。地下水圧は体積歪に変換して計算している。

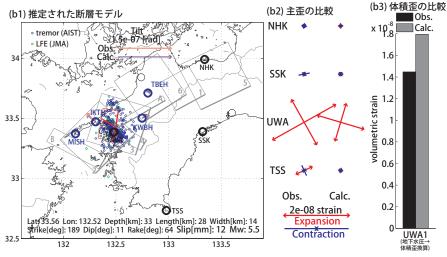
[B] 2017/02-22午後-24午前

(a) 断層の大きさを固定した場合の断層モデルと残差分布

(b1) 推定された断層モデル

(b2) 主歪の比較

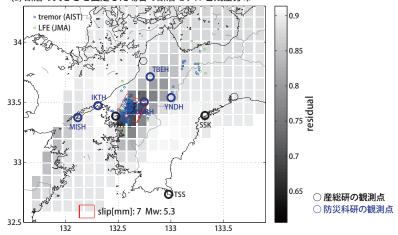

Contraction

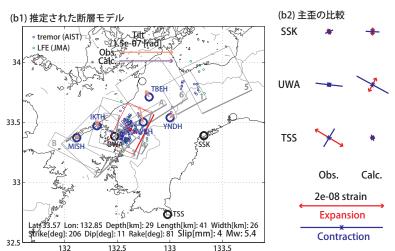

第48図: 2017/02-22午後-24午前の歪・傾斜変化(第46図[B])を説明する断層モデル。

- (a) プレート境界面に沿って分布させた20×20km(大きさ固定)の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの 残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
- (b1) (a)の断層面周辺でグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰 色矩形は最近周辺で発生した短期的SSEの推定断層面。
- 1: 2016/8/17-21 (Mw5.3), 2: 10/23午後-25午前 (Mw5.8), 3: 10/25午後-26 (Mw5.5) 4: 10/27-28 (Mw5.2) 5: 11/5-7 (Mw5.6) 6: 12/19-22 (Mw5.6), A: 2017/2/8-10 (Mw5.5)
- (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

[C] 2017/2/27-28

(a) 断層の大きさを固定した場合の断層モデルと残差分布


第49図: 2017/02-27-28の歪・傾斜・地下水変化(第46図[C])を説明する断層モデル。


(a) プレート境界面に沿って分布させた20×20km(大きさ固定) の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの 残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。

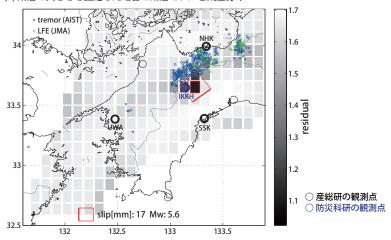
- (b1)(a)の断層面付近でのグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。 灰色矩形は最近周辺で発生した短期的SSEの推定断層面。
- 1: 2016/8/17-21 (Mw5.3), 2: 10/23午後-25午前 (Mw5.8), 3: 10/25午後-26 (Mw5.5) 4: 10/27-28 (Mw5.2) 5: 11/5-7 (Mw5.6)
- 6: 12/19-22 (Mw5.6), A: 2017/2/8-10 (Mw5.5), B: 2/22午後-24午前 (Mw5.8)
- (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。
- (b3) 体積歪の観測値と(b1) に示した断層モデルから求めた計算値との比較。地下水圧は体積歪に変換して計算している。

[D] 2017/03/02午後-03午前

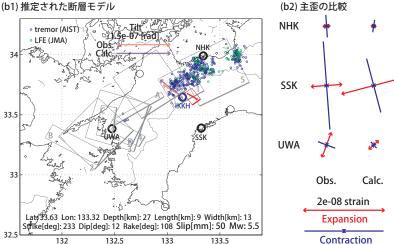
(a) 断層の大きさを固定した場合の断層モデルと残差分布

第50図: 2017/03/02午後-03午前の歪・傾斜変化(第46図[D])を説明する断層モデル。

(a) プレート境界面に沿って分布させた20×20km(大きさ固定)の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの 残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。


(b1)(a)の断層面付近でのグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。 灰色矩形は最近周辺で発生した短期的SSEの推定断層面。

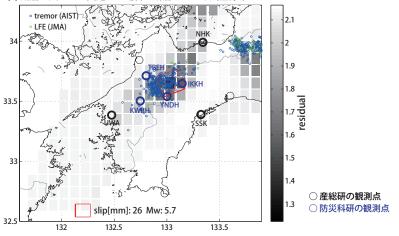

1: 2016/8/17-21 (Mw5.3), 2: 10/23午後-25午前 (Mw5.8), 3: 10/25午後-26 (Mw5.5) 4: 10/27-28 (Mw5.2) 5: 11/5-7 (Mw5.6) 6: 12/19-22 (Mw5.6), A: 2017/2/8-10 (Mw5.5), B: 2/22午後-24午前 (Mw5.8), C: 2/27-28 (Mw5.5)

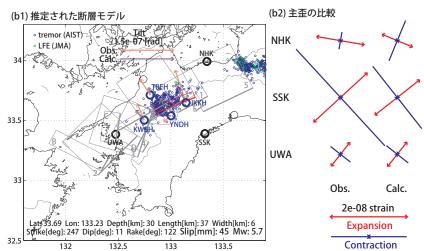

(b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

[E] 2017/03/03午後-6

(a) 断層の大きさを固定した場合の断層モデルと残差分布

第51図: 2017/03/03午後-06の歪・傾斜変化(第46図[E])を説明する断層モデル。


(a) プレート境界面に沿って分布させた20×20km(大きさ固定)の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの 残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面

