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1 stop valve
2 gressure regulator
3 qressure gage
4 orifice
2 nesdle valve
7 feed rate controlier
8 screw feeder
9 distributor
10 qacked fluized bed
11 cyclone
12 particle path changer
13 sampling bag
14 sampling bottle

Fig. 1 Experimental apparatus

Table 1  Packing used in this experiment
Packing Sign Screen
opening d|em] &lem] Dpiem] &lem]
________________________________ R
Cylindrical PN-1 1,000 1.15 1.06 1.28 0.96
screen PN-3 1,680 1.43 1.30 1.59 (0.967

packing PN-5 1,000 1.80 1.80 2.06 0.975

Raschigring — — 2.00 2.00 2.29 0.74

Table 2 Particles used in this experi-

ment
dp dpav X, Urtio
[mesh] el  [—] Llem/sec]
Glass particle — 48+ 60 274 0,036 226.5
— 60 80 184 0.262 152.6
— 80+100 163 0.126  136.0
A —100+115 137 0,200 118.7
—115+150 115 0.108 69.4
—150+170 97 0.126 59.4
—170+200 81 0.086 45.5
— 200+ 250 67 0.056 37.5
Glass particle —115+150 115 0.08 69.4
—150+170 97 0.163 59.4
—170-200 81 0.245 45.5
B - 200+ 250 67 0.292 37.5
— 2504270 58 0.118 31.0
—270+325 48 0.071 23.0
—325+400 40 0.031 15.0
Polystyrene -~ 28+ 32 545 0.103
particle — 32+ 36 460 0.284
— 36+ 42 385 0.111
— 42+ 48 316 0.233
— 48+ 60 274 0.046
— 60+ 70 230 0.127
— 70+ 80 210 0.096
Zircon sand — 48+ 60 274 0.027
— 60+ 80 184 0.102
— 80+100 163 0.095
—100+115 137 0.226
—115+150 115 0.277
—150--270 97 0.166
—170+200 81 0.097
—200+250 67 0,010
Activated — 481180 237 0.546
alumina — 80+100 163 0.119
—100+115 137 0.132
—115+250 115 0.102
— 1504200 90 0.084
— 200250 67 0.017
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Fig. 2 Relation between [J and 3; in the case of

Raschig-ring packing
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Fig. 3 Relation between U and f; in the case of

eylindrical screen packing
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Fig. 7 Relation between d, and #; in the case of

zircon sand
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Fig. 8 Relation detween dp and #; in the case of

polystyrene particles
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Table 3 Some exsamples of horizontal packed fluidized particle classifier

First tower Second tower

dp [mesh] Feed rate  f, [—] Ayi Fox; —Ay; A: -] Ay; Foxi — Ay:
(kg /min] Lkg /min] (kg /min] [k /min]  [kg/min]
— 48+ 60 10.0 0 0 10.0 0 0 10.0
— 60+ 80 10. 0 0 10.0 0.17 1.7 8.3
— 80+100 10.0 0 0 10.0 0.5 5.0 5.0
—100-+115 10.0 0 0 10.0 0.84 8.4 1.6
—115+150 10.0 0 0 10.0 1.0 10.0 0
—150+170 10.0 0.1 1.0 9.0 1.0 9.0 0
—170+4 200 10.0 0.5 5.0 5.0 1.0 5.0 0
—200+ 250 10.0 0.88 8.8 1.2 1.0 1.2 g
—250+270 10.0 1 10 0 1.0 0 0
—270+325 10.0 1 10 0 1.0 0 0
100.0 34.8 65.2 40.3 24.9
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The Characteristics of Particle Classification by a Horizontal Packed
Fluidized Particle Classifier

Kunio Kato, Tomio Adachi* and Katsuji Banba**
Dept. of Chem. Eng., Gunma Univ., Kiryu 376

Glass beads from 48 mesh to 400 mesh, polystyrene particles from 28 mesh to 80 mesh and zircon sand
particles from 48 mesh to 250 mesh were classified by a horizontal packed fluidized particle classifier.

From this investigation, if particle size was in the range of 30 mesh to 400 mesh and particle density was
in the range of 1.0 g/cc to5.0g/cc, these particles are well classified by this classifier. The characteristics of
particle classification of this classifier are expressed bfr a partial sepration efficiency, and good correlation bet-
ween particle separation efficiency and operating condition is obtained. If particles of one size are 1.2 times
larger than the others, these two sizes are classified with 80% efficiency by this classifier.

