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< Abstracts >

Effects of the Amount of Iron Based Catalysts
and Reaction Temperature on Coal Liquefaction

Takeshi KOTANIGAWA, Shinichi YOKOYAMA, Hiroshi NAGAISHI, Mitsuyoshi YAMAMOTO
and Yosuke MAEKAWA

Effects of the amount of iron based catalysts and reaction temperatures on the liquefaction of Taiheiyo coal was in-
vestigated with respect to hydrogen transfer to the products. The catalysts used were FeS: and a sulfate-promoted iron
oxide (Fe-sulfate). Amounts of the catalysts were varied in the range of 0.4% to 19% to coal and reaction tempera-
tures were changed between 648K and 723K. Conversions of coal was independent upon kinds of catalyst. Futhermore,
the reaction temperature of around 698K was found to be better for both catalysts. On the basis of the hydrogen trans-
fer to the products, it was found that the reaction products obtained at a lower or a higher temperature contained
higher aliphatic fraction and higher aromatic fractions, respectively. Another findings were observed in the results on
effect of amounts of catalysts. The FeS; catalyst required more than 8 wt% to coal in order to promote the liquefac-
tion reaction effectively, but the amount of Fe-sulfate catalyst was much smaller. Optimum amount of the Fe-sulfate
catalyst was found to be about 2% to coal with respect to effective liquefaction reaction of coal.

Key Words : Coal liquefaction, Iron catalyst, Effects of catalyst concentration, Effect of temperature

Emission Characteristics of Nitrous and Nirogen Oxides
from a Bubbling Fluidized-Bed Coal Combustion and Comparison
with the results from a Circulating Fluidized-Bed Combustion

Hideo HOSODA and Toshimasa HIRAMA

The effects of operating conditions, air staging, limestone feed and coal types on N;O and NOx emissions were exam-
ined using an experimental bubbling fluidized-bed combustor. N;O emission level increased with decreasing in bed tem-
perature and increasing in residual oxygen concentration and superficial gas velocity. Both of air staging and limestone
feed into the bed were effective for reduction of N:O emission. In general, N, O emission increased with nitrogen con-
tent in coal, though no reasonable correlation has been found between NOx emissions and the nitrogen content.

The emission levels of N.O and NOx from the bubbling combustion were compared with those from circulating com-
bustion, which was reported previously. Although total emissions of N:O and NOx from both types of combustion
were almost same level, N,O emission from the bubbling combustion showed lower level than that from the circulating
combustion. The reason for the difference in the emission levels of N:O and NOx from both types of combution was
qualitatively discussed to take into account both differences in flow dynamics of bubbling and circulating beds and in

chemical reactions under heterogeneous and homogeneous systems.

Key Words :  Coal combustion, Bubbling fluidized-bed, Circulating fluidized-bed, N.O, NOx



Gas Holdup in a Bench-Scale Direct Coal Liquefaction Reactor

Kiyoshi IDOGAWA, Hiroshi NAGAISHI, Hideo NARITA, Takashi FUKUDA

Takeshi KOTANIGAWA, Ryoichi YOSHIDA, Tadashi YOSHIDA, Shinichi YOKOYAMA
Mituyoshi YAMAMOTO, Akiyoshi SASAKI, Masahide SASAKI, Toshimasa HIRAMA
Yosuke MAEKAWA, Shigeru UEDA and Tadatoshi CHIBA

Gas holdup was measured for gas-liquid(hydrogen gas,” decrystallized anthracene oil / creosote oil) system and gas-
slurry (hydrogen gas,”Taiheityo coal particles,”decrystallized anthracene oil) systems in a 0.1 tonday continuous
direst coal liquefaction reactor. The measurements were carried out at temperatures ranging from 289K to 723k and a
pressure of 30 MPa by two methods, a differential pressure method for the gas-liquid systems and a gas-quenching
method for the gas-slurry system.

The gas holdups for both systems were correlated with the gas flow pattern just above the reactor entrance. Though
the present gas holdup data were in reasonable agreement with those published by other investigators, a difference was

found between the dependencies of gas holdup on superficial gas velocity in the preheater and in the reactor.

Key Words : Gas holedup, Coal liquefaction, High pressure, High temperature, Slurry reactor, Gas density,
Liquid Density

Characterization of the Surface Layer of Various Metals
Implanted with Nitrogen

Kastumasa YABE, Okio NISHIMURA, Takanobu FUJIHANA
and Masaya IWAKI

The surface layers of various metals (Al, Ti, V, Fe, Ni, Co, Cu, Zr, Nb, Mo, Sn, Ta and W) which were implanted with
nitrogen at doses of 3X10'" and 1 X 10N cm™* were analysed by means of Rutherford backscattering spectrometry and
X-ray diffraction. For the lower dose, metal in the implanted layer was partially nitrided. In some targets ( V, Ti, Zr
and Ta) a solid solution was created, accompanying an isotropic enlargement of the lattice for the cubic metal (V, Ta)
and an anisotropic c-direction enlargement for the hexagonal metal (Ti, Zr). When an amount of mitrogen large enough
to saturate the implanted region of the targets was implanted, the most stable nitride was created in this region, and
the amount of retained nitrogen increases with a decrease of the heat of formation of the nitride. This result shows
that retention of nitrogen in the target is affected strongly by the reactivity of the matal to nitrogen.

Key Words :  Nitrogen ion-implatation, Metal, Surface analysis, Surface layer, Characterization




Surface Structure of Nitrogen Ion-Implanted 304 Stainless Steel

Okio NISHIMURA, Kastumasa YABE, Kazuo SAITO, Toshiro YAMASHINA
and Masaya TWAKI

Modification of the structure and the creation of nitrides in the surface layer of 304 stainless steel due to nitrogen
ion implantation with doses of 110", 3X 10" and 5X 10" N cm™* at an accelerating potential of 90kV were investi-
gated by X-ray photoelectron spectroscopy combined with argon ion sputter etching. In a thin surface layer of
unimplanted steel there is a structure which consists of a chromium enriched oxide layer and an adjacent inner layer en-
riched by nickel. After the ion implantation, the double-layer surface structure remained, but chromium enrichment was
hanced and the thickness of the chromium-rich oxide layer increased with an increase in the implantation dose. This
modification can be explained qualitatively by radiation-enhanced migration of metal atoms to the surface and their
oxidation in a sub-surface reaction zone. The creation of Cr:N and Fe.N in the main area of nitrogen distribution and

CrN in the chromium enriched layer near the surface was observed.

Key Words :  Nitrogen ion-implatation, Stainless steel, X-ray Photo-electron spectroscopy, Surface structure.

Carbonization of Aromatics with IV-Group Halides (1)

— Carbonization of Quinoline with ZrCl, and High Temperature
Treatment of Carbonized Products —

Tomiki TAKAHASHI, Kunio HIROSAWA, Masao HINO, and Mikio MORITA
Shiniti GAMO, Shiniti TAKEDA and Noboru TAKENO

Qninoline could be carbonized at 300-450°C using of ZrCls as the carbonization promoter. The carbonization reaction
path of quinoline, changes of Zr left in carbonized products by high temperature treatments up to 2500°C and the oxida-
tion of carbonized and graphitized products (powder) in air have been studied.

The formation of a complex between quinoline and ZrCli and the analyses of Tetrahydrofuran-solubles in carbonized
products led to the conclusion that the carbonization reaction of quinoline is a kind of additional polycondensation of
the quinoline molecules, in which complexes formed between ZrCl and quinoline act as reaction intermediates and the
hydrogen atoms unbound move to other parts of molecules to produce hydroaromatic rings, followed by partial ruptur-
ing and isomerization of the hydroaromatic rings formed.

7rCl, added as a carbonization promoter, was left mainly as loose ZrO: crystals in carbonized products, which devel-
oped into rigid crystals by treatments up to 1500°C and changed to ZrC crystals at higher temperature treatments of
92000-2500°C : ZrO. /C composites were formed at up to 1500°C and ZrCC composites at 2000-2500C.

The carbonized products from quinoline were graphitized by as the heat treatment temperatures rised.