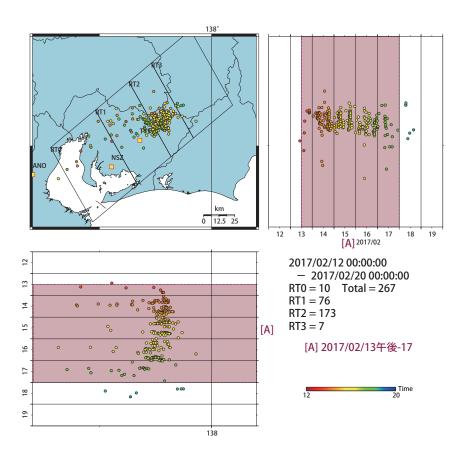

(b1)(a)の断層面周辺でグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰 色矩形は最近周辺で発生した短期的SSEの推定断層面。

1: 2016/8/17-21 (Mw5.3), 2: 10/23午後-25午前 (Mw5.8), 3: 10/25午後-26 (Mw5.5) 4: 10/27-28 (Mw5.2) 5: 11/5-7 (Mw5.6). 6: 12/19-22 (Mw5.6), A: 2017/2/8-10 (Mw5.5), B: 2/22午後-24午前 (Mw5.8), C: 2/27-28 (Mw5.5), D: 3/2午後-03午前 (Mw5.4) (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

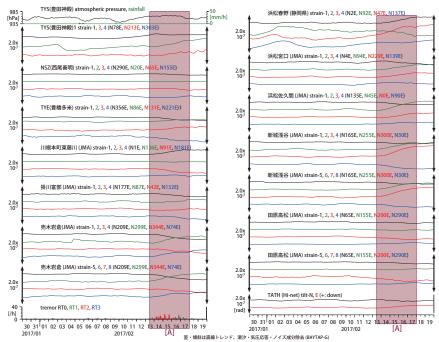
[F] 2017/03/07-11

(a) 断層の大きさを固定した場合の断層モデルと残差分布

第52図: 2017/03/07-11の歪・傾斜変化(第46図[F])を説明する断層モデル。

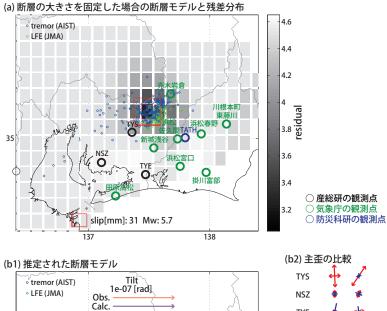

(a) プレート境界面に沿って分布させた20×20km(大きさ固定)の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの 残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。

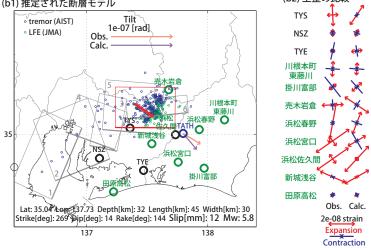
(b1)(a)の断層面付近でのグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。 灰色矩形は最近周辺で発生した短期的SSEの推定断層面。


1: 2016/8/17-21 (Mw5.3), 2: 10/23午後-25午前 (Mw5.8), 3: 10/25午後-26 (Mw5.5) 4: 10/27-28 (Mw5.2) 5: 11/5-7 (Mw5.6),

6: 12/19-22 (Mw5.6), A: 2017/2/8-10 (Mw5.5), B: 2/22午後-24午前 (Mw5.8), C: 2/27-28 (Mw5.5), D: 3/2午後-03午前 (Mw5.4), E: 3/3午後-6 (Mw5.5)

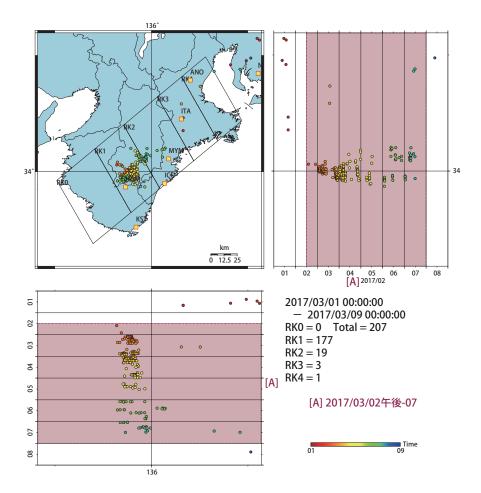
(b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。


第53図: 2017/02/12 0:00 - 02/20 0:00 の愛知県〜紀伊半島周辺における深部低周波微動の時空間分布図。エンベロープ相関法により決定。 (観測点名) TYS: 豊田神殿, NSZ: 西尾善明, ANO: 津安濃

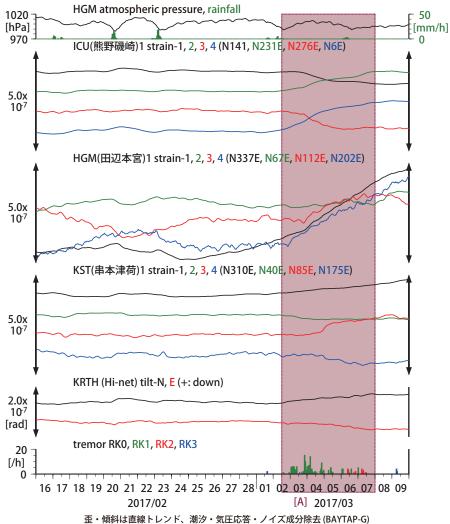


第54図: 東海地方における歪・傾斜観測結果 (2017/01/30 0:00 - 2017/02/20 0:00 (JST))