*  Gunma Univ.
*+ Government Ind. Develop. Laborotory, Hokkaido

#*x* Kasai-Kogyo Co.,, Ltd.

(fLpIFRmEE, WIBES S (1977), P473~476)



THE EFFECT OF BED DIAMETER ON THE
BEHAVIOR OF BUBBLES IN GAS-SOLID

FLUIDIZED BEDS*

Mmworu TOMITA axnp Tomro ADACHI
The Government Industrial Development Laboratory,
Hokkaido ; Sappore, [apan

Behavior of rising bubbles has been studied in fluidized beds of 21.4, 37.8 and 59.9 cm
LD. Sands of mean size 0.202 mm were fluidized by air at velocities ranging up to 25
cm/sec. Bubble frequency and velume fraction of bubbles in the beds were measured
with a capacitance probe. Upward and downward forces produced by fluidization were
measured with a strain gage probe, Bubble diameter and rising velocity were evaluat-

ed by analyzing the experimental results.

Inthe level region up to about 20 cm from the distributor, bubbles coalesced rapidly,
rising along the wall of the bed. Particles flowed up along the wall and flowed down
through the central portion of the bed. In the region of levels higher than about 20 cm
from the distributor, the behavior of bubbles was strongly affected by the wall of the
bed as the bubbles grew larger. Particles flowed down along the wall and flowed up

through the central portion of the bed.

1. Introduction

Many investigations have been made, mainly on a
small scale, in an attempt to understand the behavior
of gas-solid fluidized beds. However, little works has
been reported on large-scale fluidized beds. May™
mieasured the axial diffusion coefficient of solid parti-
cles in fluidized beds of 0.6-1.5 m diameter. de GrootV
studied the effects of fluidizing air velocity, bed di-
ameter (0.1-1.5 m), bed height (1.0~1.5 m) and size
distribution of crushed silica particles on the behavior
of bubbles. Whitehead ¢f al.lV investigated the be-
havior of bubbles in square cross section fluidized beds
1.5 m? in area and up to 2.4 m in depth. Kunii ¢ al.%
studied the behavior of bubbles in beds of 40 cm 1.D,
with micro-spherical and FCC catalysts fluidized by
air. lkeda® studied the synthesis of acrylonitrile by the
catalytic oxidation of propylene and ammonia in fluid
beds of 8-360 cm I.D. He discussed the relation be-
tween the reaction conversion and the dip-length
equivalent diameter of the beds. Hovmand e al.?
measured ozone conversion in a fluidhized-bed reactor
of 46 cm L.D. and up to 2.5 m bed height at fluidizing
gas velocities up to about 30 cm/sec, using sands of 75
and 125 y in mean diameter as fluidizing particles.
They analyzed the ozone conversion data on the basis
of both the slug flow model and the bubble model, and
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discussed the effects of bed diameter and distributor
upon the ozone conversion and behavior of bubbles.

In spite of these investigations, our knowledge is still
insufficient for the design or scale-up of fluidized bed
reactors. Present paper is concerned with the experi-
mental study of the scale effect on the behavior of
bubbles in fluidized beds, especially in the inter-
mediate-scale region.

2. Apparatus and Procedures

Fluidized beds of 1.0 m height and 21.4, 37.8 and
59.9 cm I.D. were used. The columns were made of
polymethylmethacrylate. The distributor used in each

column was made by fitting a 200-mesh screen be-

tween two plates perforated with orifices of 0.1 cm di-
ameter in equilateral triangular arrangement with
1.5 cm pitch. Calming section was made by packing
glass beads of 1.2 cm diameter just under the dis-
tributor. The air was sent to the bed through a buffer
tank, an orifice flow meter, the calming section and the
distributor by a roots blower. The fluidizing gas
velocity was controlled by two regulation valves,

Sands of 0.202 mm mean diameter were used as
fluidizing particles. Bed height at incipient fluidization
was maintained at about 65 c¢m throughout the ex-
periments. Main experimental conditions are shown in
Table 1.

Bubble frequency was measured with a capacitance
probe operated by 3MHz carrying wave, and was
counted with a digital counter for 60 seconds. Fig. 1(a)
is a diagram of the capacitance probe.



