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Table1. Chemical analysis and physical
properties of materiales used

Taiheiyo coal 500 char

(TC) (TCC )
Proximate analysis (wt%)
Moisture 4.7 2.6
Ash 16.5 24.3
Volatile matter 44.9 20.2
Fixid carbon 34.2 52.9
Ultimate analysis (d.f.wt%)
C 65.0 60.4
H 5.4 3.0
0 13.1 9.5
N 1.0 1.3
S 0.3 0.3
Ash 15.1 25.5
High heating value (cal,”’g) 6080 5420
Taiheiyo coal S00C char Silica sand
dp (mm) 0.35--2.00 - —2.00 0.35—0.50
Umf (m/s) 0.22 0.15 0.34
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Fig. 1 Schematic diagram of experimental apparatus.
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Abstract

Oxygen-Steam Gasification of Coal
and Coal Char in Fluidized Bed.

Yoneshiro TAZAKI, Shigeo CHIBA,Midori YUMIYAMA
Sengi HONMA , Kunihiro KITANO, Shohei TAKEDA,
Junichi KAWABATA and Satoru SUZUKI

Oxygen and steam are commonly used as the gasification reagents. In general, the reaction
temperature Increases with the oxygen concentration. Fluidized bed gasifier has the limit
of the oxygen concentration because of ash agglomeration.

In this study, the superior limit of the oxygen concentration and compositions of product
gas are measured and analyzed.
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Abstract

Food Freezing in the Intermediate Fluidized Bed

Midort Yumiyama

A new food freezing method has been investigated using the so-called intermediate fluidized
bed in which the food was fluidized togather with small particles for aid of the fluidization
and heat transfer of the food.

Formed alumina and refined salt particles for the small particles were fluidized by the
air of —40T to —50C in an acrylnitril resin column of 0.075m 1.D., 1m height and 0.005m
thickness. Carrot, radish, potato, omion, asparagus, sudachi and sprout were used for
the freezing test samples.

In this freezing method, the heat transfer coefficient showed the large value of about
300kcal m* h+TC, the weight loss of frozen food was relatively smaller and the ice crystals
in the frozen food were smaller and more uniform, compared with direct fluidized bed and
freezer box methods. The adhesion of the small particles on the frozen food was also
measured and evaluated.

It was concluded from the experimental results that the food freezing method by the

intermediate fluidized bed is superior to those by the direct fluidized bed and the freezer
box.




Measurement of ATP content in microbial cell under aerobic

and anaerobic conditions

Shigenobu TANAKA, Yuji YOKOTA

Abstract

ATP content in a unit mass of facultative anaerobes growing under aerobic,
anaerobic, changing from aerobic to anaerobic and changing from anaerobic to
aerobic conditions was measured. Irrespective of conditions, the ATP content
showed a similar value in logarithmic growth phase, namely around 2 g ATP .
(kg cell) ™. This suggests that under anaerobic condition as well as. under

. aerobic condition ATP measurement can be used to determine the concentration

of the viable microbial cells most of which are in the logarithmic growth phase.

Introduction

Determination of microbial cell concentration in a medium is usually carried out by optical
methods. When the medium contains suspended matter other than cells, the optical density
is affected by the suspended matter. So several alternative indexes of the quantity of viable
mass have been proposed including deoxyribonucleic acid (DNA), total protein, Kjeldahl
nitrogen, enzyme activity and adenosine triphosphate (ATP). Above all, the measurement
of ATP seems to be a useful method for the determination of viable cells in a medium
containing suspended matter because ATP is containd only in viable cells and can be

¥ on the application

determined relatively easily by photometry. Although there are reports
of ATP measurement to the determination of viable cell under aerobic condition, there is
few report on the case under anaerobic condition or changing condition between aerobic
and anaerobic ones.

In this paper ATP content of facultative anaerobes which are growing both under aerobic
and anaerobic circumstances was measured and its applicability to the determination of

cell concentration under anaerobic condition is discussed.

Materials and Method ‘
Microorganism Escherichia coli K-10 and a strain® belonging to Pseudomonas which has

denitrifying activity in nitrate medium under anaerobic condition (this will be named denitrifier
hereafter) were used.

Media and culture conditions The composition of the culture medium used is shown in
Table1. The carbon source is glucose (Medium A), citrate (Medium B), and
maltose (Medium C).




Tablel. Medium Composition

Component (g 177 Medium A Medium B Medium C
C.H,,0, 2.43

Na,C;H,0,* 2H,0 1.7

C.H,,0,*H,0 20.0
Peptone 8.0
Na,HPO, + 12H,0 22.0 922.0

KH,PO, 1.0 1.0 2.0
MgSO, » 7 H,0 0.05 0.05

FeSO, - 7 H,O 0.005 0.005

KC1 2.8 2.8 0.4
KNO, 2.0 1.4

Media A and B were used for denitrifier and Medium C for E.coli The experimental
apparatus 1s shown in Fig. | . Two incubation vessels of 1¢ volume containing 0.94 of
sterilized medium were seeded from agar slant and incubated at 37T (310 K). One of
the vessel was used for aerobic incubation where 2.39mf« s™ of air was aerated through
a cotton filter. The other vessel was used for anaerobic incubation where the medium was
sealed by about 10mm thick liquid paraffine. In the case of changing condition from aerobic
to anaerobic or froin anaerobic to aerobic, nitrogen gas instead of air was blown through
the medium during anaercbic condition. Both of the vessels were continuously stirred by
a magnetic stirrer kéeping the cells in a suspended state. The rubber stopper of the vessel
was equipped with a sampling tap and from this tap about 4 mf{ of the medium was sampled
with a syringe at predetermined intervals.

5 5
1 Magnetic stirrer
2 Exhaust pipe
3 Thermostatic bath
2 4 S 1 2 4 Sampling tap
— - 5 Cotton filter
ol I ™1 hd ofl® 6 Stirrer bar
coﬂ ° ’ 0® °
df® ° alle
IR ik
6 6
1 1

Fig. 1 Experimental apparatus




ATP Assay One milliliter of the sample was added to 9mé of Tris buffer solution (0.02M,
pH 7.75) and ATP was extracted by boiling the mixture for 10 minutes. An integrating
photometer, model 2000 from SAI Technology Co., was used to assay ATP by the luciferin-
luciferase reaction. The reaction mixture consisted of 0.5mé extracted sample and 0.5mé
reconstructed firefly lantern extract Sigma FLE-50. After 15 seconds of preperation of
reaction mixture, the light intensity was integrated for 60 seconds. Calibration curve was
prepared using SAI ATP.

Measurement of cell concentration The cell concentration was obtained from optical density
at 660 nm.

Effects of the circumstances (aerobic or anaerobic) and of the change in circumstance (from

aerobic to anaerobic or from anaerobic to aerobic) on the ATP content in the cell were

examined.

Results and Discussion

The measured ATP, cell concentration and calculated ATP content in the cell are shown
in Figs.2~6.