[A] 2017/02/13午後-17

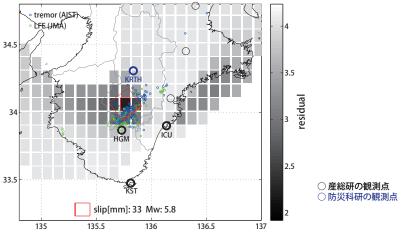


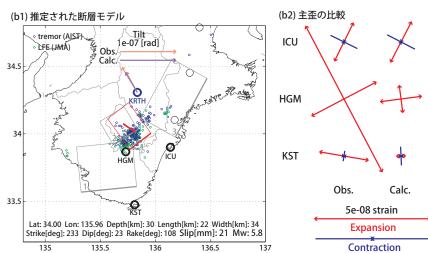
第55図: 2017/02/13午後-17の歪・傾斜変化(第54図[A])を説明する断層モデル。


(a) プレート境界面に沿って分布させた20×20km (大きさ固定) の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの 残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。

- (b1)(a)の断層面付近でのグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。 灰色矩形は最近周辺で発生した短期的SSEの推定断層面。
- 1: 2016/7/27-31 (Mw6.0), 2: 8/1-6 (Mw5.8), 3: 10/16午後-18午前 (Mw5.3), 4: 10/18午後-20 (Mw5.7), 5: 10/24-25午前 (Mw5.4) 6: 10/25午後-26 (Mw5.2)
- (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

第56図: 2017/03/01 0:00 - 03/09 0:00 の紀伊半島周辺における深部低周波微動の時空間分布 図。エンベロープ相関法により決定。

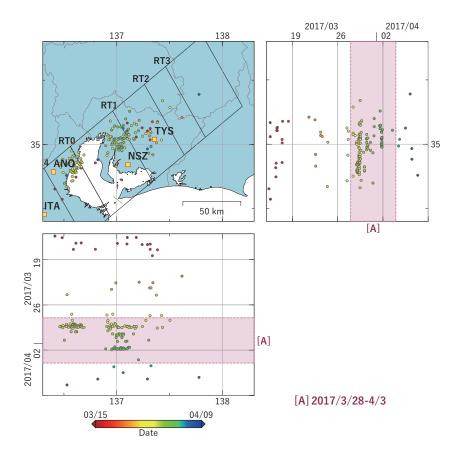

(観測点名) ANO: 津安濃, ITA: 松阪飯高, MYM: 紀北海山, ICU: 熊野磯崎, HGM: 田辺本宮, KST: 串本津荷



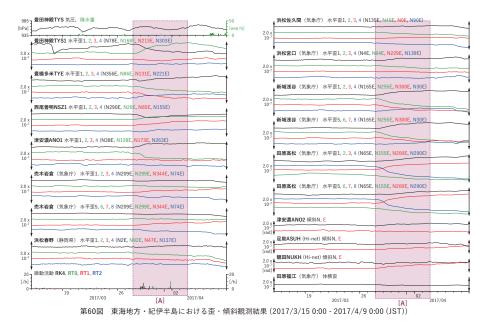
第57図: 紀伊半島における歪・傾斜観測結果 (2017/02/16 00:00 - 2017/03/10 00:00 (JST))

[A] 2017/03/02午後-07

(a) 断層の大きさを固定した場合の断層モデルと残差分布

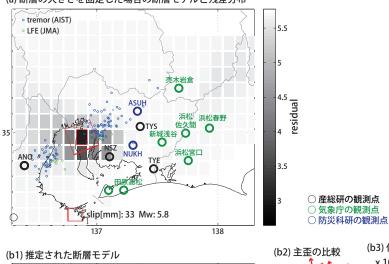

第58図: 2017/03/02午後-07の歪・傾斜変化(第57図[A])を説明する断層モデル。

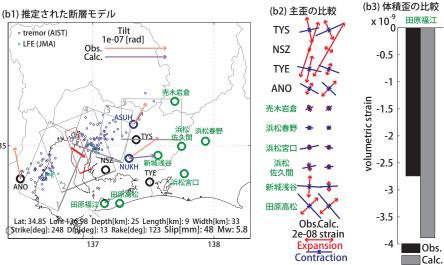
(a) ブレート境界面に沿って分布させた20×20km(大きさ固定)の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。


(b1)(a)の断層面周辺においてグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。

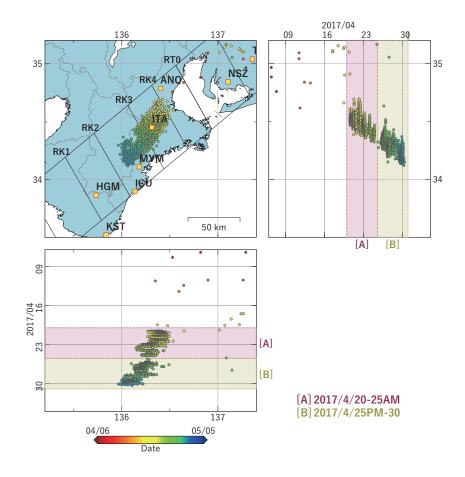
1: 2015/11/3午後-5 (Mw5.4), 2: 2016/10/2-3 (Mw5.5), 3: 12/9-11 (Mw5.8)