A capacitance probe was also used for the measure-
ment of volume fraction of bubbles; the signals from
the probe were integrated with a digital integrator for
60 seconds. Volume fraction of bubbles was calculated
from integrated values for the fluidized bed, incipiently
fluidized bed and empty column.

A strain gage probe, shown in Fig. 1(b), was used
for the determination of upward and downward forces
acting on the probe in the fluldized bed; the signals
from the probe were integrated with a digital inte-
grator for 60 seconds. The upward and downward
[orces were expressed as the difference between output

Table 1 Experimental conditions

Apparatus
Fluidizing tower (polymethylmethacrylate}
inner diameter Dy =21.4, 37.8, 59.9 cm
height of tower=c¢a. 100 cm
height of settled bed =ca. 65 cm
Distributor (perforated plate)
hole diameter=0.1 cm
pitch=1.5 cm
fraction of hole area=0.011
Particle (sand)
size range=0.147-0.295 mm
mean diameter dp=0.202 mm
absolute density p;=2.65 gfcm3
minimum fluidizing gas velocity #m r=4.0 cm/sec
void fraction at incipient fluidization epy=0.47
sphericity ¢;=0.685
angle of repose ¢r=32.5 deg.
Fluid (air at 1 atm., room temperature
fluidizing gas velocity uy=10, 15, 20, 25 cm/sec

10 ¢ iron pipe 109 iron pipe
| i
fe—20—>h ! i
— b
insulator
1 .‘ g
o Ir<1o>| trai
0.8 ¢ copper wire 04 steel pslartc:n gage
{a) (b)

Capacitance probe Strain gcgé probe

Fig. 1 Capacitance probe and strain gage probe

voltage from the integrator for the fluidized bed and
that for the incipiently fluidized bed.

Tron probe supporters were mounted at the top of
the columns in such a way that the probes could be
fixed vertically and radially at any point within the
beds.

3. Experimental Results and Discussion

3.1 Bubble frequency

Local bubble frequencies were measured at various
levels and radial positions in each bed. Typical ex-
amples of the results are shown in Fig. 2. The general
shape of the bubble frequency distribution was almost
the same as those previously observed in cylindrical
beds®®. At lower levels of bed, the bubble frequency
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seemed to increase near the wall of the bed. At higher
levels the distribution of the bubble frequency was ob-
served to be almost uniform in each bed.

Fig. 3 shows the longitudinal distributions of z, the
bubble frequency averaged across the sectional area. In
every experiment, n decreased rapidly up to a level of



about 20 cm from the distributor and then decreased
slowly. At higher gas velocities, decreasing rate of n at
higher levels in the bed of 21.4 ¢cm I.D. was bigger than
those in the beds of 37.8 and 59.9 c¢m 1.D.
3. 2 Volume fraction of bubbles

Volume fraction of bubbles ¢, was measured at
various levels and radial positions in each bed, and
typical examples of the results regarding its distri-
bution are shown in Fig. 4. The volume fraction of
bubbles just above the distributor seemed to be large
in the central portion as well as near the wall for the
bed of 21.4 cm I.D. However, it became large near the
wall for the bed of 37.8 cm 1.D., and in the central
portion for the bed of 53.9 cm I.D. At higher levels in
the beds of 21.4 and 37.8 ¢cm 1.D., a peak of the disiri-
bution of ¢, was observed in the central portion at
higher gas velocities, but not at lower gas velocities. On
the other hand, at higher levels in the bed of 59.9 cm
1.D., the distribution of ¢, was radially uniform at
higher gas velocities, and had a tendency to produce a
peak in the central portion at lower gas velocities.

Fig. 5 shows the longitudinal distributions of g, the
volume fraction of bubbles averaged across the section-
al area. At higher gas velocities &, was large just above
the distributor, but decreased rapidly up to a level of
about 10 ¢m from the distributor and then became
almost constant at higher levels.
3.3 Rising velocity of bubbles

By application of Kunii and Levenspiel’s “bubbling
bed model’’®, a material balance of gas in the section
of the bed under consideration gives

Uy = Eplly + €9ty sily + Epfiem sy
+ (1 — Ep T Epk — Ebﬁ)ﬁmfue (1)
where u, is the upward velocity of gas flowing through
the emulsion phase, and is given by

g = (umfllemf) — U (2)

where u, is the downward velocity of solid particles in
the emulsion phase, and is given by