The reactivity in air of ZrC,/C composites formed at higher than 2000°C was almost the same as that of a mixture
of ZrC and C, and that of the parent carbon material decreased with the growth of the graphite structure by an increase
in the heat treatment temperatures. Similarly, the parent carbon in ZrO:/C composites showed a graduall decrease in
reactivity for oxidation with an increase in the heat treatment temperatures, though more reactive than ZrC,/C com-

posites.

Key Words :  Quinoline, ZrCls, Polycondensation, Carbon composites, Oxidation



Carbonization of Aromatics with IV -Group Halides (N )

—Lubricative Properties of Ge,”C Composites —
Tomiki TAKAHASHI, Kunio HIROSAWA, Kazunori UMEDA and Mikio MORITA

Ge,”C composites could be prepared by the polycondensation of authracene with Gel.: at 4007C, followed by the high
temperature treatments of polycondensed products from 750 to 3000°C. The lubricative properties of Ge,”C composites
formed were studies by measurement of friction factor, based on finding of their soft nature at time of pulverization.
The friction of carbonized and graphitized Ge,”C composites was found to decrease with the development of lamellar
structure of the parent carbon materials. Nevertheless, Ge”C composites, prepared at even a lower temperature range
from 1200 to 1500°C, showed small friction factors which were similar to those of graphite materials. This was consid-
ered to be due to the formation of composites with Ge.

Key Words :  Anthracene, Gels, Polycondensation, Carbon composites, Lubrication
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Table 1 Activation energies and frequency factors

Catalyst
FeS: Fe-sulfate

E*' A, E.*2 A, E*' A, E2*2 A,

18.5 3.6X10°|10.3 9.4X10'| 36.6 3.3x10{ 8.8 5.7x1(*
%1 kcal/mol (648K ~698K), *2 kcal/mol (698K ~723K)

g s
2 Fe-sulfate

c 4

0

o

E 3+

3

L

g

o 27
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o 1A

o

S 4

2 o4+————T—T—7T—

T 640 660 680 700 720 740

Reaction temp.(K)

Fig. 3 Effect of reaction temperature of hydrogen
consumption
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Table 2 Effect of reaction temperature on coal conversion with tetralin under 10MPa of H: in the presence of FeS:

or Fe-sulfate catalyst

Reaction Conv. of H-consumed BS fraction

Catalyst™ Temp. (K) Coal(g)d. a. . Coal (wt%) (wt%) *? C H Ouit
FeS; 648 2.75 47.2 0.9 83.1 10.0 6.8
673 2.73 61.1 2.1 82.6 9.2 8.2

698 2.70 84.8 3.5 84.0 9.5 6.5

723 2.77 95.4 4.1 84.0 8.0 8.0

Fe-sulfate 648 2.68 29.5 1.6 83.7 9.2 7.1
673 2.70 57.6 3.5 83.9 9.6 6.5

698 2.77 78.9 4.1 85.0 9.4 5.6

723 2.73 88.0 4.5 84.3 8.0 7.7

%1 0.5¢ of each catalyst *2 Hydrogen consumed(g)/coal(g

~

d. a. f.

Table 3 Effect of amounts of cétalyst on coal conversion with tetralin under 10MPa of H. at 723K

Conv. of H-consumed *

Catalyst™! (wts6) ™! Coal(wt%) |Tetralin(mol%) (wt%) ** H/C™® Ha
none 0 79.2 17.3 2.62 1.07 0.27
FeSz 0.55 80.8 19.8 3.50 0.94 0.34

1.89 84.1 15.8 3.36 1.01 0.37
8.00 87.2 9.9 3.17 1.05 0.25
19.30 95.4 4.2 4.11 1.14 - 0.27
Fe-sulfate 0.42 ‘84.6 15.3 3.98 1.02 0.26
2.00 83.0 13.9 2.65 1.06 0.27
8.10 85.0 9.4 3.48 1.03 032
19.30 88.0 5.0 4.54 1.14 0.29

%1 Catalyst(g)/coal(g)d. a. f. %2 Hydrogen consumed( g )/coal{g)d. a. {.

%3 Values of BS fraction
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CTEHGBILEE 21T 72 DThH B, 2o DREH
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ARBR 2 EORES A % Fig.2 2R, BA, SCB
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Table 1 Properties of coals used in this work
Proximate (wt. %) Ultimate (d. a. ., wt. %) FR(—)**
Mois. Ash V.M. F.C. C H N S 0
T. 4.8 15.5 47.6 32.1 77.2 6.6 1.0 0.3 14.9 0.67
SP 12.5 5.8 37.1 44.6 74.8 3.9 1.1 0.2 20.0 1.20
P 4.4 8.5 39.5 47.6 80.4 4.8 1.4 0.4 13.0 1.21
CX 7.3 6.2 34.0 52.5 81.5 4.9 1.2 0.2 12.2 1.54
D 5.4 9.6 28.7 56.3 84.3 4.8 0.9 0.7 9.3 1.96
BA 8.8 7.0 26.8 57.4 84.8 4.4 1.9 0.3 8.6 2.14
TC* 0.7 46.6 11.2 41.5 90.9 1.4 1.4 6.2 (0O+S) 3.71
JE 1.1 9.4 14.8 74.7 90.0 4.4 2.1 0.7 2.7 5.05

*  devolatilized at 900C under partialy oxidized condition in a bubbling fluidized bed

* % fuel ratio ; ratio of fixed carbon to volatile matter
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Fig. 2 Particle size distributions of coals, char, sand
and limestone

Table 2 Experimental conditions

Bed temperature, ty, 750~900C
Superficical gas velocity, u, 1.2~1.9m/s
02 concentraction in flue gas, CO, 2.0~5.0%
Coal feed rate 3.5~4.2kg/h
Fluidized bed height*, L, ca. 0.3m

* at 850°C and 1.6m/s
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1. Introduction

For proper design of a chemical reactor and
its operation it is vital to have sufficient knowl-
edge about hydrodynamic behavior in the reac-
tor as well as the reaction mechanism and rate.
In particular, for two-phase and three-phase
fluidized-bed reactors, gas holdup is one of the
fundamental characteristics which governs the
bulk flow pattern and the residence time distri-
bution. The direct coal liquefaction system is a
typical example of such reaction systems, con-
sisting of hydrogen as the gas phase and coal
and vehicle oil as the slurry phase. Normally, the
system is operated at a temperature and pres-
sure as high as about 720 K and 15 to 20 MPa re-
spectively. The hydrogen gas holdup primarily
affects the residence time distribution, which re-
sults in variations in coal conversion, product
yield distribution and physical properties of the
slurry phase. Therefore, it is very difficult to
predict the flow behavior in the reactor directly
from cold-model experiments. In addition, the
variations in turn affect not only the design of
operationg variables to avoid residual solid ac-
cumulation in the reactor and to introduce
quenching hydrogen gas into the reactor, but
also the subsequent separation processes for
gas-slurry and solid-product oils.

Mainly because of the difficulty in the opera-
tiong experimental system and measurements
under high-pressure and high-temperature con-
ditions mentioned above, a very limited number
of paperg?® #2116~ haye 5o far been published
on the flow behavior in liquecation reactors.
Values of gas holdup have been often reported
to be several times higher that those in air-water
systems at room temperature and atmosheric
pressure, even at the same volumetric gas veloc-
ity. This suggests that the flow in reactors tends

to be a homogeneous bubbly flow®** which
would inevitably prevent rapid slurry mixing.

Once mixing becoms insufficient, and unde-
sirable operating situation would occur, pre-
venting the reactors from stable operation by
forming dead space, a locally heated zone and a
glurry lump or plug.

The present paper reports gas holdup data
obtained by two methods, ie., a differential-
pressure method and a gas-quenching method,
in a 0.1 ton/day continuous direct coal lique-
faction reactor which has been operated in
Hokkaido National Industrial Research Insti-
tute as a part of the Sunshine Project.