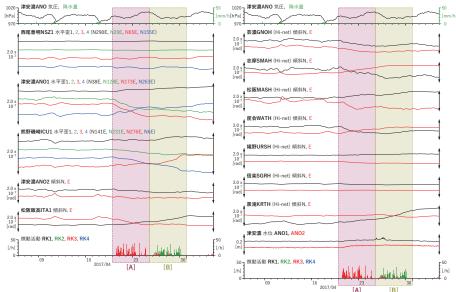
(b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。




第59図 2017/3/15 0:00-4/9 0:00の愛知県周辺における深部低周波微動の時空間分布図。エンベロープ相関法により決定。 (観測点名) TYS: 豊田神殿, NSZ: 西尾善明, ANO: 津安濃, ITA: 松阪飯高

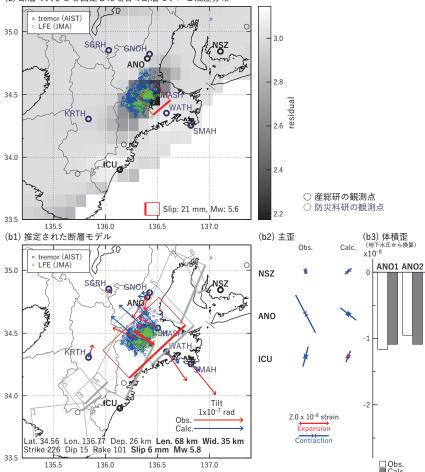
[A] 2017/03/28-04/03


(a) 断層の大きさを固定した場合の断層モデルと残差分布


第61図: 2017/03/28-04/03の歪・傾斜変化(第60図[A])を説明する断層モデル。 (a) プレート境界面に沿って分布させた20×20km(大きさ固定)の矩形断層面に対して、各々の断層面で最適なすべり面を選んだときの 残差の総和をその断層面の中心位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。

- (b1)(a)の断層面付近でのグリッドサーチにより推定された断層面(赤色矩形)と断層パラメータ。矢印は傾斜の観測値と計算値の比較。 灰色矩形は最近周辺で発生した短期的SSEの推定断層面。
- 1: 2016/7/27-31 (Mw6.0), 2: 8/1-6 (Mw5.8), 3: 10/16午後-18午前 (Mw5.3), 4: 10/18午後-20 (Mw5.7), 5: 2017/2/13午後-17(Mw5.8) (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。
- (b3) 体積歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

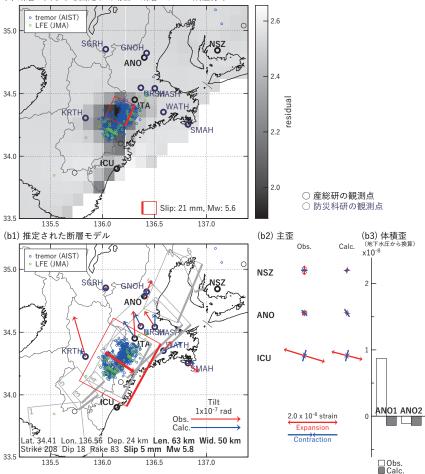
2017/4/6 0:00-5/1 0:00の紀伊半島における深部低周波微動の時空間分布図。 第62図 エンベロープ相関法により決定。


(観測点名) TYS: 豊田神殿, NSZ: 西尾善明, ANO: 津安濃, ITA: 松阪飯高, MYM: 紀北海山, ICU: 熊野磯崎, HGM: 田辺本宮, KST: 串本津荷

第63図 東海地方・紀伊半島における歪・傾斜・地下水観測結果 (2017/4/6 0:00 - 2017/5/5 0:00 (JST))

[A] 2017/4/20-25AM

(a) 断層の大きさを固定した場合の断層モデルと残差分布



第64図 2017/4/20-25AMの歪・傾斜・地下水変化(第63図[A])を説明する断層モデル。

- (a) プレート境界面に沿って分布させた 20x20 km (大きさ固定) の矩形断層面に対して、おのおのの断層面で最適なすべり量を選んだときの残差の総和をその断層面の位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
- (b1) (a)の断層面付近をグリッドサーチして推定した断層面 (赤色矩形) と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近周辺で発生した短期的SSEの推定断層面。 1: 2015/11/3-5 (Mw 5.4), 2: 2016/7/27-31 (Mw 6.0), 3: 2016/8/12PM-16 (Mw 5.6), 4: 2016/12/9-11 (Mw 5.8), 5: 2016/12/15-17 (Mw 5.8), 6: 2017/3/28-M-7 (Mw 5.8), 7: 2017/3/28-4/3 (Mw 5.8)
- (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。
- (b3) 体積歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