U = epfits/(l — &y — &) (3)
By substituting Egs.(2) and {3) into Eq.(1), the
mean rising velocity of bubbles in the section of bed u,
is expressed as
Uy =
Uy — (1 — Eb - gba _ Ebﬁ)umf

z,,{l + (o + Bemy — ( ! *fb_;ffg;? EY

o
(4)

The ratio of cloud volume in the emulsion phase to
bubble volume « in Eq.(4) is defined as

a= (Vo= V)V (5)

where V, and ¥V, are the volume of clouds and the
volume of bubbles, respectively. The ratio ¥,/V, can
be estimated by Murray’s equation® with §=z/2 such
as Chiba and Kobayashi® have adopted.
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7= (1 -+ us)(emf/umf) (7)
From Eqgs.(3), (5), (6) and (7), one can obtain
o= (I — & — soB)tmy (8)

(I —ep)empuy — (1 — & — ef)tnys
The ratio of wake volume to bubble volume 8 is esti-
mated from the experiments of Rowe and Partridget®
as 8=0.22 in this paper, and it is assumed that § is
constant throughout the bed.

Using a trial-and-error method, %, can be calculated
from the observed &, and Egs.(4) and (8). The longi-
tudinal distributions of u;, are shown in Fig. 6. The u,
increased rapidly just above the distributor and ap-
proached an almost constant value at levels higher than
10 cm from the distributor.

3. 4 Bubble diameter

According to Kunii and Levenspiel’s model®, the

frequency of bubbles passing a point ' is given by

(9)
where £ is the height between two successive bubbles
registered on the point. Assuming that the sum of a
bubble’s volume and its wake volume is equal to the
volume of sphere with a diameter of ¢, the volume of
the bubble is zd3/6(1 --3). On the average, % is related
to gy by

‘' = wyfh

- 46(l -+ B)

dzh/4
Combining Eqs.(9) and (10} and eliminating 4 gives

S+ Blesuy
20’

On the other hand, the frequency of bubbles passing
the head of a probe # is related to #’ by

A
where 4 is the detectable area of the probe. In this
paper, 4 is given by
A= (wdzj4) + (b + )d, + bl (13)
where b and [ are the lengths of the short and long sides
of the probe, respectively.

The mean bubble diameter in the section of given
level d, can be calculated from g, uy, n, and Eqs.(11)
and (12) using a trial-and-error method. The longi-
tudinal distributions of d, are shown in Fig. 7. For the
beds of.37.8 and 59.9 cm 1.D., d; increased rapidly up
to a level 20 cm from the distributor, and then slowly at
levels higher than 30 cm. Howcver, for the bed of
21.4 em L.D. at higher gas velocities, d, increased. ap-
proximately in proportion to levels even- at. levels
higher than 30 em from the distributer. Therefore, it is
considered that the behavior of bubbles is strongly
affected by the wall of the bed as the bubbles grow
relatively large compared with the bed diameter. The
diameter and rising velocity of bubbles evaluated in

(10)

dy = (11)

(12)
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this way are only approximate, but may be valuable as
parameters for semi-quantitative analysis.
3.5 Relationship between bubble diameter and
rising velocity

Fig. 8 shows the relationship between the bubble
diameter and rising velocity evaluated. In the region
up to 20 cm from the distributor, the rising velocity of
bubbles seemed to be approximately proportional to
d?® in each bed. At higher levels than 30 cm from the
distributor in the beds of 37.8 and 59.9 cm 1.D., the
rising velocity of bubbles was approximately pro-
portional to d}2. At the higher levels in the bed of
21.4 e 1.D., the rising velocity of bubbles was relative-
ly lower than in the beds of 37.8 and 59.9 cm I.D. The
lower rising velocity of bubbles in the bed of 21.4 cm
1.D. suggests that this bed is in a slug flow condition at
higher gas velocities.
3. 6 Upward and downward forces

Upward and downward forces acting on the probe
in fluidized bed F, were measured at various levels and
radial positions in each bed, and typical examples of

their distribution are shown in Fig. 9, where a posttive

value of F, corresponds to upward force and a negative
value to downward force. The distribution curve of F
had a peak near the wall of the bed just above the dis-
tributor, and the peak moved towards the central por-
tion with increase of level. This tendency was significant
when gas velocily and bed diameter were increased.
Furthermore, for the bed of 59.9 cm I.D. at higher gas
velocities, two peaks were found in the distribution
curve of I at higher levels.