2. Experimental

2.1 Materials

Particles used in the present experiments
were Tailheiyo coal particles pulverized to under
100 mesh and dried at about 380 K until a con-
stant weight was attained in an air stream
under atmospheric pressure. Results of the
proximate and the ultimate analysis of the coal
are listed in Table 1. The coal particles were
slurried with vehicle oil and fed to the reactor
with catalyst particles and hydrogen gas. Gas
holdups were measured in two kinds of systems;
(1) non-reactive hydrogen gas-vehicle oil (gas-
liquid) systems and (2) a reactive hydrogen gas-
coal slurry (gas-slurry) system. In the former
system, decrystallized anthracene oil (DAQO) or
creosote oil (CRO) was used as the liquid phase.
Distillation curves of CRO and DAO are shown
in Fig. 1. In the latter system, only DAO was em-

Table 1. Analysis of Taiheiyo Coal

Proximate Analysis [W1%, wet base]

%1 This paper was reproduced from Journal of Chemi-
cal Engineering of Japan, Vol.27, No.1(1994) pp.95
-101 by the permission of the Society of Chemical
Engineers, Japan.

% 2 Resources and Energy Division.

%3 New Energy and Ind. Tech. Dev. Organization.

*4 Dept. of Metallurgical Eng., Hokkaido Univ.

Moisture Ash Volatile Matter Fixed Carbon
5.90 12.55 44.64 36.91

Ultimate Analysis [Wt%, d.a.f. base]

C H N N o}
73.24 6.63 1.59 0.31 18.23
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Fig.1 Distillation curves for creosote oil and decrystellized
anthracene oil

ployed as the vehicle oil and was mixed with coal
particles at a weight ratio of 6 to 4 to form the
slurry. Red mud crushed to under 100-mesh size
together with elemental sulfur were added to the
slurry as a catalyst and a sub-catalyst. Their
weight ratios to the raw coal particles were 0.05
and 0.005 respectively. The resultant density of
the coal slurry was about 1240kg,/ m’ under the
present experimental conditions.

2.2 Apparatus

A schematic diagram of the 0.1 ton,/day con-
tinuous direct coal liquefaction process is
shown in Fig.2. Coal slurry was fed into a
preheater (4; R-101) by a slurry pump (3) from
a slurry tank (1). The preheater had an inner di-
ameter, D., of 4.0cm and a height, H, of 100cm.
The slurry passed through the preheater then
entered a reactor (5; R-102) with D, of 8.0cm and
H of 100em. Hydrogen and recycle gases were
supplied into the preheater through a gas heater
(17) by a hydrogen compressor (19; C-101) and
a recycle gas compressor (15; C-102), respec-
tively. Recycle gas contained not only hydrogen
gas but also those produced by coal liquefac-
tion. A representative composition is shown in
Table 2. The gases and the slurry were mixed
before their entrance into R-101. The mixture
was then fed to the reactor after being heated to
a desired temperature in the preheater. The
inner diameters of the injection nozzles of both
R-101 and R-102 were 0.60cm and their bottom
shapes were of an inverse-conical type to

POOEER

Yant

slurry feed tank (@  high-tempersture separator @  water sealed tank
circulating pump (@®  let-down vaive @  mist separator
shery feed pump @  product reservoir @®  recyclic compressor
preheater @ low-temperature cooler @®  accumuiator
reactor @ @ heater
high-temperature cooler @  cleaning water reservoir ®  hydrogen cylinder

@  hydcogen compressor
Fig. 2 Schematic flow diagram of 0.1 ton,“day direct
coal liquefaction process

Table 2. Composition of the recycle gas

[wtd%]

H, CH, CO, GCiH, GCHy CiH, GCiHy HS
9942 0051 0416 0016 0038 0034 0008 0.02

mass flow meter transducer of pressive difference

45000
B
- B0 1 1 — To V-103
A
X ~— B
DE— &
o] Re102
":":"‘ reactor
v-109 c-101 :
Hr w From R-101 T

Fig.3 Schematic diagram of system for diferential-
pressure measurement

promote dispersion of gas and liquid or slurry.
The effluents from R-102 were separated into
gas and liquid or slurry in the high-temperature
separator (7; V-103), recycling the former as
described above and storing the latter in a reser-
yoir (9).

2.3 Methods of gas-holdup measurement

a) Differential pressure method

A differential-pressure method was employed
for measurement of gas holdup in the reactor,
with which a pressure-line system was con-
nected as shown in Fig.3. Three 4mm i.d. tubes, A,
B and C, were installed at the wall to detect the
static pressure at three depths of 0, 20, and 80
cm from the bottom surface of the upper flange
of the reactor. To prevent coke-blocking near
the tips of the tubes, a steady hydrogen gas sup-
ply was maintained through each tube at a flow

—2—
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rate of about 280 Nent/'s. This worked well for
the gas-liquid systems. However, the gas supply
was not effective for the gas-slurry system. The
tips and the inside wall surfaces of the tubes
were frequently blocked by fine solid particles of
coal and catalyst and heavy coal-derived liquids,
resulting in significant errors at the observed
pressure.

The tip of the outlet tube was located at the
same depth as tube B, i.e. 20cm from the bottom
surface of the upper flange, above which a stag-
nant gas phase was formed. Hence, in this
method, the differential pressure measured be-
tween tubes A and B gives the gas density, o, ,
while that between B and C gives the mean den-
sity, o, of mixture of the gas and the liquid
phase. The density p, of the liquid phase can
further be determined by extrapolating the su-
perficial gas velocity, u,, to Ocm,”s. Once the
densities, p, o, and p, are known, the gas
holdup, &,, is calculated by the following equa-
tion:

&, = (0,—p)/(0,—p,) (1)

b) Gas quenching method

For the gas-slurry system, gas holdups in the
preheater (R-101) and in the reactor (R-102)
were evaluated by a gas quenching method.
Here, the reactor system was first settled at a
steady state for a given temperature, pressure,
gas and slurry flow rates. Then, the gas feeds
from both the recycle and the hydrogen gas
compressors (C-102 and C-101 respectively) into
R-101 were shut off as quickly as possible while
keeping the slurry supply at an unchanged rate.
After the gas was quenched, all the gas bubbles
in R-101 and R-102 disappeared within a meas-
ured time, leaving a slurry-free space which was
gradually filled with the slurry fed successively.

il!

50 i &
i = z 408 ==
IS i - 1 . :
N T T e e
30— : — *l
T — if‘fzf "1’} T =|‘~7 )
20 8

A
Fig. 4 Typical observed change of slurry level in V-103
with time after quenching gas:
Q, = 5500 Nent s
T,= 673K, T,= 723K

When the gas space was filled up, the slurry
overflowed into the high-temperature gas-
slurry separator, V-103 in Fig. 2. Responding to
this, the slurry level in V-103 varied with time
after the gas quench. The level first dropped
quickly due to the effect of sudden gas quench-
ing. Then, it remained constant for a while be-
fore the slurry overflowed from R-102. The level
variation in V-103 was measured by a d.p. cell
level meter.

Figure 4 demonstrates a typical variation of
the slurry level with time. It is clearly shown that
the slurry level remains almost constant for the
period 6,7, from A to B required for the slurry
to replace the gas volume, Ve, left in R-101
and R-102 by the gas quenching. In this example,
gas supply into R-101 was quenched at point A
and the slurry overflow into V-103 commenced
at point B. Though the variation is seen to be
disturbed by irregular noise due to actuation of
the pressure-regulated valve, it is not affected.
From 6,; for the constant level, the overall gas
holdup, &,r,in R-101 and R-102 can be calculated
by the following equation:

Vigr = (W{z /psl) O,r (2)

where W, and p, respectively represent the
mass flow rate of slurry and slurry density. The
gas holdup, ¢, , in R-101 can be obtained by the
same procedure as above by by-passing the
effulents from R-101 to V-103 and consequently,
€z 1n R-102 can be given from the difference be-
tween £, and ¢, as

Vign = Vrggr— Viea (3)

where ¥ and ¥, denote the volume of R-101 and
that of R-102 respectively.