Figure2 shows the result for E.coli. growing in Medium C under aerobic and anaerobic
conditions. Figures3 and 4 show the results for the denitrifier growing in Media A and
B, respectively. Figure5 shows the result for the denitrifer growing in Medium A for
the case where in the course of anaerobic logarithmic growth phase the condition was changed
to aerobic one. Figure6 shows the result for the denitrifier growing in Medium A for
the case where in the course of aerobic logarithmic growth phase the condition was changed
to anaerobic one. In the range of low cell concentration, as it is difficult to dgtermine

the cell concentration, ATP content showed some scattering.
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From these results following information was obtained.

1) In the logarithmic growth phase, ATP increases in proportion to the increase in cell
concentration under anaerobic condition as well as under aerobic condition. In the
stationary phase, ATP decreases more than cell concentration does, therefore ATP content
in a unit mass of cell decreases.




2) Although the logarithmic growth rate under anaerobic condition is smaller than that
under aerobic condition, ATP content in a unit mass of cell is similar in both cases,
namely around 2g ATP. (kg cell)™.

3) When the condition is changed from aerobic to anaerobic or from anaerobic to aerobic
in the course of logarithmic growth phase, the organism stops to grow for a long period
for either case. Afer that period it starts to grow again and ATP content in a unit
mass of cell in the latter growth period is almost the same as that in the former growth
period.

These information suggests that under anaerobic condition as well as under aerobic condition

ATP measurement can be used to determine the concentration of the viable microbial cell

most of which are in the logarithmic growth phase.
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Summary

Production of Slow-Release Type Fertilizer from
Philippine Dolomitic Limestone and Rice Husks

Using Philippine dolomitic limestone and rice husks, production tests of ‘a silicate salt
matter fertilizer which contained acid-soluble K,O were carried out. K,CO, reagent was
used for potassium additives. Dolomitic limestone and rice husks were mixed with 4.9—20.3%
K,CO,, iand the powder mixture were heated 700—900C in air. The roasted products were
analyzed, and the amounts of 0.5N HCl-soluble 510, CaO MgO and 2% citri¢ acid-soluble

K,0 were determined.

From the experiments the following results were obtained :

1) Under similar conditions of time, the formation of 0.5N HCl-soluble 5i0, seemes to
require a higher temperature.

2) The optimum mole ratio of (CaO+MgO+K,0),/Si0, was found to be 2.0 to 2.5 for
the fertilizer.

3) The addition of a suitable amount of K,O was favorable for the increase of 0.5N HCl
-soluble Si0,.

4) The effect of reaction time showed that reactions conducted for 30 minutes produced
the same results for 0.5N HCl-soluble‘Sj()é as those carried for longer periods of time.

5) Similarly, higher concentration of K,O in the material mixture enhanced the formation
of more 0‘.5N HCl1-soluble SiO, in the roasted products.

6) 0.5N HCl-soluble Si0, compoment obtained was about 22%, and the 2 % citric acid-
K,O was about 16% in the roasted products.

soluble



INTRODUCTION

This research project aims to produce slow-release type fertilizer using philippine dolomitic
limestone and rice husks as starting materials.

The philippines is endowed with natural resources of dolomitic limestone reaching about
260 million tons, as of 1983. It is mainly used as soil conditioner, although it also finds
application in the manufacture of glass, iron and steel, refractory, as building materials
for dolomite plaster, as road ballast and scrubber among others. To the present, it remains
a low value material.

Philippine production of rice reached about 8.2 million tons in 1984, producing 1.6 million
metric tons of waste rice husks. Although about half of this bulk is utilized as fuel, animal
feed and poultry livestock beddings, the remaining half is just burned in the field and wasted,
the disposal of which remains a major problem.

The demand for fertilizers in agricultural countries particularly of the developing countries
such as the philippines, has in recent years been on the increasingly upward trend side by
side with the increased need to maximize production of crops particularly rice. To fill this
great demand, the production of fertilizers has been increased in many parts of the world.
Studies are also being conducted with the end in view of improving the efficiency of
fertilizers. Recent fertilizer technology reveals the advent of the slow-release type of fertilizer
which has the unique characteristics of controlled nutrient release such that single fertilizer
application results in sustained fertilizetion without danger of plasmolysis or fertilizer burns.
The obvious advantages of this type of fertilizer includes savings on labor, reduced possibility
of fertilizer burns and reduction in element losses through slow-release at a rate corresponding
very nearly to the ﬁeeds of the crop.

CHARACTERIZATION OF RAW MATERIALS

The first phase of the research project included the determination of the physical and
chemical properties of dolomitic limestone and rice husks materials to be used in the
experiments. Characterization of these materials was carried out to determine the properties
which could make them suitable for the production of slow-release silicate fertilizers.

This chapter presents the results of analysis made on these materials, using various methods
and the conclusions derived therefrom.

1. RAW MATERIALS
1+1 Doomitic Limestone

Philippine dolomitic limestone is a non-metallic mineral containing 97.7% dolomite, a
double carbonate of calcium and magnesium, CaMg(CO,), and 2.3% calcite, CaCO,. It




is a commodity which at present finds application in the manufacture of brick mortars,
glass, paper, refractories, iron and steel among others. The dolomitic limestone used in
the study was obtained from the Philippine Mining Service Corporation, Cebu, Philippines.
1«2 Rice Husks

Rice husk are cellulosic fibrous, non-digestible by product material obtained from the
milling of paddy rice and_ are an agro-waste. Unmilled rice yields about 20% by weight
of rice husks, which on combustion loss behind about 25% of ash composed essentially of
silica. ‘This silica is originally present in the cellulose lignin woody matter in the form
of hydrated opaline phase. Rice husks and rice husks ash obtained from various parts of
the Philippines were used in the study.

1-2+-1 Raw Rice Husks

Raw rice husks used in the study were of the IR 54 variety obtained from rice mill in
Laguna, philippines.

1+2+2 Rice Husks Ash Generated from the Thermal

Power Plant of the National Food Authority

Rice husks ash was also procured from the rice husks fed thermal power of National
Food Authority (NFA), in Cabanatuan City, Nueva Vizcaya, Philippines.

Rice husks have heating valu of 12.5—15.9 MJ kg and are cheap and renewable source
of energy. In the NFA thermal power plant, rice husks are used to generate steam to produce
315kw of electricity which in turn are used to run rice mill in the area. Intermittent operation
of the power plant produces a substantial amount of rice husks ash.

Random samples of the generated waste rice husks ash were obtained at various spots

in the furnace and mixed thoroughly for use in the study.

2. ANALYSES
2+-1 Chemical Analysis

The chemicai composition of philippine dolomitic limestone and rice husks were each
determined by inductively coupled plasma (ICP) analysis, using the Shimazu Inductively
Coupled Plasma Emission Spectrometer GVM-1000P with a linear flow nebulizer.

The ignition loss of dolomitic limestone and rice husks were also determined by the Japanese
Industrial Standard (JIS) methods using a muffle furnace at 926C.
2+ 2 Thermal Analysis

The thermal decomposition of dolomitic limestone and rice husks were determined from
both thermogravimetric (TG) and differential thermal analysis (DTA) by Rigaku Thermoflex
Model 8112-RH using a-ALQO, as the reference sample. The TG curve shows the loss in
weight of the sample with respect to changes in temperature ; the DTA curve on the other
hand, illustrates the temperaiure difference between the sample and the reference standard
with respect to changes in temperature or time. It shows the temperature at which the
decomposition of a sample takes place.