[B] 2017/4/25PM-30

(a) 断層の大きさを固定した場合の断層モデルと残差分布

第65図 2017/4/25PM-30の歪・傾斜・地下水変化(第63図[B])を説明する断層モデル。

- (a) プレート境界面に沿って分布させた 20x20 km (大きさ固定) の矩形断層面に対して、おのおのの断層面で最適なすべり量を選んだときの残差の総和をその断層面の位置に示した分布図。赤色矩形が残差の総和が最小となる断層面。
- (b1) (a)の断層面付近をグリッドサーチして推定した断層面 (赤色矩形) と断層パラメータ。矢印は傾斜の観測値と計算値の比較。灰色矩形は最近辺で発生した短期的SSEの推定断層面。
 - $1: 2015/11/3-5 \; (\mathsf{Mw}\; 5.4), \; 2: \; 2016/7/27-31 \; (\mathsf{Mw}\; 6.0), \; 3: \; 2016/8/12PM-16 \; (\mathsf{Mw}\; 5.6), \; 4: \; 2016/12/9-11 \; (\mathsf{Mw}\; 5.8), \\ 5: \; 2016/12/15-17 \; (\mathsf{Mw}\; 5.8), \; 6: \; 2017/3/2PM-7 \; (\mathsf{Mw}\; 5.8), \; 7: \; 2017/3/28-4/3 \; (\mathsf{Mw}\; 5.8), \; A: \; 2017/4/20-25AM \; (\mathsf{Mw}\; 5.8), \\ 6: \; 2016/12/15-17 \; (\mathsf{Mw}\; 5.8), \; 6: \; 2017/3/2PM-7 \; (\mathsf{Mw}\; 5.8), \; 7: \; 2017/3/28-4/3 \; (\mathsf{Mw}\; 5.8), \; A: \; 2017/4/20-25AM \; (\mathsf{Mw}\; 5.8), \\ 7: \; 2016/12/15-17 \; (\mathsf{Mw}\; 5.8), \; 6: \; 2017/3/2PM-7 \; (\mathsf{Mw}\; 5.8), \; 7: \; 2017/3/28-4/3 \; (\mathsf{Mw}\; 5.8), \; A: \; 2017/4/20-25AM \; (\mathsf{Mw}\; 5.8), \\ 7: \; 2016/12/15-17 \; (\mathsf{Mw}\; 5.8), \; 6: \; 2017/3/2PM-7 \; (\mathsf{Mw}\; 5.8), \; 7: \; 2017/3/28-4/3 \; (\mathsf{Mw}\; 5.8), \; A: \; 2017/4/20-25AM \; (\mathsf{Mw}\; 5.8), \\ 7: \; 2016/12/15-17 \; (\mathsf{Mw}\; 5.8), \; 6: \; 2017/3/2PM-7 \; (\mathsf{Mw}\; 5.8), \; 7: \; 2017/3/28-4/3 \; (\mathsf{Mw}\; 5.8), \; A: \; 2017/4/20-25AM \; (\mathsf{Mw}\; 5.8), \\ 7: \; 2016/12/15-17 \; (\mathsf{Mw}\; 5.8), \; 6: \; 2017/3/2PM-7 \; (\mathsf{Mw}\; 5.8), \; 7: \; 2017/3/28-4/3 \; (\mathsf{Mw}\; 5.8), \; A: \; 2017/4/20-25AM \; (\mathsf{$
- (b2) 主歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。
- (b3) 体積歪の観測値と(b1)に示した断層モデルから求めた計算値との比較。

鳥取県・岡山県・島根県における温泉水・地下水変化(2016年11月~2017年4月) 鳥取大学工学部・産業技術総合研究所

1. はじめに

鳥取県・島根県・岡山県は温泉が多く、その所在も地震活動と関連していると考えられる。この地方の特徴を生かし、国際ロータリー第2690地区、鳥取県西部地震義援金事業の一環として、温泉水観測網を山陰地方(鳥取県西部地震周辺及び鳥取県東部・岡山県北部地域)に整備し、地震活動と温泉水変化との関連を調べている。

2. 観測

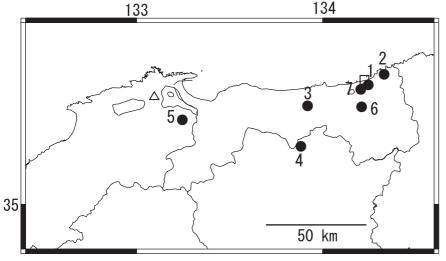
現在観測を行っている地点は7点である(第1図)。観測方法としては,温泉井に水位計や温度計(分解能:1/100°C)を設置し,測定値をデータロガーに収録,定期的に現地集録して,鳥取大学工学部でデータ処理し,温泉データと地震データ等との比較により関係を調べる。解析の結果は,速報として観測センターのホームページで公開している(http://www.geosd.jp/onsen_k/)。なお,湯谷(第1図の6)では2012年度から,その他の点では2016年6月からデータをテレメーター集録から現地集録に切り替えている。

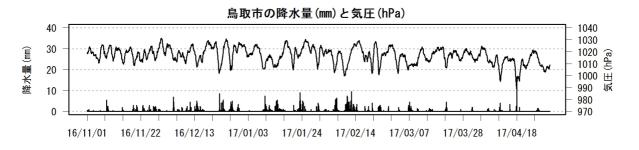
水位・水温の測定インターバルは10秒で1分間の平均値を記録している。温度センサーは、事前の温度検層により、湯谷温泉等を除いて、最も温度変化の大きい位置(深さ)に設置している(鳥取温泉175m、岩井温泉150m、三朝温泉25m、奥津温泉130m等)。

3. 結果 (第2~4図)