3. Results and Discussion

3.1 Gas-liquid systems

Figure 5 shows effects of the superficial gas
velocity, «,, on the gas density, p,, at various
temperatures and a pressure of 30 MPa. For
both vehicle oils, CRO and DAO, p,, increased
with temperature when u, was smaller than 2
cm/s. When u, exceeded 2cm’s, values of p,,
for both vehicle oils at different temperatures
seemed to approach a value for the CRO-H; sys-
tem at 473 K. The increase in p, with tempera-
ture suggests that the light-oil fraction
vaporizes more rapidly at higher temperatures
and that the effect of temperature on vaporiza-
tion is much more predominant than that on the
hydrogen gas density, which decreases with in-
creasing temperature. On the other hand, the
vaporization was suppressed as #, increased




T E TSR FERT# i 655 (1996)

30 T T
[ I | a P=30MPa
t'?_‘ 20 oo O -
E eDe o
2 O 00 g
L: 101 Pz 473 o 'O'O"“_
Qe A
PHz723
! 1
00 1 2 3
Ug [cm-s™]
Key System T [K]
J CRO-H, 473
| CRO-H, 573
O DAO-H, 673
o DAO-H, 723
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because the residence time of slurry decreased
with the increase of %,, and this result led to a
decrease of p, with increase of u, at higher
temperatures. The temperature dependency of
liquid density, o,, when %, was p; to 3em/’s and
a pressure was 30 MPa, is shown in Fig. 6.
Within the present operating conditions, no es-
sential difference can be seen between the densi-
ties for CRO and DAO, and the present data
agree well with those previously observed by the
authors in a batch apparatus'. In both the pre-
sent and the batch'® cases, ©, decreased line-
arly with temperature.

Based on the density change in o, and p,
mentioned above, values of the gas holdup, &, in
R-102 were calculated by Eq. (1). The result is
shown in Fig.7. Although the calculated data
scatter a little widely, the values of €, seem to be
almost independent of temperature and kind of
vehicle oil, and increase with the increase of %, .
It should be noted that the values of g, are
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Fig. 6 Temperature dependency of liquid-phase density

higher than twice those observed by Akita and
Yoshida®’ for an air-water system at room tem-
perature and atmospheric pressure. While they
separetely supplied gas and liquid at atmos-
pheric pressure, pressurized gas and liquid were
simultaneously supplied into the reactor in the
present experiments. According to our previous
photographic observations®™®, high pressure in
the former case causes size reduction of gener-
ated bubbles due to the increase in kinetic en-
ergy. In addition to size reduction, the simultan-
eous gas-liquid supply at high pressure also
causes the formation of an active jet, at the nose
and the circumference of the nozzle from which
tiny bubbles are generated®. The bubbles as-
cended through the liquid phase as a swarm
with less frequent coalescence than in atmos-
pheric air-water systems.

3.2 Gas-slurry system

Gas holdup in the gas-slurry system was
measured at 30 MPa and temperatures in the
preheater (R-101) and in the reactor (R-102) of
673 K and 723 K. Fig.8 shows the variation with
superficial gas velocity, %,, of the gas holdup,
ga,in R-101 and &, in R-102. In the present ex-
periments, %, in R-101 was always higher than
that in R-102 at a given flow rate. Hence, as
shown in the figure, &, was always preater
than ¢,,. However, the values of ¢;; seem to be
unusually high compared with those in air-
water systems at room temperature. As men-
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Fig.7 Effects of superficial gas velocity and temperature
on gas holdup in gas-liquid system
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tioned above, it seems to produce smaller-size
bubbles to simultaneously supply pressurized
gas and liquid. In addition, the slurry viscosity
in R-101 seems to increase with the progress of
volumetrie swelling of coal particles and the ac-
cumulation of heavy-oil products on the surface
of coal particles, both of which make the mean
slurry viscosity in R-101 much higher than the
viscosity of water® at room temperature. The
high slurry viscosity in turn reduces the initial
bubble size and the ascending velocity of bub-
bles, and all of these effects contribute to the un-
usually high values of ¢,;. In contrast to ¢,
the observed gas holdup, &,,, in R-102 is in good
agreement with values for the gas-liquid sys-
tems shown by a broken line in the figure, since
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Fig. 9 Effect of u, on ¢,/(1—¢,) at We™ Re,*® =7000;
keys are listed in Table 3

the slurry viscosity in R-102 would be as low as
that of the coal liquids, CRO and DAO, due to
the progress of the liquefaction reaction.

According to our previous experimental work
regarding gas holdup, ¢,, in a high-pressure
bubble column with a single orifice®, ¢, was
found to be closely related to the pattern of bub-
ble formation above the distributor which is
characterized by a term of dimensionless num-
bers, We" Re," . Here, the term was applied to
the analysis of the present gas holdup data. For
a jet for mation regime with We" Re,*® =7000,
the relationship between ¢,/(1—¢,) and %, is
shown in Fig. 9, where the keys and experimen-
tal conditions are listed in Table 3 and the physi-
cal properties necessary for the calculation of
We and Re, numbers are in Table 4. It is clearly
indicated in the figure that the holdup ratio in-
creases in proportion to u,. The values of
{e,/(1—¢)}u, ' are plotted against We™ Re,*
in Fig. 10, but they seem to be substantially inde-
pendent of the dimensionless term regardless of
the flow pattern, i.e. the bubbling or jetting re-
gime, and they are correlated by the following
equation:

g,/ (1—g,) = 012u, (4)

The above correlation differs from that for an
air-water system®’ (the broken line in the fig-
ure) which is expressed as '

g,/ (1—g;) = 0.005u)"(We"'RelH™  (5)

A possible explanation for the difference is as
follows. In the air-water system the bulk bubble
flow and coalescence between bubbles were af-
fected by the pattern of bubble formation above
the gas distributor with a single orifice, and the
bubbles grew in size by coalescence. In the pre-

Table 3. Experimental conditions and keys for Figs. 9 to 12

Key D, dy T P u;  Liquid Method  Authors
[em] [mm] [K] [MPa] [cm/s]

e 8 6 289-573 30 005 CRO DP

O 8 6 673,723 30 0.05 DAO DP present
® 38 6 723 30 0.05  slurry QM authors
© 8 6 373-573 30 0.05 CRO QM

b 8 6 673 30 0.05 DAO QM

A 1315 473-654 5-17.4 025 recycle QM Hayakawa®

solvent

B 24 18.7 301-323 13-23.5 0.17 CRO DP  Mochidal®
O 24 187 573 235 0.17 DAO DP

¥V 6.6 700-722 13.6-17 0.55  slurry RT Tarmy,
VvV 61 700-722 13.6-17 1.65  slurry RT et al '8 19
O 120 753 31 slurry Kiirten'"

DP: differential pressure; QM: gas quenching; RT: radioactive tracer
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keys are listed in Table 3

sent systems, on the contrary, the initial bubble
sizes were so small that they exhibited neither
detectable dependency on bubble formation pat-
terns as shown in the figure nor bubble growth
comparable to that in the air-water system. In
Fig. 11 the present data on g, in the reactor are
compared with those published by other investi-
gators for different reactor diameters, D,. As
can be seen, the gas holdup does not depend on
D, at a given u,, again suggesting that the flow
in coal liquefaction reactors tends to be in a ho-
mogeneous bubbly flow regime.

All the data obtained from experiments listed
in Table 3 are summarized in Fig. 12 on the basis
of Eq. (4). It is noted that the gas holdups in the
coal liquefaction reactors with D, in a range of
6.5 to 120 cm can be correlated by the equation
within an accuracy of =50 % in spite of rather
different experimental conditions and methods
of measurement. '

4. Conclusions

From measurements of gas holdup in a 0.1
ton,/day direct coal liquefaction reactor the fol-
lowing points are concluded within the present
experimental conditions.

1) The gas flow pattern in the reactor was
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Effect of reactor diameter on ¢,/(1—¢ )
keys are listed in Table 3

Fig. 11

Physical properties of gas and liquids assumed

Table 4.
for calculation of We™ Re,*
gas gas surface liquid
density  viscosity  tension  density
Fluid T P P M, X 10 ax 10%! &
[K] [MPa] [kg/m‘] {Pa-s] [N/m]  [kg/mY]
CRO 289 30 i 90 36 1070
CRO 373 30 13 100 33 995
CRO 473 30 16 123 28 940
CRO 573 30 20 140 20 880
DAO 673 30 15 157 13 870
DAO 723 30 18 165 11 855
slurry 723 30 103 165 11 770

a) observed values for CRO and DAO and estimated value for slurry from
Lin et al'®

b) estimated from Perry'®

c) estimated from Gray and Holder"

d) observed values'?

found to be a homogeneous bubbly flow.