Thermal analysis of dolomitic limestone was carried out both in air and in CO,
atmospheres. For rice husks, only air atmosphere was used. Heating rate was 20C_ min
; CO, flow rate, 80 m{, min.

Comparative analysis were also undertaken on the thermal decomposition of a mixture
of dolomitic limestone and rice husks ash and an admixture of the two with potassium

carbonate. The addition of the latter, K,CO, was aimed at studying its effect on the



decomposition temperature of dolomitic limestone. Heating rate used was 20T /min under
air atmosphere.
2+3 X-ray Diffraction Analysis

Dolomitic limestone, rice husks and rice husks ash were each subjected to X-ray diffraction
analysis using a Rigaku X-ray Diffractometer Mode HV-21. The X-ray beam source was
a copper tube with a nickel filter.
2+4 Surface Area Analysis

Internal surface area determination was measured by nitrogen gas adsorption apparatus,
using Quantasorb Mohel OS— 8 . This involves the B.E.T. method of adsorption which
is the adsorption of nitrogen gas at —196TC.
2+5 Scanning Electron Microscope

The microstructure was observed through a JEOL Scanning Electron Microscope Model
JSM-TSO using an acceleration voltage of 20kv. Rice husks were prepared by ashing the
sample in a furnace for one hour at 850C and coated with gold ion by means of a vacuum
evaporator.
2+6 Proximate Analysis

Proximate analysis of rice husks ash used in the study was determined from
thermogravimetric analysis. Comparative analysas were carried out for NFA rice husks
ash.

3. RESULTS AND DISCUSSIONS
3+1 Chemical Analysis

Table 1 summarizes the chemical composition of philippine dolomitic limestone and rice
husks as determined by ICP analysis. The table shows that dolomitic limestone contains
mostly CaO and MgO with traces of other components. Ca0, MgO ratio was 1.72.

Tablel . Chemica’ Composition of Philippine Dolomitic
Limstone and Rice Husks

Constituents Eﬁ%%gﬁg Ric?%H)usks
510, 0.35 24.78
Ca0 34.46 0.08
MgO 20.09 0.07
ALO, 0.65 —

Fe, 0, 0.12 0.10
K,0 0.02 0.11
Na,0 0.04 0.06
TiO, 0.01 -
Loss on ignition 44.26 74.80

%k : all constituents expressed as oxides
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3+2 Thermal Analysis

3.2-1 Dodomitic Limestone

Figures1 and 2 show the thermal decomposition curve of Philippine dolomitic limestone
as observed under air and CO, atmospheres respectively. As shown by the DTA curves,
the decomposition of dolomitic limestone is an endothermic reaction, which under air
atmosphere is observed to be a single step reaction. The decomposition of CaCQ; and MgCO,
in the dolomite exists simultaneously at 875C. Under CO, atmosphere, however, the
decomposition of these components occur at different temperatures, as shown by the two
DTA peaks. MgCO, decomposes faster at 770°C while CaCO, decomposes at 975°C. - The

observation is likewise shown in the DTG curve. The decomposition reactions are stmmarized

as follows :
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Under air atmosphere :

CaMg (CO,), —MgO+Ca0+2C0O,(T =875T)
Under CO, atmosphere :

CaMg (CO,), —+MgO+CaCO,+CO,(T =770T)

CaCO, —Ca0Q +CO, (T =975T)
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3-2+2 Rice Husks

Figure3 shows the thermal decomposition of raw rice husks under air atmosphere. From
the DTA curve it is seen that this reaction is an exothermic decomposition reaction. The
DTG curve on the other hand, shows 3 peaks corresponding to the evolution of moisture
at 120, volatile combustible matter at 200—340C and the degradation of cellulosic matter
at 304—520C.

Figure4 shows the thermal decomposition of a mixture of 38.79% rice husks ash and 61.3%
dolomitic limestone. It was observed that while the decomposition reaction of dolomitic
limestone occurs at 875°C, the mixture of rice husks and dolomitic limestone decomposes
at lower temperature, as shown by the DTA peak as 816°C. With the addition of K,CO,
decomposition of the mixture occurs even at a lower temperature of 754C as shown in
Figureb . Decomposition starts at 600C and finishes at 775C respectively. Thus, the
presence of K,CO, not only lowers the decomposition temperature of the mixture but also
shortens the duration of the decomposition reaction.
3+3 X-Ray Diffraction Analysis

Figure 6 illustrate the X-ray diffraction pattern of Philippine dolomitic limestone and
shows X-ray peaks corresponding to dolomite, CaMg (CO,),-and calcite, CaCO,. Although
it consists mainly of dolomite, it also contains small quantities of calcite which gives it
the properties of a limestone.
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at reaction time of 10 minutes

1 . Cristobalite

Figure7 illustrates the X-Ray diffraction pattern of rice husks ash obtained after heating
rice husks at various temperatures for- 10 minutes. At temperatures between 700—9007C,
the ash is observed to be amorphous. However as the temperature is increased to 1000°C,
the silica transforms to a crystalline form witn the formation of a cristobalite phase ; which
compared to amorphous silica, is more difficult to react. The order of increasing ease

of reactivity of silica is as follows :

60 minutes
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Fig. O. X-ray diffraction parttern of Philippine rice susks
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Fie. 8. X-ray diffraction pattern of Philiopine rice
husks ash produced at varying reaction time at
900 *C



amorphous silica > cristobalite > tridymite > « -quartz

Even at a temperature of 9007, the slight transformation to crystalline silica is also
observed when the heating time is prolonged to 60 minutes as shown in Figure 8.

The X-ray pattern of rice husks ash obtained from the NFA thermal power plant revealed
the presence of amorphous silica as shown in Figure 8.

Combustion of these rice husks containing amorphous silica was carried out at temperatures
below 900C.

Fis. 10. Surface of the rice husks ash in the Scanning
Electron Microscone (SEM)

a) : Magnification; X 500 L 100em L

b) : Magnification; X 1500 L 10em L



3«4 Surface Area Analysis

Amorphous rice husks ash obtained at firing temperature of 900°C gave a high surface
area of 40w ~g. This result fortifies the fact that the rice husks ash is reactive.
3.5 Scanning Electron Microscopy

Figure 10 illustrates the microstructure of rice husks ash prepared at 900°C as defined by
scanning electron microscope. The micrograph of the ash reveals a multilayered cellular
structure which has remained undamaged by heating at high temperatures.
3+6 Proximate Analysis

Table? summarizes the comparative proximate analysis of the NFA rice husks ash. The
NFA ash which is generated by the rice husks fed thermal power plant is shown to contain
a higher percentage of fixed carbon.