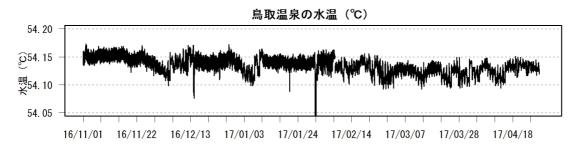
結果(原則として1時間値)を第2~4図に示す。気圧や気温の記録は、鳥取や松江の気象台の測定値を用いている。吉岡温泉の水温は48~49 $^{\circ}$ と42~44 $^{\circ}$ を行き来する変化を以前から繰り返していたが、2月後半から41~42 $^{\circ}$ で落ち着いている。岩井温泉や鷺の湯温泉の水位は降雨によって上昇することがある。鳥取温泉の水位は2016/10/21以降、上昇して振り切れたままのため、今回は水位のグラフを掲載しない。三朝温泉の水温は4/17に測定が停止して欠測である。鷺の湯温泉の2/14の水位・水温変化は大雪の影響と思われるが、詳細は不明である。

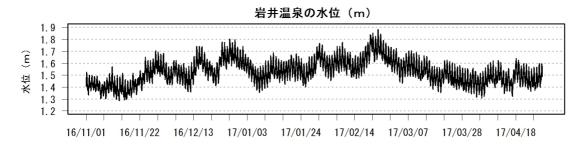
2016年11月~2017年4月の間に,第1図の範囲内(北緯34.8~35.8度,東経132.4~134.6度)で深さ 30km以浅でM4以上の地震は無かった。M4未満で観測点周辺に震度2以上の揺れをもたらした地震は,2016年11月に9回(震度3が1回,震度2が8回),12月に8回(震度3が2回,震度2が6回),2017年2月に1回(震度3が1回),3月に1回(震度2が1回),4月に2回(震度3が1回,震度2が1回)発生した。


今回の報告期間の直前の2016年10月21日に鳥取県中部の地震M6.6が発生し、以下の温泉で変化が見られた。鳥取温泉では水位が上昇した(水位計の測定範囲を超えた)。岩井温泉では水温が上昇し、その後ゆっくりと低下した。三朝温泉では水温が地震直後に低下した後に上昇し、その後ゆっくりと低下した。湯谷温泉では水温が地震直後に低下した後に上昇した。奥津温泉では水温が上昇した。鷺の湯温泉では水位が直後に上昇し、水温も上昇した。水温はその後低下した。

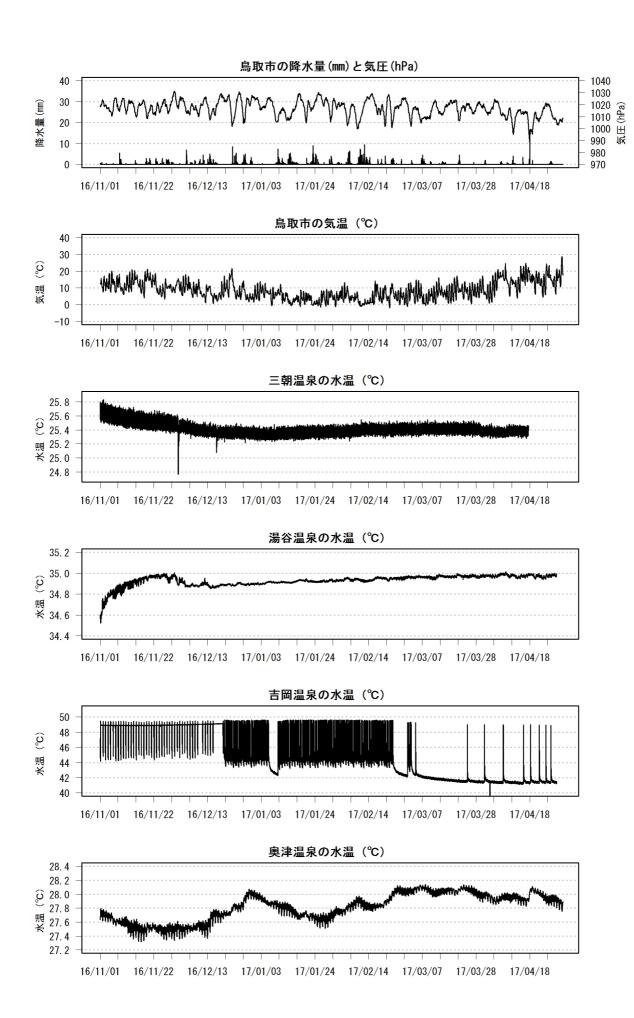

(野口竜也・香川敬生・西田良平・北川有一・小泉尚嗣)

第1図

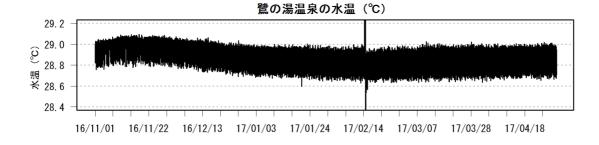

鳥取気象台(□)と松江気象台(△)および温泉水・地下水観測点(●)の分布。


1:鳥取温泉, 2:岩井温泉, 3:三朝温泉, 4:奥津温泉, 5:鷺の湯温泉, 6:湯谷温泉, 7:吉岡温泉









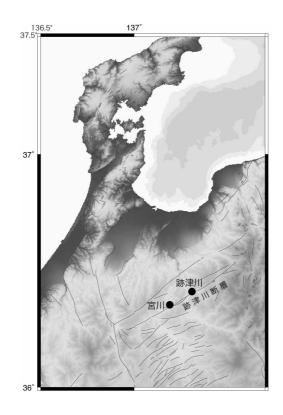
岐阜県東部の活断層周辺における地殻活動観測結果 (2017年2月~2017年4月)

Observation of Tectonic Activities around the Active Faults in Eastern Gifu Region (February, 2017~April, 2017)