2) The gas holdup in the reactor was almost in-
dependent of the pattern of bubble forma-
tion. This seems to be the result of the tiny
initial size of bubbles formed by the simulta-
neous supply of pressurized gas and liquid
from the injection nozzle of the reactor as
well as the suppressed bubble growth.

3) The gas holdup was also found to be inde-
pendent of reactor diameter from the same
reason as above and was well correlated by
Eq. (4) with the superficial gas velocity.

In a coal liquefaction reactor, steady opera-
tion could be realized by suppressing the accu-
mulation of residual solid and promoting heat
transfer and dispersion of quenching hydrogen
gas introduced, which are secured by vigorous
mixing of solid or slurry. It would therefore be
necessary to produce a moderate turbulent flow
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Fig. 12 Comparison of gas holdups from present experi-
ments with those in literature; keys are listed in

Table 3
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in the reactor. However, the present experimen-
tal results clearly suggest that the flow tends to
be reduced to undersired homogeneous bubbly
flow. Further work is necessary to find proper
operating conditions for transition of the flow
regime.
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Nomenclature
D, = diameter of reactor [m]
dy = diameter of nozzle (m]
H = height of reactor [m]
P = pressure [Mpa]
@, = volumetric gas flow rate at normal
state [Nt s]
Re, = gas-phase Reynolds number based on
nozzle diameter ( = dyuypo,/1t,)  [-]
T = temperature (K]
u, = superficial gas velocity at experimental
conditions [m,/s]
U = superficial liquid velocity at experi
mental conditions [m,s]
Uy = gas velocity through nozzle at experi
mental conditions [m,s]
14 = volume of reactor . [m*]
We = Weber number ( 0,dyuy/o) [-]
W,, = mass flow rate of slurry [kgs]
£ = holdup (-]
u = viscosity [Pa-s]
0 = density [kg,/m’]
6 = time [s]
o, = time required to replace gas in reactor
with slurry [s]
o) = surface tension of liquid [N,/ m]
<Subscripts >
1 = preheater
2 = reactor
g = gas
l = liquid
sl = glurry
T = preheater + reactor
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Characterization of the Surface Layer of Various Metals
Implanted with Nitrogen™'

(Key Words : Nitrogen ion-implatation, Metal, Surface analysis, Surface layer, Characterization.)

Katsumasa YABE*!, Okio NISHIMURA?*?, Takanobu FUJTHANA* and Masaya IWAKI*

1. Introduction

High fluence nitrogen implantation into a
metal can modify the surface properties of the
metal owing to the formation of new nitrogen-
metal compounds in the implanted layer as a re-
sult of the interaction between the implants and
host atoms. This technique has been applied to
some metals and alloys for surface modification
aimed at practical use. However, we have not yet
reached a sufficient understanding of the phe-
nomena which occur in the surface layer during
implantation. Therefore it is interesting and im-
portant for us to study the surface layers of
various implanted metals as a basic research.

Fujihana et al.[1] have reported on the char-
acterization of an implanted layer of five kinds
of metal implanted ‘with nitrogen at a high
fluence. The purpose of this research was to
characterize the implanted layers of more varie-
ties of matals implanted with nitrogen in detail
and to try to find a rule for controlling the crea-
tion of compounds in the layer.

2. Experimental Details

Thirteen kinds of pure metal plates (Al, T4, V,
Fe, Ni, Co, Cu, Zr, Nb, Mo, Sn, Ta, W) with a pu-
rity of 99.9% and a size of 10X 10X 1mm® were
used as the targets. After mechanical polishing
to a mirror finish with 0.3 #m alumina slurry,
the platelets were rinsed in alcohol and acetone
with an ultrasonic cleaner. Then they were im-
planted with 150 keV nitrogen molecular ions.
The ion fluences were 1.5X10" and 5X 10" ions
em~?. These conditions correspond to fluences
of 3X10" and 1X10*N.cm™* at an energy of 75
keV. Theion current density was 24 A cm™%. The
target temperature during the implantation was
kept near room temperature.

%1 This paper was reproduced from Surface and
Coatings Technology, Vol.66, (1994) pp.250-254 by
the permission of Elsevier Science S.A.

% 2 Materials Division.

% 3 Advanced Technology Inc.

%4 Institute of Physical and Chemical Research
(RIKEN)

The surface layer of the implanted matal tar-
gets was analysed by means of X-ray diffrac-
tion (XRD) and Rutherford backscattering
spectrometry (RBS). RBS measurements were
performed using a 2 MeV He ion beam on a
tandem-type accelerator.. The beam was nor-
mally incident on the sample surface and scat-
tered particles were detected with a back-
scattering geometry of 170°. XRD measure-
ments were carried out with a Seeman-Bohlin
configuration diffractometer with Cu Ke radia-
tion at an incidence angle of 1° and with a
monochromator.

3. Results and Discussion

3.1. RBS data treatment

RBS is especially useful for finding out the lo-
cation of the implanted nitrogen in the surface
layer because it is a unique technique for non-
destructive analysis. As an instance of the
Rutherford backscattering spectra, the spec-
trum of the nitrogen-ion-implanted Al at a dose
of 1X10"N c¢m™? is shown in Fig. 1. In the figure,
the spectrum of the implanted sample is shown
by a full curve, and as a reference the spectrum
of the unimplanted metal is indicated by a bro-
ken curve. The former spectrum is constructed
with a metal spectrum and a nitrogen spectrum
having a peak at about 0.556 MeV. The intensity
of the metal spectrum is reduced at the surface
layer region, from about 1.1 to 0.9 MeV. If we
could treat the nitrogen spectra directly, it
would be preferable. However, in most cases,
other than in some light metals, it is difficult to
observe the nitrogen spectrum, because RBS
sensitivity is proportional to the square of the
atomic number and therefore the nitrogen spec-
trum that is superimposed on the metal spec-
trum is easily buried in the latter.

The depression in the metal spectrum of the
implanted sample is due to a change in the stop-
ping cross-section because the stopping cross-
section depends on the composition in the area
concerning the backscattering. Therefore we
can calculate the composition (nitrogen distri-
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bution) by comparing the metal spectrum of the
implanted sample with the spectrum of an
unimplanted sample [2,3]. In the calculation, we
assumed that the density of material was pro-
portional to the N metal atomic ratio and its
stopping cross-section could be estimated by
using Bragg’s rule [2]. In this case, the stopping
cross-section of nitrogen corrected for solid
nitrid was used [4,5].

3.2. Results of RBS

Some examples of the nitrogen depth distri-
bution obtained from Rutherford backscat-
tering spectra of targets implanted with nitro-
gen at the doses of 3X10" and 1 X10®N cm™? are
shown in Figs. 2(a)-2(d). Figure 2(a) is the dis-
tribution obtained from the implanted Al target.
The shape of the distribution is gaussian and its
peak position agrees approximately with the
theoretical ion range. As the atomic weight of
the target metal increases, the ion range de-
creases and the peak of the nitrogen distribu-
tion appears at a shallower depth such as in the
case of the W target shown in Fig. 2(b). The dis-
tributions of the targets other than Fe, Ni, Co,
Cu and Sn were of this type. In some samples, a
near-surface region was oxidized. in this data
treatment, we cannot distinguish between nitro-
gen and oxygen. The rise in density near the sur-
face in the distribution curve of the W target at
the higher dose may be a contribution from sur-
face oxide. Figure 2(c) was obtained from the Fe
target. This type has a characteristic low trape-
zoidal shape because only lower nitrides
(0.833>N_ metal atomic ratio) can be created in
these targets. The case of the Ni and Co targets
belongs to this type. In the case of the Cu target
shown in Fig.2(d), the nitrogen concentration is
very low. On the Sn target, a similar distribution
was observed. It seems that in these targets no

3.0

Yield (x1 0 counts)

N implanted Al

25 N edge 1x10"®N/em?
2.0
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—————— pure metal
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Fig. 1. Rutherford backscattering spectra of Al nitrogen
implanted with a dose of 1X10"N ecm™2(—) and
unimplanted Al (---).

nitride can be created.