Table2 . Results of the Proximate Analysis of Rice
Husks Ash by Theérmogravimetry

Moisture Ash Residual Carbon
(%) (%) (%)
NFA Rice Husks Ash* 12.00 69.50 18.70

% : Ash obtained from the NFA thermal power Plant
in Cabanatuan

4. CONCLUSION

Characterization of the raw materials to be used in the study have been carried out.
Philippine dolomitic lirnéstone and rice husks either alone or in combination with each other
revealed the following interesting reaults :

1. Philippine dolomitic limestone is a mixture of 97.7% dolomite and 2.3% calcite as revealed
by chemical composition data. It contains 34.46% CaO and 20.09% MgO.

9. Rice husks contains reactive amorphous silica which remains unchanged after heating
to 900°C for less than1 hour; on heating at 1000C, the silica transforms to cristobalite
which in comparison with amorphous silica is more difficult to react. Rice husks ash
exhibits a surface area of 40m,g.

3. Thermal decomposition of dolomitic limestone into CaO and MgO oceur at 875C under
air atmosphere ; in combination with rice husks, it decomposes at 816T ; with the addition
of K,CO, to this mixture, decomposition temperature drops to a much lower temperature
of its decomposition temperature for 853°C to 754°C and this temperature facilitates

the on-gset of the reaction.



BASIC STUDIES ON THE PRODUCTION
OF SLOW-RELEASE TYPE FERTILIZER

The second phase of the study involved the establishment of the reaction parameters required
in the production of the slow-release type fertilizers from dolomitic limestone and rice husks.
Basic heat treatment studies were carried out on various mixtures of dolomitic limestone
and rice husks in a muffle furnace at varying conditions of temperature, time, reactant
mole ratio and concentration of the auxiliary material K,O. The effect of these parameters
was evaluated on the basis of the solubility and hence, availability of silicon, calcium,
magnesium and potassium in the heat treatment products as measured by their solubility
m 0.5N HCI, 2% citric acid and water.

Preliminary heat treatment experiment was first conducted on a mixture of rice husks
and dolomitic limestone. Comparative run was also carried out on a sample mixture of
these two materials with the addition of potassium containing material such as K,CO,
Based on these findings in the initial study, more intensive experiments were carried ouf
which were geared towards finding the best conditions required to produce the desired silicate
fertilizers. "The ultimate objective in these experiments was to obtain a fertilizer product
which has the properties approximating those of the specified standard fertilizers, namely
a high content of acid-soluble SiO, and low content of water -scluble K,O among others.

This chapter describes the experimental work conducted in these basic studies and the results
derived from the series of experiments. Comparative studies are reported on the use of

raw rice husks and rice husks ash as sources of silica.

1. PREPARATION OF RAW MATERIALS
1«1 Preliminary Experiments

Dolomitic limestone and rice husks were first pulverized separately to pass a 200 mesh
sieve. A sample mixture coded as Sample 1 was prepared containing 61% dolomitic limestone
and 39% rice husks based on sample weight. Another sample was prepared which contained
30% dolomitic limestone, 50% rice husks and 20% K,CO, as source of potassium. Thig
was labelled as sample 2. The K,CO, sclution was slowly added to the mixture of dolomitic
limestone and rice husks and mixed thoroughly. The sample mixture was then dried at
110C for 2 hours and pulverized to pass a 200 mesh sieve.
1+2 Experiments using Rice Husks

A series of sample mixtures of dolomitic limetone and rice husks were prepared in varying
proportions witn the addition of potassium carbonate as the source of potassium. Samples
containing varying mole ratiqs of (CaO+MgO+K,0),78i0, 1, 2, 2.5 and 3, were prepared -
The mole ratio was colculated based on the known concentration of CaO and MgO in the
dolomitic limestone, Si0, in rice husks and KO in K,CO, as determined previously. Table 3
shows the proportionate amounts of dolomitic limestone, raw rice husks and K, CO, used

for the different samples.




Table3 . Proportionate Amount of Raw Rice Iusks', Dolomitic
Limestone and K,CO, in the Sample Mixtures

. Dolomitic .
Sample Rice Husks - K,CO K.O Mole
N (g) Limestone (g) % Ratio®
1—1 140 54.9 5.1 5.1 1
1—2 140 48.8 10.2 10.2 1
1—23 140 36.4 20.4 20.3 1
2—1 ‘ 170 121.5 8.5 5.1
2—2 170 113.0 17.0 10.1
2—3 165 101.0 34.0 19.5
3—1 155 136.3 8.7
3—2 153 129.6 17.4 9.8
3—3 156 113.2 36.8 19.4 2.
4-1 140 151.0 9.0
4—2 \ 140 142.0 18.0 9.9 ‘ 3
1

4—3 135 127.0 38.0 20.

% (CaO+MgO+K,0),78i0, mole ratio

Dolomitic limestone and rice husks were first pulverized separately in a ball mill to pass
a 200 mesh sieve; raw rice husks were pro-heated to 140TC to facilitate pulverization. The
pulverized samples were then dissolved in a solution of K,CO; in a 1-liter beaker and the
solution mixed thoroughly using a magnetic stirrer for about 20 minutes. The homogeneous
mixture was then transferred to a stainless steel tray, ovendried at 110C for 2 hours
and pulverized prior to heat treatment in the muffle furnace.
1+3 Experiments using Rice Husks Ash

Another series of sample mixtures containing similar molar ratios of (CaQ+Meg0O+K,0)/Si0,
, e.g.1, 2, 2.5 and 3, were prepared using rice husks ash in place of raw rice husks.
The rice husks ash prepared at the GIDLH laboratory was used in this study. Table4 shows
the amount of each raw material used for the different sample mixtures. The procedure

followed in the preparation of the sample mixtures was similar to that using raw rice husks.



Table4 . Proportionate Amount of Rice Husks Ash, Dolomitic
Limestone and K,CO, in the Sample Mixtures

. Dolomitic
Sample Rice Husks . K,CO K,0 Mole
No (g) Limestone (&)’ (%) Ratio*
5—1 " 34.9 54.9 5.1 5.1 1
5—2 34.9 48.8 10.2 10.2 1
"5 —3 34.9 36.4 20.4 20.3 1
6—1 42.1 121.5 8.5 5.1
6—2 42.1 113.0 17.0 10.1
6—3 40.9 101.0 34.0 19.5
7—1 38.4 136.3 8.7 5.0 2.5
7—2 37.9 129.6 17.4 9.8 2.5
7—3 37.2 113.2 36.8 19.4 2.5
8 —1 34.7 151.0 9.0 5.0
8 —9 34.7 142.0 18.0 9.9
8 —3 33.5 127.0 38.0 20.1

¥ (CaO+MgO+K,0),7Si0, mole ratio

2. EXPERIMENTAL PROCEDURE

The prepared sample mixtures were each subjected to heat treatment at various temperatures
in a Yamato Muffle Furnace. These experiments were carried out at T007TC, 800T and 900C.
Reaction times were varied at 10, 20, 30, 40 and 60 minutes.