Assuming that F; is proportional to the bulk fow
rate of the particles, the flow pattern of the particles
throughout the bed is estimated from the distribution
of F; as follows. In the region of lower levels up to 30—
40 cm from the distributor, there was a bulk circu-
lation where the particles flowed up along the wall of
the bed and flowed down through the central portion
in the bed. At levels higher than 30-40 cm from the
distributor, there was another bulk circulation where
the particles flowed down along the wall of the bed and
flowed up through its central portion. In particular,
for the bed of 59.9 cm 1.D., the several bulk circu-
lations seemed to take place in the region of higher
levels at higher gas velocities, as predicted by Kunii
et al.5%.

4, Conclusion

The bubble frequency, volume fraction of bubbles,
and upward and downward forces were measured in
Ruidized beds of 21.4, 37.8 and 59.9 cm I.D. Sands of
0.202 mm mean diameter were fluidized by air with
superficial velocity ranging up to 25 cm/fsec. The
measurements were carried out with a capacitance
probe and a strain gage probe. The diameter and rising
velocity of bubbles were evaluated by analyzing the
experimental data on the basis of the bubbling bed
model proposed by Kunii and Levenspiel. The effect
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of bed diameter on the behavior of bubbles and the
flow pattern of particles in the fluidized beds were dis-
cussed, using the experimental and evaluated results.
To summarize:

1) In the lower level region of the bed, up to about
20 cm from the distributor, small bubbles formed just
above the distributor coalesced, grew rapidly and
tended to crowd in the central portion in the bed. The
rising velocity of bubbles was approximately pro-
portional to the 0.8 power of bubble diameter.

2) In the higher level region of the bed, above 20 cm or
thereabout, the bubbles in a small-scale bed coalesced
more and the bed reached a slug flow condition. The
rising velocity of bubbles was relatively lower than in a
large-scale bed. On the other hand, the bubbles in a
large-scale bed coalesced somewhat and flowed up
steadily through the central portion in the bed. The
rising velocity of bubbles was approximately pro-
portional to the 1.2 power of bubble diameter.



3) In the lower level region of the bed, there was a
bulk circulation of the particles, which flowed up along
the wall of the bed and flowed down through the
central portion in the bed. In the higher level region of
the bed, there was another bulk circulation of the
particles, which flowed down along the wall of the bed
and flowed up through its central portion. In particu-
lar, in the higher level region of a large-scale fluidized
bed the several bulk circulations of the particles seemed
to take place at higher fluidizing gas velocities.

Nomenclature
A4 = detectable area of a probe [cm2]
b = length of short side of a probe [cm]
dy = bubble diameter [em]
dp = mean particle diameter [mm]
Dr = bed diameter [cm]
Fy = output voltage {rom an integrator

corresponding to upward and downward forces

acting on a probe in fluidized bed [volt]
h = height between two successive bubbles

registered on a probe [em]
{ = length of long side of a probe [cm]
Ly = bed level from distributor [cm]
n = frequency of bubbles passing the head of

a probe [1fsec]
n = frequency of bubbles passing a point [1fsec]
7 = mean bubble frequency [1/sec]
r = distance from the center of a column [em]
R = radius of a column [em]
Up = velocity of bubble rising through a bed [cm/sec]
g = upward velocity of gas through the emulsion

phase [emy/sec]
Uy = superficial velocity of fluidizing gas (based on

empty column) at incipient fluidization [em/sec]
g = superficial velocity of fluidizing gas based

on empty column [cm/sec]

{Journal of Chemical Engineering of Japat vol.6, No.2

Emy
[

T
2s
Pr
s

= mean downward velocity of solid particles

in the emulsion phase [em/sec]
= volume of bubble [cm3]
= volume of gas cloud [cm?]

= ratio of cloud volume to bubble volume [—]

= ratio of wake volume to bubble volume [—1
= defined in Eq.(7) [-]
= volume fraction of bubbles [—]
= mean volume fraction of bubbles [—]
= void fraction at incipient fluidization [—1
= angle [degrees]
= ratio of circumlference to diameter [—]
= absolute density of solid particle [g/cm3]
= angle of repose [degrees]
= sphericity of a particle [—1
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Infrared Studies on Water Adsorption Systems with the Use of HDO.
I. Molecular Sieves 13X and 4A
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It was shown that the use of HDO molecules in IR studics on water adsorption system is advantageous for
obtaining information as to whether 1) a hand arises from the surface structural hydroxyl groups or from adsorbed
water molccules, 2) a band arises [rom an overtone bending vibration, and 3) water molecules are adsorbed in a

state of its two hydroxyl bonds being equivalent.