A part of the implanted nitrogen is retained
in the target and the rest is released from it. It is
expected that the retained nitrogen has a rela-
tionship to the reactivity of the target atom to
nitrogen. The heat of formation of nitride is an
indication of reactivity. Figure 3 shows the rela-
tionship between the heat of formation for the
most stable nitride [6,7] and the amounts of re-
tained nitrogen on various targets implanted at
a dose of 1 X10®N cm™* which were estimated
from the distribution curve. The ordinate is indi-
cated as the ratio of the amout of retained ni-
trogen to the total amount of implanted
nitrogen. This dose was enough to saturate the
implanted region, so blisters were observed on
the surface of all the samples. From the figure,
it can be clearly seen that the amount of re-
tained nitrogen increases in a linear relationship
with the decrease of the value of the heat of for-
mation. This shows that the retention of nitro-
gen is affected strongly by the reactivity of the
metal to nitride.

3.3. Results from XRD

Table 1 shows the results of XRD and RBS on
the targets at the dose of 3X10"N cm™2. The
crystal phases detected by XRD are listed in the
second column and the atomic ratio of nitrogen
to metal expected from the compounds in the
second column is shown in the third column.
Another atomic ratio obtained from the maxi-
mum nitrogen density by RBS is shown in the
fourth column. In this case, the N,/ metal atomic
ratios expected from XRD for many targets are
larger than those obtained by RBS,/ This result
means that the compounds observed by XRD
were created only partially in the implanted
layer of those targets. In the cases of Zr, Ti, Ta
and V, an enlarged lattice was observed in the
diffraction pattern, showing the creation of a
solid solution. Figure 4, curve a, is the XRD pat-
tern of the Zr target implanted with the dose of
3X10"N em™*. In this pattern, several peaks
marked with a filled circle are observed in addi-
tion to the metal peaks (indicated by the letter M
and indices) and the peaks for ZrN (shown by a
filled triangle). In the case of the dose of 1X10*
N cm™* (Fig.4, curve b), these added peaks dis-
appeared and the intensity of the peaks for ZrN
became stronger. The additional peaks in Fig .4,
curve a, are attributed to an elongated lattice
due to the invasion of the nitrogen atoms into
the interstitial sites of the metal lattice to make
a solid solution. A peak at a 28 of about 30°
could not yet be assigned, but it is not concerned
with the solid solution because it appears in
both patterns. A c-direction anisotropic enlar-
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Table 1. Comparison of experimental results obtained by
XRD and RBS on nitrogen-implanted metals*

Target Crystal phase®

N/metal atomic ratio

XRD RBS
Zr SS of Zr, ZfN <1 0.5
Ti SS of Ti, TIN <1 0.5
Al ND UE° 0.15
Nb Nb,N 0.5 0.35
Ta SS of Ta UE 0.05
v SSof V UE 0.15
Mo Mo,N 0.5 0.35
w SS of f-W,N >0.5 0.2
Fe Fe,N, Fe;N <05 0.1
Ni Ni;N 0.33 0.2
Co Co;N 0.33 0.1
Cu ND 0 0.1
Sn ND 0 0

Table 2. Comparison of experimental results obtained by
XRD and RBS on nitrogen-implanted metals®

*Dose, 3x 107 N cm ™2
bS8, solid solution; ND,.not detected.
¢UE, unestimable.

N implanted Zr T
(@) 3x10""N/em?

M(101)

(b) 1x10"®N/em? ]

]

30 40 50 60 70
Diffraction Angle (degrees)

Fig. 4. XRD pattern of Zr nitrogen implanted with doses
of 3X10” and 1X10"” N cm~2 M, metal; @, solid so-
lution; A, ZrN peak.

gement is suggested by the facts that the peaks
corresponding to the lattice planes parallel to
the ¢ axis have no daughter peak and besides the
enlarged spacing of the (002) lattice plane is
markedly large compared with the others. The
peak positions calculated for the c-direction en-
largement of 2.68% agree completely with the
observed solid solution peaks. In the case of the
Ti target which is another case of a hexagonal
crystal, again the only enlargement was in the ¢
-direction. In the cases of V and Ta which have
a cubic lattice, the shifts of the solid solution dif-
fraction peaks showed an isotropic enlarge-
ment.

The results obtained on the samples at the
dose of 1X10*N cm™? are shown in Table 2. In

Target Crystal phase N/metal atomic ratio
XRD RBS
Zr ZrN 1 1.5
Ti TiN 1 1.2
Al AIN 1 0.95
Nb Nb,N, 0.75 0.9
Ta TaN 1 0.8
\% VN 1 0.75
Mo MoN, Mo,N <1 0.65
W SS of f-W,N >0.5 0.55
Fe Fe,N, Fe,N <0.5 0.35
Ni NiyN 0.33 0.3
Co Co;N 033 0.3
Cu ND 0 0.1
Sn ND 0 0

*Dose, 1 x 10'® Nem™2
bS8, solid solution; ND, not detected.

many metals, the crystal phases observed in the
case of the lower dose change to higher nitrides.
For most of the metals, the results of XRD are
consistent with those of RBS. Especially in the
cases of Ti, Al, Ni and Co, both agree very well.
It has been known that TiN, can be stable in the
TiN crystal structure until x reaches about 1.2
[8]. In the area around the maximum nitrogen
density, almost all metal atoms in these targets
reacted with nitrogen to give the nitrides ob-
served by XRD.

On the Cu and Sn targets no diffraction peak
was observed and they had extremely small re-
tention rates of nitrogen. Therefore there seems
to be little or very low possibility of creation of
any nitrides in them.

4. Summarizing Remarks

The surface layers of various (13) metal tar-
gets which were implanted with nitrogen ions at
doses of 3 X 10" and 1X 10N cm™? were
analysed using RBS and XRD. The following re-
sults were obtained.

(1) For the lower dose of 3X 10N cm~?, (a)
metal in the implanted region is partially
nitrided and the relation between the maximum
density of nitrogen and the created compounds
is not simple, and (b) in the cases of V, Ti, Zr
and Ta targets creation of a solid solution was
observed, accompanying an isotropic enlarge-
ment of the lattice for the cubic metal (V, Ta)
and an anisotropic c-direction enlargement for
the hexagonal metal (Ti, Zr).

(2) When an amount of nitrogen atoms large
enough to saturate the implanted region of the
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target is implanted, the most stable nitride is
created in that region and the amount of re-
tained nitrogen increases with a decrease of the
heat of formation of the nitride, showing that
retention of nitrogen in the target is affected
strongly by the reactivity of the metal to nitro-
gen,
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Surface Structure of Nitrogen Ion-implanted 304 Stainless Steel*!
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1. Introduction

High fluence implantation with nitrogen can
greatly improve the surface mechanical proper-
ties of steel. This result should be due to the
creation of compounds and,”or structure in the
implanted layer, mainly in the area around the
peak of the implant distribution. In addition to
the above effect, in the case of stainless steel it
would be interesting to know how the implanta-
tion changes the passive layer which exists
originally at the surface of the steel and works
as a protective film against oxidation and cor-
rosion.

Various techniques of surface analysis have
been used successfully to clarify the structure in
the implanted surface layer [1-7]. However,
owing to their complexity, the phenomena oc-
curring in the implanted area are not under-
stood completely.

X-ray photoelectron spectroscopy (XPS) is a
unique and powerful technique for studying the
chemical states of atoms in the surface, and
combining XPS with Ar ion sputter-etching
makes it possible to observe the distribution of
the atomic concentration and chemical states
with a high resolution throughout the implanted
layer.

In this study, we examined the layer of 304
stainless steel implanted with nitrogen ions at
doses in the range (1-5) X10"N cm™?, in particu-
lar, we investigated the surface oxide layer,
which could play an important role in the elec-
trochemical behavior, by XPS combined with Ar
ion sputtering.

2. Experimental Details

The substrates used were 304 stainless steel

*1 This paper was reproduced from Surface and
Coatings Technology, Vol.66, (1994) pp.403-407 by
the permission of Elsevier Science S.A.

% 2 Materials Division.

%3 National Research Institute for Metals, Tsukuba
Lab.

*4 TFaculty of Engineering, Hokkaido University.