In a typical experiment, 30g of the pulverized sample mixture was weighed into a rectangular
porcelain dish, charged into the muffle furnace whicn has been pre-heated to the desired
temperature, and allowed to burn. After a specified period of time, the heated product
was then discharged from the furnace promptly cooled under a water bath and weighed
to determine the product recovery. The dried mixture was. further pulverized to 200 mesh

size prior to analysis. Figure 11 shows the diagram for the heat treatment experiments
using the muffle furnace.
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Fig. 11. Flow diagram for the preparation of slow-release type
fertilizer from dolomitic imestone and rice husks.

3. ANALYSIS
3+1 Residual Carbon in the Products

The heat treated products were analyzed for residual carbon content by the JIS method.
using the muffle furnace.

A 1.0g sample was weighed into a platinum crucible, charged into the muffle furnace
at 925C and left to burn for 7 min with the 1id closed. The loss in weight was reported
as fixed or residual carbon.

3-2 Dissolution Test on the Products

Dissolution test on the products were carried out using 0.5N HC1, 2 9% citric acid and
water according to the AOAC and JIS methods of analysis, of fertilizers.

3«2-1 Sample Preparation

3+2+1-a. 0.5 N HCI-Soluble and 2 % Citric Acid-Soluble Components

1.0g of the heat treated product was weighed accurately into 250 mf - volumetric flask and
added with 150 mf of 0.5N HC1 or 2% citric acid. The solution was shaken for 1 hour
using a vertical rotary shaker at 30—40 rev /min at a constant temperature of 30C. The



solution was then filtered immediately through a dry filter paper No5 C using water suction.
3-2+1-b. Water- Soluble Components
1.0g of the heat treated product was weighed accurately into a 500 mé- volumetric flask
and added 400 m{ water. The solution was shaken for 30 minutes using a vertcal rotary
shaker at 30—40 rev,/min at a constant temperature of 30C and then diluted to mark
and filtered immediately through a dry filter paper No5C.
3+2+2 Analyses
The acid-soluble and water-soluble silicon, magnesium, calcium and potassium content
of the products were analyzed according to the standard methods of analysis for each
component. All of these components were expressed as oxides.
3.2+2-a. Analysis of Silicon
The acid-soluble and water-soluble silicon content of the products were determined by
ICP, ion chromatograph (IC) and silico-molybdic colorimetric method.
3+2-2-b. Analysis of Calcium and Magnesium
The acid-soluble and water-soluble calcium and magnesium content of the products were
determined by ICP, IC and ethylene diamine tetra acetate (EDTA) titrimetric method.
3¢2+2-c¢. Analysis of Potassium
The acid-soluble and water-soluble potassium content of the products were determined
by analysis on an ICP and IC as described previously.
3-3 X-ray Diffraction Analysis
The X-ray diffraction patterns of selected heat-treatment products were determined using
a Rigaku X-ray Diffraction Analyzer. Acceleration voltage used 35KV ; current applied,
20 mA; scanning speed, 1°,min.
The products and residue left after the dissolution tests in 0.5N HC) and water were also
analyzed under similar conditions.
Identification of the compounds was done by comparison of the diffraction patterns with
the ASTM powder diffraction files.
3+4 Scanning Electron Microscope Analysis
Selected samples of the heat treated products and the residues left after the acid and
water dissclution tests were analyzed through a JEOL Scanning Electron Microscope Model
JSM-T20 using an acceleratio voltage 1.2KV.

4, RESULTS AND DISCUSSION
4+ 1 Preliminary Experiments

Preliminary heat treatment studies were carried out on a mixture of dolomitic limestone
and rice husks to determine their behaviour towards heat at various reaction temperatures
and to monitor any reaction resulting in the formation of soluble silicate products. Sample
1 contained the following composition : 22.3% S10,, 49.1% CaO and 28.6% MgO. Sample
2 contained 19.8% K,O in addition to S8i0,, CaO and MgO as shown in Table5.




Table5. Chemical Composition of the Sample Mixtures
in the Preliminary Experiments

Sample Na S0, (%) caO (%) MgO (%)

K0 &)

22.3 49.1 28.6
19.4

2 31.3 29.3 17.0

The results of acid and water-dissolution tests on the heat, treatment products showed
that the highest content of acid-soluble SiO, of Samle 1 was 9.14% which was obtained
at 1,100C as shown in Table6. Sample2 exhibited a higher content of acid-soluble SiO,

of 14.43% at 900T because of the formation of soluble silicate compounds.
of analysis of Sample2 is sumarized in Table7.

Table6 . Results of Dissolution Tests of Sample 1 in the
Preliminary Experiments

The results

0.5N HCl- 2 9% Citric Acid- Water
Temp Time Soluble Soluble Soluble
(C) (min ) Component Component Component
(%) (%) (%)

900 60 0.11 2.02 —
1000 60 3.95 4.03 —
1100 60 6.14 6.51 -
1100 300 9.14 8.76 —

MgO

900 60 24.72 24.72 —
1000 60 25.58 24.30 —
1100 60 24.96 92.23 —
1100 300 25.98 23.70 -

Ca0_

900 60 20.12 18.74 26.96
1000 60 20.35 16.69 28.23
1100 60 21.64 14.52 25.70
1100 300 26.14 19.93 23.70




Table 7. Results of Dissolution Tests of Sample 2
in the Preliminary Experiments

- o Citri
Temp Time > S oluble Avid-Sotuble ey
() (min) COII%I(}’/:)Hfﬂt Cor?%);lfnt (%)
800 60 3.86 2.99 -
900 60 22.01 19.97 -
a0
800 60 10.22 9.26 18.70
900 60 17.57 13.99 12.18
MgO.
800 60 15.91 12.19 -
300 60 17.26 16.03 —
KO
800 60 11.58 10.56 5.04
900 60 14.40 13.32 3.45

*k Subtracted water-soluble values

4 -2 Experiments using Rice Husks

Encouraged by the results of the preliminary findings, a series of subsequent experiments
were conducted to determine the best conditions that would be suitable for the production
of the slow-release silicate fertilizers. The effects of reactant composition, temperature,
time and concentration of the added K,O were studied with the end in view of maximizing
the content of acid-soluble Si0, in the product and minimizing its content of water - soluble
K,O.  The sample mixtures prepared for this study contained varying (CaO+MgO+K,0),/8Si0,
mole ratios ranging between 1 and 3 ; their chemical compositions are shown in Table§.
The SiO, content of the samples ranged 26.0—59.9% ; CaO, 18.3—42.2% ; MgO,
10.7—24% ; K,0, 4.9—20.3%.




Table 8. Chemical Composition of the Sample Mixtures
using Raw Rice Husks '

Mole Si0, CaO MgO K,O
Sample No Ratio* (%) (%) (%) (%)
1—1 1 50.9 27.8 16.2 5.1
1—2 1 50.8 24.6 14.4 10.2
1—3 1 50.7 18.3 10.7 20.3
2—1 2 36.9 36.7 21.4 5.1
2—2 2 36.5 33.8 19.9 10.1
2—3 2 34.3 29.2 17.0 19.5
3—1 2.5 32.4 39.6 23.1 4.9
3—2 2.5 31.5 37.1 21.6 9.8
3—3 2.5 30.0 31.5 18.3 20.2
4—1 3 28.2 42.2 24.6 4.9
4 —2 3 27.9 39.3 22.9 9.9
4—3 3 26.0 37.0 19.8 20.1

* (CaO+MgO+K,0),/Si0O, mole ratio

Heat treatment of the sample mixtures at various reaction temperatures in the muffle
furnace gave products of differing contents of residual carbon, 1.e., those treated at higher
temperatures left behind a smaller amount of unburned carbon, as shown in Table9. A
generally decreasing trend of residual carbon content was observed in samples of increasing

K,O concentration and increasing mole ratio.