The bands in the spectra of Molecular sieves—H,0 systems were

assigned as follows. Ij 18X-H,O system. Bands at 3752, 3685, and 3647 cm—? correspond to surface structural
OH, bands at 3697, 3360, and 1650 cm=! to asymmetrically adsorbed water molecules, band at 3230 em-t to

overtone bending vibration of the same molecules.

The band at 3590 cm~! was found to arise from some other

type of adsorbed water molecules.  I1T) 4A-IT,0 system. Bands at 3500, 3400, and 1660 cm-! correspond to sym-
metrically adsorbed water molecutes, band at 3280 cm! to overtone bending vibration of the same molecules.
Another type of adsorbed water was suggested Lo be present.

Infrared spectroscopy has been widely employed in
studies on surface and adsorbed species.  Iiowever,
analysis of the spectra has not always been easy to carry
out. This is due to inevitable characteristics of the
spectra of adsorption systems, such as the specific
complexity of the spectra and the lack of means of
spectral observation over a wide frequency range masked
by strong absorption by adsorbents.

Thus, additional information from other sources is
desirable. As an example, the use of partially deuterated
compounds is considcred to be effective. The use of this
technique has been made for the spectral siudy on
adsorption systems to some extent.) A number of
investigations have been carried out on water adsorption
systems. However, they were resiricted to the measurc-
ment of the specira of H,O or D,O adsorption systems.
No work secms to have been made with the use of HDO.

In the present work, 1R absorption spectra of hydrox-
yls and adsorbed water on Molecular sieves 13X and 4A
are analyzed Dby (he use of HDO. Although assign-
ments of the spectral bands of these systems have been
made to a certain extent,?=) more direct and conclusive
evidences for the assignments are obtained by the use
of the present technique,

Lts applicahility to other molecular adsorption systems
will be suggested.

Experimental

Maierials. Linde molecular sieves [3X and 4A
(GASUKURO Ind. Co., Ltd.) were used. The crystallinity
and purity of these materials were confirmed to be of a suffi-
cieatly high by X-ray diflraction analysis. The surlace area
of the 13X sieve was 717 m*g. In order lo obtain extremely
fine powder samples for IR experiments, the matcerials were
ground in an agate motor with a small amount of water,
and then suspended in deionized water. The particle size
of the fine powders was found to be less than lpm in diameter
by electron microscopic observation. D,0O (E. Merck,
Darmstadt) of 99.759, in purity and deionized-distilled
H;O were used for IR experiments after being degassed,

Apparatus and Proceduse. A JASCO Modcel 402-G IR
spectrophotometer and a Pyrex glass cell were used for re-
cording the spectra. The ccll was essentially similar to that
designed by Angell ¢f l.9 In order 1o prevent the contamina-

tion of the sample picces by grease vaper, a Teflon greaseles:
valve was fixcd directly to the top of the cell.  The exchangc
of sample picces was made by cutling and re-fixing the arm;
part of the cell.

The sample powders were pressed into disks under a pres-
sure of 2.5 tonsfem?, and then the disks were cut into pieces
of Ix2to 2.5 cm to fit the cell windows. The “thickness”
was 12-—80 mg/cm®.

After the sample picces had been set in the cell, they were
evacuated at 500 °C for at least 3h prior o experiments. Before
the addition of each type of sample water for IR measure-
ments, the surface of the sample as well as the inner wall of
the cell were washed by the following procedure. The sample
was exposed at room temperature to the saturated sample
watcr vapor, and then pumped out at 180—200 °C for 10 min.
This procedure was repeated five times. Finally, it was
evacuated at 500 °C for 3h. Spcetral observation confirmed
that the washing was suflicient. In the case of measurements
of HyO-adsorbent systems on 2 new sample piece, washing
was omitted.

The experiments related to HDO were carried out in the
presence of H,O and D,O. By mixing H,O with D,O at a
molar ratio of @ to &, HDO is ohtained under the coexistence
of other water in a ratio of about H,0: HDO: D,0=g:
Z2ab: b2

All the spectra were measured at room temperature. Spec-
tra on the desorption process were observed after the pre-
treated sample piece was first exposed to the saturated sample
water vapor and then evacuated at various temperatures,
Spectra on the adsorption process were measured by dosing
small amounts of sample water at room temperature succes-
sively after the sample picce was evacuated at 500 °C.