%5 Institute of Physical and Chemical Research (Riken)

sheets of size 10X 10X 0.5mm?®, which were me-
chanically polished to a mirror-like finish with
0.5 ¢ m alumina slurry. Nitrogen ion implanta-
tion was carried out with fluences of 1X10Y, 3
X10" and 5X10"N cm™* at an accelerating po-
tential of 90 kV and a beam burrent of 2u A
cm™?. Because the beam was not mass analyzed,
it contained a mixture of N* and N in the pro-
portion 2:3. This meant that 75% of nitrogen
atoms were implanted with an energy of 45 keV
and the rest had an energy of 90 keV. During the
implantation, the atmospheric pressure was
about 1.3X107* Pa and the temperature of the
targets was kept at near room temperature by
water cooling.

The atomic composition and chemical state of
atoms in the surface layer were analyzed by
XPS combined with Ar ion sputter-etching. The
XPS measurements were taken using Al K « ex-
citation radiation at a pressure below 1.5X 1077
Pa. The binding energy scale was calibrated vs.
the Au 4f;, . peak at 83.8 eV. When the ion en-
ergy increases or the incidence angle (to the sur-
face) becomes larger, preferential sputtering
increases which leads to a large error in the
analysis [8]. However, too low an incidence
angle and too small an energy of the incident
lons result in a remarkable reduction of the
etching effect [9]. To avoid the problems men-
tioned above, sputter-etching was carried out
under at an ion energy of 2 keV and an incidence
angle of 35° to the surface. The ion beam density
was about 10# A cm™? and the beam was raster
scanned for uniform etching. Under these condi-
tions of sputter-etching, we were able to remove
the surface atoms with a uniformity of above
90% and with an etching speed of about 1 nm mi
n~! for Ti metal. We estimated the depths of sev-
eral characteristic points assuming this etching
rate.

3. Results and Discussion
3.1. Surfacelayer of unimplanted stainless steel

Figure 1 shows the XPS depth profile of
unimplanted 304 stainless steel. In this figure,
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Fig. 1. Depth profiles of different species in unimplanted
304 stainless steel.
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Fig. 2. XPS spectra from various depths of unimplanted
‘ stainless steel: (a) Cr 2p and (b) Fe 2p.

the amounts of metal elements (Fe,Ni and Cr)
are plotted as fractions of the total amount of
the three metals, because it was interesting to
discover how the mutual relation of the main
metal elements changes according to depth, and
the additional elements (C,0) are plotted in ar-
bitrary units to show their qualitative variation
only. As can be seen from the figure, the Cr frac-
tion increases in. a thin surface layer (about 1
nm thick) which corresponds to the sputtering
interval from zero to 1 min. The maximum frac-
tion of Cris 32at.% which is 1.8 times the content
in the bulk. The Ni fraction decreases in the Cr-
enriched layer and increases at the interface be-
tween the Cr-enriched layer and the bulk. This
double-layer structure resembles that reported
for AISI 316 stainless steel [10]. The distribution
of oxygen has only a peak at the surface layer
corresponding to the Cr-enriched layer. The car-
bon density is very small at the Cr-rich layer.
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Fig. 3. Depth profiles of different species in nitrogen implanted
stainless steel with a dose of 3X10"N cm™.

Figures 2(a) and 2(b) show Cr 2p and Fe 2p XPS
spectra from various depths respectively. From
Fig. 2(a), it can be seen that in the Cr-rich layer
the chemical state of Cr is Cr.: Q. Figure 2(b)
shows that at the surface the chemical state of
Fe is Fe; O3, and immediately beneath the sur-
face it becomes FeO which exists within a very
thin region. In the Fe 2p spectrum at the surface
a metal peak can be seen, but Fe:Os; and metal
are not likely to coexist at the surface. The iron
oxide layer is so thin (maybe less than 1 nm)
that metal in the under-layer can be observed in
the spectrum. Ni is metallic in the whole region.

3.2. Surface layer of implanted 304 stainless steel

It is expected that on ion implantation with
nitrogen new compounds are created in the im-
planted area and the structure observed on
unimplanted steel may be modified. We analyzed
the surface layers of the 304 stainless steel tar-
gets implanted with nitrogen ions at doses of 1
X10%, 3X 10" and 5X 10" N ecm™?, in order to de-
termine changes in the surface layer. Figure 3
shows the depth profile for the sample subjected
to 3X 10" N cm™2. To avoid complication in the
figure, C and O are omitted. The distribution of
nitrogen has a slightly distorted gaussian
shape, with a peak at a depth of about 50 nm in
agreement with the theoretical ion, range and
the maximum density is 19 at.%. A detailed
depth profile of the near-surface layer, adding
the data for C and O, is shown in Fig.4. As in
Fig. 1, Fe, Cr and Ni are shown as relative frac-
tions of the three metals, and C and O are plot-
ted on an arbitrary scale. Comparing with Fig.1,
we find the following. (1) The primary struc-
ture, which consists of the enriched Cr oxide
layer and the Ni enriched inner layer, is pre-
served. (2) The maximum Cr content is In-
creased to 2.3 times the content in the bulk. (3)
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Fig. 4. Detailed depth profiles in the near-surface region of im
planted stainless steel with a dose of 3X10” N cm™.

The Cr-rich layer becomes markedly thicker (to
about Tnm). (4) Carbon is hardly present in the
Cr-rich and Ni-rich layers.

The carbon distribution profile has a strong
peak due to contaminants at the surface; the
carbon density becomes almost zero in the oxide
region and then appears again in the bulk region
as carbide-type carbon. The .carbide was not
present originally in the sample; it was created
by the reaction of surface matal atoms and car-
bon species from the atmosphere in the analysis
chamber, caused by the ion beam during depth
analysis. In the oxide region, less carbide was
produced because of the lack of free metal
atoms. In Figs. 1 and 4 we can see an oxygen
peak corresponding to the oxide layer and a
constant level of oxygen in the inner region, but
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no oxygen density was observed in the inner re-
gion using Auger electron spectroscopy. This is
also due to oxygen species adsorbed on the sur-
face during XPS analysis.

The chemical states of atoms at various loca-
tions are suggested by the binding energies of
their XPS peaks. Figure 5(a) shows the N 1s
spectra of nitrogen atoms at various depths. In
the Cr-rich layer, the binding energy of 396.7 eV
corresponds to CrN(396.7 eV). In this region ni-
trogen reacts with Cr preferentially. In the re-
gion of the main nitrogen distribution (we call
this the “main implanted region” ), the binding
energy of 397.7 eV suggests that the N 1s peak is
due to CrN (397.6eV) and,”or Fe,N (397.5 eV).
However, from Fig.5(b) which shows Fe 2p spec-
tra from various depths, it is seen that in the
main implanted region the binding energy of Fe
2ps2(707.1 V) may come from the superposi-
tion of Fe,N (707.3¢V) and metal (707.1eV).
From Fig. 5(c), the binding energy of Cr 2ps,; in
the same region is 574.7eV, which is close to that
for CrN(574.9eV).

From the binding energy of the Cr 2ps,.
peak, it can be seen that the Cr atoms in the Cr-
rich region were oxidized to Cr:Qs. Figure 5(b)
shows that Fe atoms in the outward region of
the the peak of enriched Cr distribution (sput-
tering time interval of 0-5 min) were oxidized.
The distribution of oxygen is consistent with
that of the oxides. Comparing with Fig. 2(b), the
Fe oxides increased at the near-surface region.
The modification of the oxide layer due to the
implantation is characterized by the enhanced
Cr-enrichment, the widened Cr oxide layer and
the growth of Fe oxides near the surface. We

402 397 392 725 715

Bind{g Energy (eVv)

Bindig Energy (eV)

Fe20s (c) Crz0s
Feo crap metal
metal
N Fe4N
A S.ET. . S.E.T.
{min) ///\\\_///‘ (min)
~0 M 0
LA
M—0.5 ~— 0.5
N 3
Vg N
J\
8
N
8
15
15
50 \\\ 50
90 ‘90
150 \\\ 150
210 K\-210
L | ] ]
705 590 580 570

Binding Energy (eV)

Fig. 5. XPS spectra from various depths of nitrogen implanted stainless steel with a dose of 3)X10"N em ™ (a) N 1s, (b) Fe