Table9 . Analysis of Residual Carbon of the Products obtained
at Varying Temperatures using Raw Rice Husks

Mole K.O Time Residual Carbon (%)
Sample No. g 4o (%) (min) 700°C 800°C 900°C
1-—-1 1 5 60 23.19 19.51 16.47
1—29 1. 10 60 19.03 15.67 12.66
1—3 1 20 60 17.14 14.36 11.52
2—1 2 5 60 16.67 8.24 9.69
2 —9 ) 10 60 11.26 9.13 9.46
23 P) 20 60 12.43 9.97 5.74
3-—1 2.5 5 60 24.50 7.97 3.66
39 9.5 10 60 20.59 6.509 3.63
3—3 2.5 20 60 13.57 5.79 4.99
4-1 3 5 60 26.03 4.499 6.80
4—2 3 10 60 14.91 9.599 4.10
4—3 3 20 60 15.62 10.39 4.90

* (CaO+MegO+K,0),/8i0, mole ratio

4+2+1 Results of Dissolution Tests

The results of dissolution tests on each of the heat treatment products obtained at varying
reaction temperatures are summarized in Figures 12 to 22 for 510,, K, 0, MgO and CaO
respectively. All samples were treated at 60 minutes. Analysis results of 0.5N HCl, 2%
citric acid and water-soluble components exhibited various trends with respect to the various
parameters. The values presented for the 0.5N HCl and 2% citric acid-soluble K,O and CaO
have been subtracted of water-soluble values. The products do not contain water -soluble
contents of Si0, and MgO.

4-2-1+a. Effect of Moe Ratio

Figure 12 shows the effect of varying mole ratios of (CaO+MgO+K,0),7Si0, on the
concentration of 0.5N HCl-soluble and 2 % citric acid-soluble Si0, in the products. Typical
trends are shown for samples containing 20% K,O. Results show that the formation of
acid -soluble SiO, is very much affected by differences in mole ratio. At a reaction
temperature of 900°C, increasing this mole ratio from 1 to 2 produced a sudden increase
of acid-soluble SiO,, from 2.86% to 22.5%. With further increase of mole ratio, the
content of acid -soluble SiO,, gradually drops until it reaches a value of 10.59% at a mole
ratio of 3. At 800C, values of SiO, obtained are much lower than those at 900C ; at

this temperature, the highest attainable content of Si0, was only 8.39%. This value was
observed at a mole ratio of 2.5.
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Figure 13 shows that the highest value of acid-soluble K,O is 16.12% at a mole ratio
of 2.5.

Water-soluble K,0, on the other hand, does not vary much with changes in mole ratio.
Lowest value observed was 1.23% in products obtained at 900°C.

The content of acid-soluble MgQO and CaQ of the heat treatment products also shows
an increasing trend of values with increasing mole ratios. Maximum values are observed
at mole ratios of 2 and 2.5 for CaO as shown in‘ Figure 14 and 19. At higher mole ratios,

a decrease of acid-constituents is indicated at a temperature of 900°C.
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4+2+1+b. Effect of K,0 Concentration

The addition of potassium in the form of K.,CO, to the mixture of dolomitic limestone
and rice husks has been shown to facilitate the formation of soluble silicate compounds
at temperatures lower than 1000°C as previously indicated in the preliminary experiments.
Figure 16 shows the trend of 0.5N HCl and 2 % citric acid-soluble SiQ, with increasing
K.,O concentration. Comparative trends are illustrated for samples with mole ratios of
2 and 2.5, at temperatures of 800°C and 900°C. As the K,O in the sample increases, a
rapid increase in acid-soluble Si0O, is indicated particu[arly at 900C, i.e. for the sample
containing a (CaO+MgO+K,0),~ S10, mole ratio of 2.0, an increase of K, O concentration
from 5 to 20% produced a subsequent increase in 0.5N HCI-soluble Si0, from 4.94% to
22.5%. At 800C, a slight increase of values is observed with increased K,O concentration,
but not as pronounced as there at 900C.
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The effect of K,O concentration on acid-soluble and water soluble CaQ content is shown
in Figure 17 for samples containing mole ratio 2. As observed with SiO, values, a
continuous increase of acid-soluble CaO is obtainéd with increasing ¥,O concentration,
especially at 900°C ; the highest value obtained was 17.50% . Water-soluble CaO is decreased
with increased K,O concentration. _

The content of acid-soluble MgO of the products was not affected to a great extent with
changes in K,0 as shown in Figure 18 0.5N HCl-soluble and 2 % citric acid-soluble MgO
reach maximum values of 17.36% and 12.50% respectively at 800C using 20% K,O.

42+1+c. Effect of Temperature

The reaction of dolomitic limestone, rice husks and K,CO, has been observed to occur
at a temperature of 750C as previously mentioned. The influence of the reaction temperature
on the soluble constituents of the product is discussed here. '

The influence of reaction temperature on the acid-soluble SiO, content of the products
is best illustrated in Figure 19 for samples containing mole ratios of 2 and 2.5. Both 0.5N
HCl and 2 % citric acid-soluble SiO, show an increasing trend of values with increased
temperature, with highest values at 900C. At a mole ratio of 2, for instance, raising
the temperature from 8007C to 900C produced a subsequent increase in HCl-soluble SiO,

from 3.87% to 22.51%.
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Similarly, the content of acid-soluble KO was observed to be generally in the upward
trend with respect to increasing temperatures as reflected in Figure 20.

The contnet of acid-soluble MgO in the products was affected greatly between 700T
and 800 but not affected at 800~900C as shown in Fi gure 21. On the other hand, acid
-soluble CaO is shown to increase temperature ; the highest value obtained is 21.62% as

can be seen from Figure 22. The content of water-soluble CaQ, however, exhibits a maximum
at 800°C and then drops at 900C.
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4+2+1+d. Effect of Reaction Time

For the studies on the effect of reaction time, samples with mole ratios of 2.0 and 2.5
were investigated.

For 5i0, KO, MgO and CaO respectively, the trend of HCI-soluble 5i0, content in
the products at different reaction times is shown in I‘igure 23. The graph 1llustrates that
the acid-soluble SiQ, increases as reaction proceeds from 10 to 30minutes and then remains
constant with further increase in reaction time. A similar trend of data is also observed

with acid-soluble KO and MgO as reflected in Figures 24 and 25 respeclively. The values

Water-soluble K20 (3%}

Water-solubie Ca0O (%)



of water-soluble K,O exhibit a decreasing trend from 10 to 30 minutes and then stabilize
between 30 to 60 minutes.