產業技術総合研究所

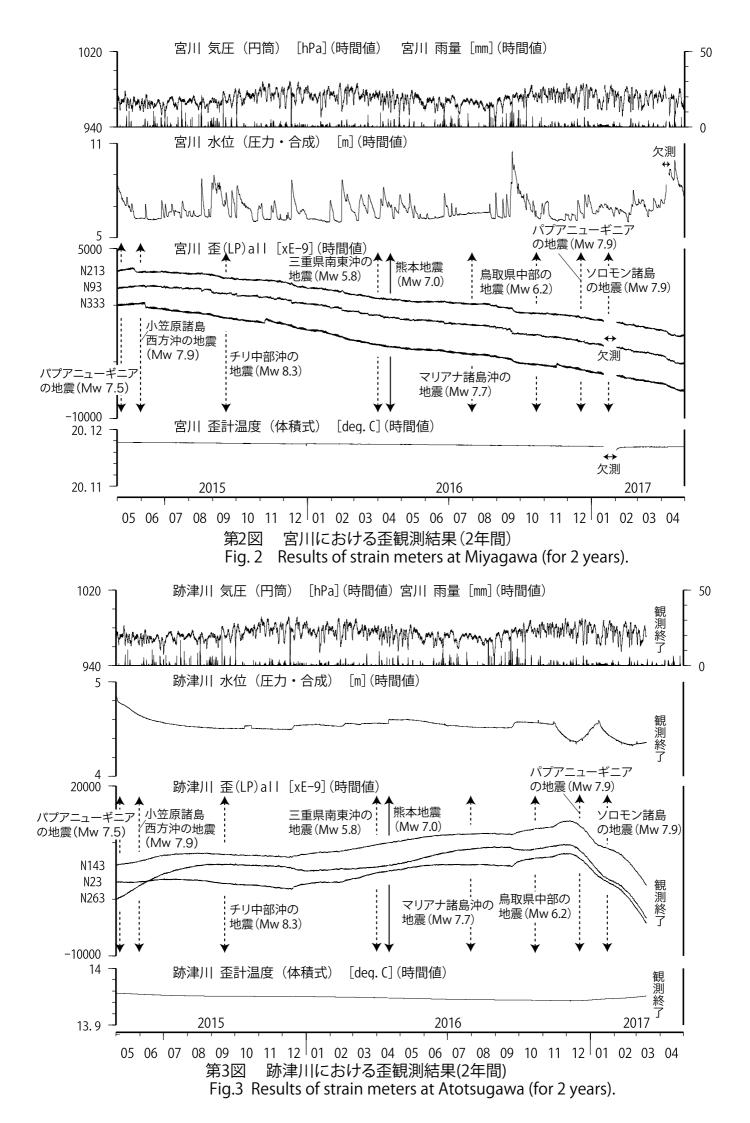
Geological Survey of Japan, AIST

1. 観測概要


産業技術総合研究所は跡津川断層沿いの宮川・跡津川において地殻活動総合観測設備を設置している(第1図). 宮川は深度約300mの坑井を掘削し, 坑底に3成分ひずみ計・高感度地震計(1 Hz, 3 成分速度計)を設置. 深度256.78~267.66mの滞水層での地下水位と体積温度計の計測も行なっている. 跡津川は坑道内に深度約50mの坑井を掘削し, 坑底に3成分ひずみ計を設置. 地下水位と体積温度計の計測も行っている. なお, 跡津川の観測は2017年3月14日に終了した.

2. 観測結果概要

宮川(第2図):水位, 歪計は潮汐変化を書く. 降雨の影響が大きい.


跡津川(第3図):水位, 歪計は潮汐変化を書く. 降雨の影響が小さい. 2002年4月初旬から数カ月周期 の温度, 歪の不安定な変動が続いている.

(木口努・今西和俊・松本則夫)

第1図 跡津川断層沿いの宮 川・跡津川における地殻活動 総合観測点位置

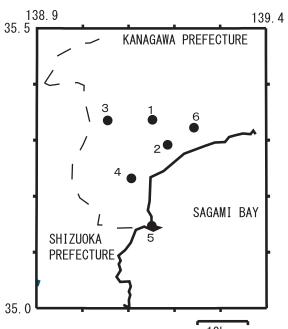
Fig.1 Location map of the observation boreholes at Miyagawa and Atotsugawa along the Atotsugawa fault.

神奈川県西部地域の地下水位観測(2017年2月~2017年4月)

神奈川県温泉地学研究所 • 産業技術総合研究所

1. はじめに

神奈川県温泉地学研究所では、神奈川県西部地震の予知研究の一環として、第1図・第1表に示した 6ヶ所に地下水位観測施設を整備し地下水位の連続観測を行っている。2017年2月~2017年4月の期間に重点を置いた観測結果を報告する。


2. 観測

第1図の6ヶ所の観測点では、地下水位の他,気圧・降水量が1秒サンプリングで観測され、神奈川県温泉地学研究所にリアルタイム送信されている。通常の解析には,これをもとに作成した1分値や1時間値を用いている。

3. 結果

結果を第2図(原則1時間値、真鶴・二宮のみ24時間平均値)と第3図(原則0時の瞬時値)に示す。第1図の範囲内(北緯35~35.5度、東経138.9~139.4度)では、2017年2月~2017年4月に深さ30km以浅でM4以上の地震はない。同期間に観測点周辺で震度2以上の揺れをもたらした地震を表2に示す。この期間では、2月19日の千葉県東方沖の地震(M5.4)の際に、大井観測井において、2cm程度のコサイスミックと見られる水位の変化(上昇)が観測された。

(板寺一洋・原田昌武・松本則夫)

参考論文

横山尚秀・他, 1995, 神奈川県西部地震予知のための地下水位観測施設と地下水位解析, 温泉地学研究所報告, 26, 21-36.