2p and (c) Cr 2p.
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Fig. 6. Depth profiles in the near-surface region of im
planted stainless steel with various doses.

can understand these feature as the result of the
following mechanism. Metal atoms move to the
surface by diffusion enhanced by ion irradia-
tion. At the same time, oxygen atoms are sup-
plied to the sub-surface zone (oxidative reaction
zone), through decomposition of adsorbed oxy-
gen species on the surface followed by diffusion
and,”or knock-on. At the early stage of migra-
tion of atoms in the reaction zone, Cr atoms
would react preferentially with oxygen atoms
and deposit at a deeper level in the zone because
of the higher affinity to oxygen of the Cr atom
than of the Fe atom. (The values of the heat of
formation at 25°C are —63.64 kcal mol™* for
FeO, —197.0 for Fe:0s and —252.9 for Cr:Os.
The Cr atom, which has the smaller heat of for-
mation, is more reactive than the Fe atom [11].)
This deposition leads to an increase in Cr den-
sity and thickness of the Cr-rich layer. The Fe
atoms migrate further toward the surface. Then
the proportion of Fe oxides increases near the
surface. The sample surface ought to have been
etched by sputtering during implantation, but
the Cr-Ni double-layer structure (with the
growing Cr oxide layer) in the implanted sample
is maintained. The seems to show that the speed
of growth of the oxide layer is greater than the
sputtering speed.

It was found that the samples subjected to 1
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Fig. 7. Dependence of the amount of Cr in the surface
oxide layer on the nitrogen ion dose.

X 10" and 5X 10N cm™? similar to the sample
subjected to 3X10"N cm™?, also have the struc-
ture of the Cr-rich oxide layer plus the Ni-rich
layer. The variety of compounds created in the
main implant region was also the same. The
maximum nitrogen densities in the three sam-
ples were proportional to the doses and the
maximum density in the sample with the highest
dose was about 30%, which seemed to be close to
the saturation density, taking accout of the
compounds formed.

Figure 6 shows depth profiles of the relative
fractions of Cr and Ni in the samples of the three
different doses. The maximum Cr fraction is al-
most constant at close to 45 at.%, and is not de-
pendent on the. dose, but the thickness of the
oxide layer becomes larger with increasing dose.
The Ni peak acts as a marker for its original po-
sition. It is clear from the relation to the Ni-rich
layer that the Cr-rich layer has grown on the
surface side of the original Cr-rich layer. This
supports the hypothesis that oxide formation
due to the migration of metal is dominant. As
the does is increased, the area under the Cr dis-
tribution curve within the oxide region in-
creases, as shown in Fig. 7. The saturation
tendency of this curve seems to show that as the
oxide layer grows, the speed of migration of
metal atoms is slowed down by the oxide layer
itself.

4. Summary

In order to make clear the formation of new
compounds in the implanted region and the
modification of the surface structure due to ion
implantation, surface layers of unimplanted 304




Surface Structure of Nitrogen Ion-Implanted 304 Stainless Steel

stainless steel and nitrogen ion implanted stain-
less steel with several doses in the range of (1-5)
X10"N em™* at an acceleration potential of 90
kV were characterized by XPS combined with
Ar ion sputter-etching.

Near to the surface of the unimplanted sam-
ple, there is a thin double-layer structure which
consists of a Cr-rich oxide layer and an inner
adjacent Ni-rich layer. After implantation, the
double-layer structure was retained, but Cr en-
richment was enhanced compared with the
unimplanted sample and the thickness of the
surface oxide layer increased with an increase in
dosage of implantation. This oxide growth phe-
nomenon can be explained by radiation-
enhanced migration of metal atoms to the
surface and a supply of oxygen atoms to the
sub-surface thin layer through adsorption of
oxygen specles on the surface followed by de-
composition, diffusion and knock-on, and oxi-
dation of metal atoms in the sub-surface layer.
It was observed that owing to nitrogen ion im-
plantation, Cr.:N and Fe.N are created in the
main implanted region, and some of the Cr
atoms in the Cr-rich layer were nitrided to CrN.
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Table 1 Results of MS analyses

Fraction m/z Example of Compounds Supposed
129 @ Quinoline
N
(a)
143 @’CH3 Methylquinoline
N
256 [@’] Quinoline Dimer
N 2
260 OiNE—@@ Tetrahydroquinolyl quinoline
N
(b)
270 @-—@/CH3 Methylquinolyl quinoline
N N
CH3y L .
284 Methylquinoline Dimer
N 2
383 m] Quinoline Trimer
N 3
387 OEE’_'E'@':I Tetrahydroquinolyl [Q uinoline Dimer]
(c) 389 O(E_E@] Hexahydroquinolyl [Quinoline Dimer]
397 m_@ Methylquinolyl [Quinoline Dimer]
411 WCH3] Quinolyl [Methylquinoline Dimer]
510 ml Quinoline Tetramer
514 @}E@'} 3 Tetrahydroquinolyl [Q uinoline Trimer]
524 E@i}}——-@i} Methylquinolyl [Quinoline Trimer]
CH
(d) 538 E@E—@féﬂ ‘{] [Methylquinolyl quinoline] Dimer
637 ‘@ié{‘ Quinoline Pentamer
. N 5
CH
651 @3—@} 3 Methylquinolyl [Q uinoline Tetramer]
665

CH3
W ] Di [Methylquinolyl] [Quinoline Trimer]
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Fig. 5 Supposed polycondensation path of quinoline

Table 2 Yield and elemental analyses of quinoline polymers

Quinoline/ZrCly  Yield of Polymers

Ratio of THF-insolubles

Elemental Composition (wt%)

(g/g) (wt%) in Polymers (wt%) H C Zr N+0+Cl
10/0.6 59.4 60.0 4,19 71.64 5.60 18.57
10/2.2 67.2 70.1 3.99 62.13 10.49 23.39
10/3.7 81.8 76.7

10/8.2 74.2 75.4 3.39 37.90 20.28 38.43

Table 3 Elemental analyses of carbonized products derived from quinoline polymers

Qu/ Heat Treatmené Temperature ('C)

ZrCly 750 1000 1500 2000 2500
C Zr N O H C Zr N 0 H C Zr N 0 H C Zr N o|C Zr

10/0.6(76.85 8.15 6.70 6.90 1.40[80.42 11.85 3.32 4.17 0.42(82.22 12.88 0.96 3.84 0.10(88.70 11.20 0.10 — [88.92 11.08

10/2.2(65.66 14.15  18.88*  1.31|71.78 16.42 1L34% 04617410 1579 10.01*  0.10(77.64 17.74  4.62% |80.68 19.32

10/8.2/53.15 20.03 4.26 21.10 1.46|62.90 21.05 2.17 13.36 0.52 |62.49 24.75 1.30 11,29 0.10 |74.60 23.20 0.29 1.91]70.89 29.11

* 1 (N+0) (wt%)
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Fig. 7 Changes for Lc of carbonized products with
heat treatment temperatures

(b) Qu/2rCl,=10(g)/8.2(g)

Changes of X-ray diffraction of carbonized products with heat treatment temoeratures
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Table 1 Changes for Friction facter of Ge,C composites with Heat treatment temperatures and Ge content
# (Friction factor)
Ex. No Sample/MX, | H. T T | Ge Cont Le Load Pressure (kg)
(g/9) () (%) (A) : 0 1 2 P
700 0.7 21.6 0.312
57 An/Gely 1500 0.6 66.0 0.200 0.190
30/13 2500 Tr 985 0.160 0.130 0.130 0.150 0.136
3000 >1000 0.150 0.138 0.127
1200 6.4 39.7 0.160 0.148 0.153
53 An/Gels 1500 5.6 128 0.170 0.120 0.120 0.140
11/16 2500 Tr >1000 0.200 0.125 0.146
3000 >1000 0.200 0.162
1500 4.2 111 0.170 0.160
An/GeI4
68 20/50 2500 Tr 582 0.208 0.145 0.153 0.180 0.264
3000 894 0.180 0.130 0.120 0.133 0.192
Graphite (spectrum) >1000 0.120 0.130 0.140
Graphite (Lubricant) >1000 0.222 0.140 0.126 0.150
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