The acid-soluble CaO content of the product, however, exhibited a different trend. The
values are observed to increase between 10 to 20 minutes and remain constant up to 40

minutes and then increases as reaction time is lenghtened to 60 minutes. This is shown
in Figure 26.
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The formation of silicate compounds after the heat treatment of the sample mixtures

at varying temperatures was monitored by X-ray analysis of the product.
the X-ray diffraction pattern of sample 2 — 3 (mole ratio=

800C and

900C for 60 minutes.

Figure 27 shows
2), products obtained at 700C

At 900C, the presence of silicates ig clearly indicated

by the appearance of peaks corresponding to K, CaSiQ, and K,MgSi0, among others.
At 700 and 800C, the formation of these silicates is not indicated.
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Figure 28 shows the comparative X-ray pattern of the heat treatment products obtained
at 900°C using different mole ratios of (CaO+MgO+K,0).78i0,. The presence of various
species of silicate compounds is indicated at different ratios which explains the discrepancies
obtained in the dissolution tests. The formation of a -Ca,Si0, is cobserved at a mole ratio
of 2 in addition to K,MgSiO, and K,CaSiO, which are also formed at a mole ratio of
3.

The X-ray analysis of the acid-insoluble residue left after the dissolution tests in 0.5N
HCI is illustrated in Figure 29. Different patterns are obtained with the products of different
mole ratios, i.e., the residue from the product produced from a mole ratio of 1 still shows
the presence of insoluble crystalline materials, particularly cristobalite. This explains the
lower results of dissolution tests with this product, compared with those obtained at mole
ratio 2.

4« 2«3 Scanning Electron Microscopy

The scanning electron micrograph of a representative of 0.5N HCl and water insoluble
residue of the product after the dissolution tests is shown in Figure 30 obtained at 900C.
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4«3 Experiments using Rice Husks Ash

Comparative experiments ware conducted using rice husks ash in instead of rice husks as
a source of silicon. The series of sample mixtures prepared contained similar chemical
compositions as those used in the earlier runs on rice husks ash as shown in Table.10.

Table. 11 summarizes the analysis of residual carbon of the products.

Table 10. Chemical Composition of the Sample Mixtures
using Rice Husks Ash

Mole Si0, €a0 MgO K,O
Sample  No Ratio (%) %) (%) (%)
b —1 1 51.1 27.7 16.1 5.1
5—2 1 50.0 24.6 14.3 10.2
5—3 1 50.8 18.3 10.7 20.3
6—1 2 36.9 36.7 21.4 h.1
6—2 2 36.5 33.8 19.7 10.1
6 —3 2 34.3 29.2 17.0 19.5
7—1 2.5 32.2 39.6 23.1 5.0
7—2 2.5 31.5 37.1 21.6 9.9
7—3 2.5 30.0 315. 18.3 20.0
8—1 3 28.2 42.2 24.6
8 —2 3 27.9 39.3 22.9 9.9
8—3 ‘ 3 - 26.0 34.6 19.8 20.1

% (CaO+MgO+K,0),7Si0, mole ratio



Table 11. Analysis of Residual Carbon of the Products obtained

at Varying Temperatures using Rice Husks Ash

Mole K.,O Time Residual Carbon (%)
Sample Na  pooos (%) (min) 700°C 800°C 900°C
5—1 1 5 60 19.4 7.02 5.54
5-2 1 10 60 11.87 6.47 4.14
5—3 1 20 60 8.27 4.94 2.21
6—1 5 60 21.25 11.68 4.09
6—2 2 10 60 14.924 5.47 3.12
6 —3 20 60 12.19 8.03 3.91
7—1 5 60 22.93 10.67 4.93
7—2 10 60 16.40 9.17 92.55
7—3 2. 20 60 14.29 7.43 6.95
8—1 3 5 60 29.14 6.69 11.15
8— 2 10 60 18.75 5.02 4.98
8—3 3 20 60 15.8 11.41 2.45

* (CaO+MgO+K,0),78i0, mole ratio

Dissolution tests of the products are summarized in Table 12, 13,. 14 and 15 for
Si0, K,O, MgO and CaO, respectively.
obtained for acid-soluble and water-soluble components exhibited similar

In comparison with the previous results, the values

trends of values

with respect to changes in temperature, mole ratio and concentration of K, O in the sample.




Table 12. Comparative Analysis of the Acid-Soluble Silicon
Content of the Heat Treatment products using

Rice Husks Ash

. 0.5N HCI- 2 % Citric
Sample 'I(‘e%n )p ggﬂs _ Soluble Acid - Soluble
510, (%) 510, (%)
o—1 700 60 0.18 0.22
800 60 0.45 0.36
900 60 '3.66 3.17
5—2 700 60 0.38 0.31
800 60 1.06 0.87
900 60 4.09 3.93
5—3 700 €0 1.11 0.74
800 60 2.08 1.93
900 60 3.13 2.91
6—1 700 60 0.95 0.80
800 60 1.24 1.01
900 60 4.65 3.75
6—2 700 60 1.09 0.85
800 60 2.04 1.62
900 60 8.11 7.16
6—3 700 60 2.57 2.00
800 60 3.99 3.11
3900 60 23.14 20.70
7T—1 700 60 1.36 0.91
800 60 1.73 0.99
900 60 4.08 3.55
7—-2 700 60 1.69 0.91
800 60 5.89 4.49
800 60 12.70 10.59
7T—38 700 60 1.39 1.01
800 60 8.00 7.02
900 60 20.09 18.16
8—-1 700 60 0.94 0.49
800 60 1.38 0.88
900 60 3.65 3.02
8 -2 700 60 1.12 0.57
800 60 2.88 1.96
900 60 5.09 4.38
8—3 700 60 1.14 1.00
800 60 3.03 3.05
900 60 12.06 11.62




Table 13. Comparative Analysis of the Acid-Soluble and Water

Seluble Potassium Content of the Heat Treatmen

Products using Rice Husks Ash

- 0.5N HC1- 2 % Citric Water -
Sample No. ’I(‘e%l )p &g}g Soluble Acid - Scluble Soluble
K,O (%)* K0 (%)*  K,0 (%)
5—1 700 60 0.22 — 3.66
800 60 1.35 1.19 2.92
300 60 — — 2.88
5—2 700 60 0.32 — 8.37
800 60 4.57 4.53 4.80
900 60 0.20 0.09 4.61
5—23 700 60 6.65 6.37 5.49
800 60 17.11 16.20 0.57
900 60 11.57 11.17 3.82
6 —1 700 60 0.06 — 3.59
800 60 1.21 1.15 2.66
900 60 1.860 1.54 2.60
6 —2 700 60 0.80 0.05 7.00
800 60 5.72 5.31 2.70
500 60 7.78 7.46 0.73
6 —3 700 60 0.45 0.47 16.55
800 60 11.68 10.33 5.75
900 60 13.86 13.64 2.97
7—1 700 60 — — 3.49
800 60 1.74 1.57 2.16
900 60 3.63 3.33 0.42
7—2 700 60 0.18 0.07 8.12
800 60 5.33 4.66 2.84
900 60 7.16 6.23 1.10
7—3 700 60 0.26 — 18.11
800 60 13.58 13.52 4.70
900 60 16.45 16.18 1.14
8§—1 700 60 - — 3.94
800 60 1.65 0.80 2.25
900 60 3.50 3.33 0.55
8 —2 700 60 0.03 — 8.61
800 60 5.06 4.97 3.03
900 60 7.08 6.96 1.06
8—3 700 60 0.48 0.28 16.19
800 60 10.89 10.76 6.27
900 60 17.33 16.30 0.72