The measurements were carried out mainly in the OD
stretching region in place of the OH siretching region, since
the former is not only higher in lransparency but also
flatter in background owing to the lack of weak absorption
bands arising [rom the water vapor in the air.

Results

I13X—Water Spsien.. D,0, H,0 Systems: The
spectra of 13N-D,0 and H,O systems were measured
for a comparison of the results with those of the HDO
system (Tigs. 1 and 2). The spectra obscrved were
similar to those published.’ On evacuation at 90 °C}
six absorption bands were observed at 2756, 2727, 2682,
2645, 2470, and 2395 cm~! in the D,0 system, (these
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Fig. 1. Spectra of 13 X-D,O system.
Evacuated for (1) 1h at 90°C, (2) Ihat 120°C,
(3) 20 min at 170 °C, (4) 2h at 500 °C. ‘““Thickness”
of the sample picce was 12 mg/em?®.

hands as well as the corresponding bands in other
systems will be referred to as a, b, ¢, d, ¢, and ). In

the H,O system the six bands corresponding to those in
D,O system were at 3752, 3697, 3645, 3590, ca. 3360,
and 3230 cm~1. In the latter system a single HOH
bending vibration band was observed at 1650 cm—L.
Elevation of the evacuation temperature gave rise to
a decrease in the intensity of all these bands cxcept for
a and c. After the final evacuation at 500 °C, three
sharp bands remained at 2756, 2708, and 2683 cim~! in
the D,O system {refcrred to as g, h, and i, respectively),
and in the H,O system at 3752, 3685, 3647 cm~L.
HDQO Sysiem: The spectra in OD stretching and
bending regions are shown in Fig. 3. In this experi-
ment, an H,O-D,O mixture in the ratio 3 to 1 was used
except for curve 5, the contents being H,O 56.39%,
HDO 37.5% and D,O 6.3%. In the number of OD
chemical bond, the 75% belongs to HDO and the rest
to D,O. The OH stretching region of this system (1'ig. 4)
was measurcd employing another mixture in the ratic
H,0: D,0=1:5. Thespectra of OD and OH stretching
regions of this system were compared with those of DO
and H,O systems, respectively. All the corrclations
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Fig. 2. Spectra of 13X-H,O system.

Evacuated for (1) 1h at 100°C, (2) 1h at 120°C, (3) 25 min at 165°C, (4) 2h
Sample picee “thickness” 12 mg/em?®.

at 500 °C. (3) Empty ccll.1®
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Fig. 3. Spectra of 13X-HDO system in the OD stretching and bending

regions.

Fvacuated for (1) 1h at 95°C, (2) 1 hat 120°C, (3) 20 min at 165
°C, (4) 2h at 500 °C after exposure to the vapor’ of H,0-D,0 mix-
ture of a molar ratio of 3 to 1, and (5) evacuated for 1h at 90 °C

after exposure to the vapor of H,O0-D,0O 7 to 1 mixture,

fece “thickness” 43 mg/fcm?.
P i)

Sample

— 1‘4 —
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Fig. 4. Spectra of I13X-HDO sysiem in the OH sireiching and bending regions.
Evacuated for (1) 1 h at 95 °C, (2) I h at 120°C, (3) 20 min at 165°C, (4) 3L
at 500 °C after exposure to the vapor of H,0-D,0 1 to 5 mixture. (5) Empty

cell.

between the spectra in the OH stretching region of HDO
system and those of H,O system were analogous to those
between the spectra in the OD stretching region of the
HDO system and those of D,O system. The frequencies
of the bands in OH stretching regions are parenthesized.