表1 観測点の情報

観測点	標高	井戸深さ	スクリーン	センサー
10000000000000000000000000000000000000	(m)	(m)	深さ (m)	深度(m)
大井	47	300	270-300	15
小田原	22	300	270-300	15
南足柄	143	150	120-150	32
湯本	67	300	250-300	20
真鶴	40	300	250-300	43
二宮	51	500	450-500	13

第1図 地下水観測点の分布 (●) 10km

●1:大井,●2:小田原,●3:南足柄,●4:湯本,

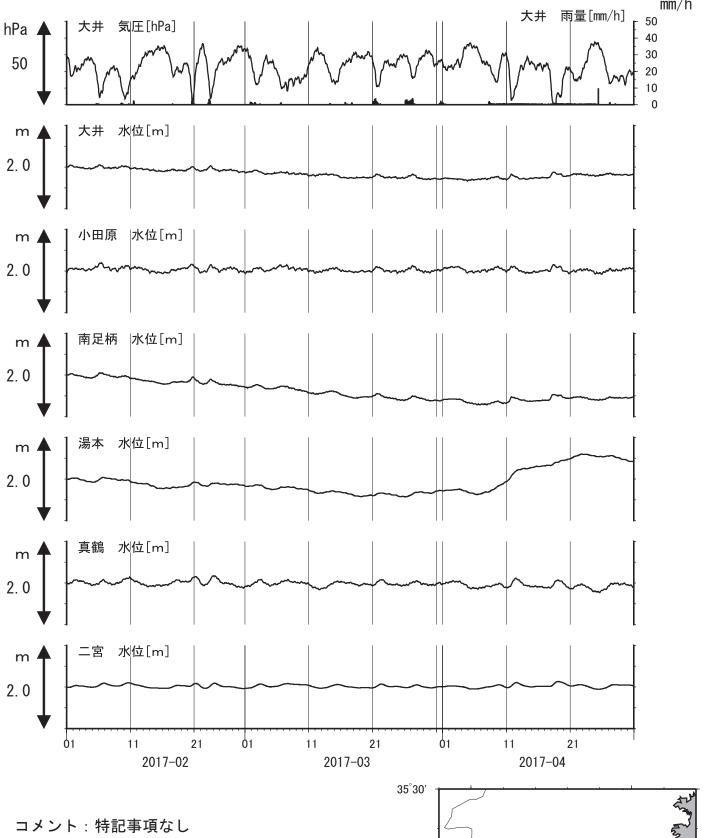
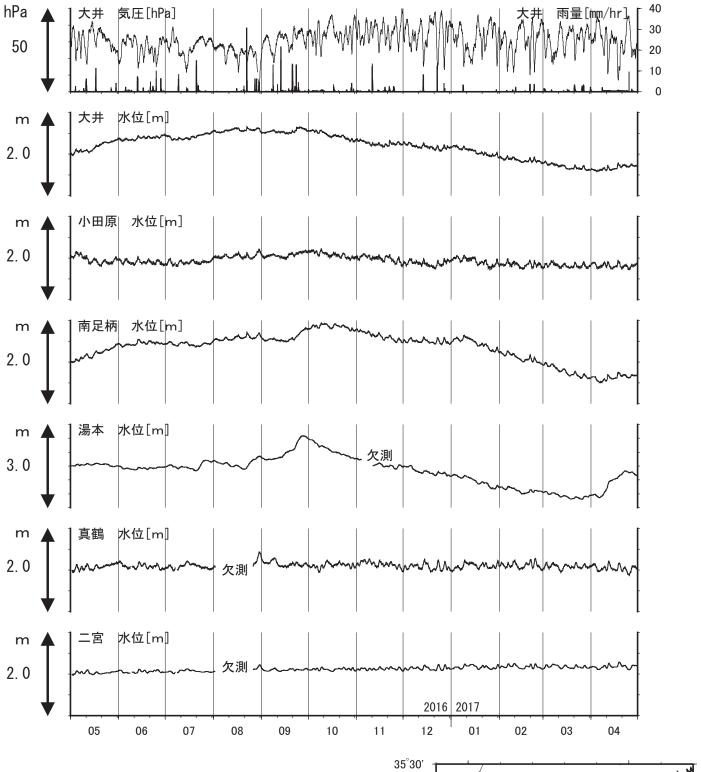

●5:真鶴,●6:二宮.

表2 観測点に震度2以上の揺れを与えたと推定される地震

No.	地震発生日時	震央地名	М	深さ	観測点最大震度
1	2017/2/19 18:19	千葉県北東部	M5.4	52km	2

神奈川県西部地域の地下水位観測 中期(時間値)

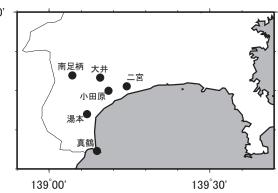
2017/02/01 00:00-2017/04/30 23:00



※真鶴・二宮は潮汐の影響が大きいので日平均値を 示している。他は一時間値(生データ)

第2図

神奈川県西部地域の地下水位観測 長期 2016/05/01 00:00-2017/04/30 23:00


mm/hr

コメント:特記事項なし

真鶴・二宮以外は毎正時の瞬時値を示している。

第3図