% Subtracted water-soluble values




Table 14. Comparative Analysis of the Acid-Soluble Magnesium
Content of the Heat Treatment products using
Rice Husks Ash

- 0.5N HCI1- 2 9% Citric
Sample No qzeoén)p aﬁ% Soluble Acid - Soluble
MgO (%) MgO (%)
51 700 60 4.02 2.96
800 60 11.13 9.44
900 60 11.96 10.10
52 700 60 6.16 3.64
800 60 .69 4.18
900 60 13.57 12.89
5—3 700 60 4.88 3.64
800 60 10.11 3.08
900 60 10.09 9.43
6— 1 700 60 4.93 3.37
800 60 13.01 12.70
900 60 14.96 10.03
62 700 60 5.14 3.55
800 60 14.67 12.31
900 60 13.06 11.03
6—3 700 60 6.25 4.96
800 60 16.44 12.47
900 60 19.02 16.83
71 700 60 4.70 4.17
800 60 15.92 14.75
900 60 13.93 11.04
72 700 60 5.89 1.99
800 60 15.33 14.00
900 60 13.44 11.08
7-3 700 60 5.54 4.94
800 60 18.27 16.53
900 60 17.10 15.14
81 700 60 5.50 4.62
800 60 14.62 10.11
900 60 14.92 11.03
g —2 700 60 5.36 4.05
800 60 14.45 13.80
900 60 15.00 13.86
83 700 60 5.90 3.84
800 60 14.70 12.99
900 60 17.82 16.99




Table 15. Comparative Analysis of the Acid-Soluble and Water-
Soluble Calcium Content of the Heat Treatment
Products using Rice Husks Ash

T T 0.5N HCl- 2% Citric Water -
Sample No. (9%1)1) ( 1’.“‘*) Soluble Acid - Soluble Soluble
min Ca0 (%)* CaO (%)* Ca0 (%)
5—1 700 60 2.924 0.78 1.79
800 60 7.11 4.99 14.56
500 60 7.81 5.33 15.15
5—2 700 60 2.47 1.04 2.97
800 60 4.41 2.99 8.94
900 60 8.10 5.46 10.84
53 700 60 4.75 4.52 4.94
800 60 7.93 3.56 8.58
900 60 8.94 6.90 5.73
6—1 700 60 3.79 1.86 3.15
800 60 7.13 4.40 13.22
900 60 10.77 8.08 10.87
6 —2 700 60 4.57 2.37 4.18
800 60 10.18 8.01 16.44
900 60 14.60 12.11 13.09
6—3 700 60 6.00 4.14 2.48
800 60 12.84 9.65 13.15
900 60 18.91 15.85 11.56
7-—1 700 60 4.44 3.49 4.11
800 60 4.75 3.06 7.03
900 60 6.76 6.05 6.20
72 700 60 2.16 1.70 5.52
800 60 10.01 8.58 17.05
900 60 13.19 25.37 13.79
7-3 700 60 3.73 1.28 6.14
800 60 9.78 6.80 19.20
900 60 16.19 13.46 13.07
8—1 700 60 3.91 1.16 4.88
800 60 10.7 7.15 14.10
900 60 16.72 14.74 12.41
8 —2 700 60 3.89 1.36 6.70
800 60 10.05 8.68 16.09
900 60 14.16 12.09 13.91
8§—3 700 60 4.36 2.17 3.88
800 60 7.79 4.84 14.37
900 60 14.98 10.99 13.03

*kSubtracted water-soluble values




The effect of temperature on the acid-soluble SiO, content in products obtained using
rice husks ash is shown in Figure 31.

Compared with the data using rice husks (Fig.19), there is very little difference between
the two materials, rice husks and rice husks ash.
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2 10F Fig31 Effect of temperature on the O.5N HCI-
< soluble and 2% citric acid-soluble SiO=
| content in the products obtained using
rice husks ash as source of silica
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600 700 800 Q00

Reaction Temperature-(T)

These results seem to prove that even as the source of silica takes the form of a rice
husks or rice husks ash, similar results would be obtained since both materials contain

amorphous types of silica.

5. 'CONCLUSIONS
Basic heat treatment studies have been conducted on sample mixtures of dolomitic limestone,

rice husks and K,CO, with the view towards establishing the optimum conditions required

in the production of silicate products exhibiting the properties of a slow-release fertilizer.

Studies made on the muffle furnace were centered on determining the effect of varying

conditions of reaction temperature, time, reactant mole ratio and concentration of added

K,O on the products. Results are summarized as follows :

1. Variations in the chemical composition of the reactants in terms of mole ratio (CaO+MgO
+K,0),/Si0,, resulted in the formation of products of varying properties. Maximum
values of acid-soluble Si0, K,O, MgO and CaO were formed at mole ratios of 2 and
2.5. ’

2. The addition of K,CO, to the reaction mixture of dolomitic limestone and rice husks
resulted in the lowering of the reaction temperature and a subsequent increase in the content
of acid-soluble constituents of the heat treatment products. This latter effect was enhanced
with bigher K,O concentrations.

3. The effect of reaction temperature is best observed by the formation of acid-soluble
Si0,, which exhibited a maximum value of 22.51% at 900C.

4. The present study revealed that the reaction seems to be optimized at a reaction time
of 30 minutes and that lengthening the time to 60 minutes produces very slight differences.

5. Comparative studies using raw rice husks and rice husks ash as sources of silica revealed
similar trends of values at parallel conditions even as the resulting products contained
varying amounts of residual carbon. Since both rice husks and rice husks ash contain
amorphous silica, both materials proved to be good starting materials for the production
of silicate materials.

6. The results of the study proved that it is indeed possible to produce silicate products
from dolomitic limestone and rice husks which exhibit properties of a slow-release fertilizer.
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Gasification of Hybrid Particles of Gasification and
Liquefaction Residue of Coal

Yoneshiro Tazaki, Shigeo Chiba, Midori Yumiyama,
Shohel Takeda, Senji Honma, Kunihiro Kitano and
Junichi Kawabata

Government Industrial Development Laboratory, Hokkaido, Sapporo 004

Key Words: Fluidization, Coal Gasification, Coal Liquefaction, Residue, Hybrid
Hybrid- particles of coal ash from gasifier and higher viscous residue and solid pitch from

coal liquefaction were successfully produced by two new methods. They were then gasified

by stean and oxygen in a fluidized bed under atmospheric pressure. (Gasification characteristics

of these particles, such as the distribution and yield of gas produced and the carbon

conversion, were evaluated as a function of operating variables.
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