Bands a, ¢, and e in the spectra of HDOQ system
appearcd in the OD stretching region at 2756, 2680,
and 2470 ctn? (3750, 3645, ca. 3350 cm~?) which were
of ncarly the same frequencics as those of the D,O
system. However, band b was observed at a distinctly
difierent frequency from that of D,O system, namely at
2710 sm~* (3690 ci1). As for band d, even though the
difference in frequency was not very great, ca. 7 =1,
the frequency 2638 cm—" was not equal to that of the
band in D,O system. In the OH region, band d was so
broad that the difference could not he detecied decisive-
ly. It should be noted that no hand f appeared in the
spectra of this system. The fact that the shoulders at
2725 and 2395 cm~! are due to the D,0 molecules
contained in the mixed water as “impurity” was
confirmed from another experiment, viz. the spectra
after the adsorption of sample water followed by
evacuation at 100 °C were measured in a series where
the D content of the sample water was changed step
by step from 0 to 100 atom %, The results showed that
the intensities of both shoulders change in proportion
to the D content. The spectrum in the OD stretching
region obtained by the wse of H,0:D,0=7.1:1.0
mixed water is shown in Fig. 3, curve 5. A band some-
what broader and weaker appeared in both stretching
regions, at 2945 cm~' in the OH region and at 2120 cm—!
in the OD region. The weak absorption bands of g,
h, and i were measured in the OD stretching region with
a thick sample for the sake of comparison with those in
D,O system. The results showed that the three bands
were exactly equal in wavenumber to those in D,O
system, and were 279%, in intensity as compared with
that of the latter which is almost equal to the D content,
25 atom 9, of the mixed water used. In the bending
vibration region, three absorption bands were observed
at 1630, 1476, and 1415 cm~t. The band at 1650 cm—!
is assigned to HOH bending vibration, because its

Sample picce “thickness” 38 mg/em?®.

frequency was quitec the same as that of pure H,O
system and its intensity decreased with decrease of H,O
content in the mixed water (Figs. 3 and 4). Thus the
other two arise from HDO,

The spectra measured on the adsorption process were
almost the same as those on the desorption process.
However, the intensily of the band d was so weak that
the band was hardly observable on the adsorption
process in the spectra of any of the systems.

4A-Water System. In this system the speciral
measurements were carried out only on the adsorption
process.

44-D,0, H,0 Systems: In the stretching region of
the spectra of D,0 (H,O) system (Figs. 5 and 6) three
main bands were observed at 2578, 2515, and 2427 cm-1
(in HyO system, at 3500, 3400, and 3280 cm—!) and
three weak bands at 2760, 2737, and 2645 cm~? (in
H,O system, only the two former bands were detected
at 3750 and 3715 cm~%). In H,O system one bending
band was observed at 1660 cm~1. These were similar
to those reported by previous authors,”®

44-HDO System: The spectra obtained in the OD
stretching and bending regions employing an H,0-D,Q

100 £ T T T T T T ]
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Fig. 5. Spectra of 4A-D,0 system.
(1) Evacuated for 3 I at 500 °C, {2} 9 pmol, (3) 18 wmol
of D,O readsorbed.  Sample piece “thickness” 30 mg/
cm?®.

15 —
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Fig. 6. Spectra of 4A-H,O systemn.
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(1) Evacuated for 3 h at 500 °C, (2) 9pmol, (3) 18 umol of H,O readsorbed.

(4) Empty cell.

Sample piece “thickness” 15 mgfem?.
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Fig. 7. Spectra of 4A-HDO system in the OD stretching and bending
regions.
(1) Evacuated for 3 h at 500 °C,{2) 18 2mol,(3) 36 mol,(4) 54 pmol of
H,0-D,0 3 to | mixture were readsotbed. Sample piece “thickness”

30 mg/cm?

- M 0
Transmittance, %,

3400
em—t

Fig. 8. Spectra of 4A-HDQO system in the OH stretching

region.

(1) Evacuated for 8'h at 500°C, (2) 18 pmol, (3) 36 umol,
(4) 54 pmol of H,O-1,0 1 to 5 mixture were readsorhb-

ed. (5) Empty cell.

cm?,

Sample piece “thickness’ 30 mg/

mixture in the ratio 3 to 1 and those in the OH stretching
region employing another mixture in the ratio 1 to 5
are shown in Figs. 7 and 8, respectively. In each
stretching region, a main single OD or OH stretching
band of symmetric shape appeared at a frequency of
2530 or 3420 em~1. Their positions are located between
two strong stretching bands appearing in the spectra of
D,0 or H,O system. A wecak band was observed at
2705 cm=! in the OD stretching region but not the
fitting band in the OH region. As in the case of 13X~
waler system a new band was observed in each streiching
region at 2140 cm~1 in the OD region and at 2910 cm—!
in OH region. Both bands at 2427 cm—t in D,O system
and 3280 cm—! in H,O system disappeared from each
corresponding region of the spectra of HDO system.
Swellings around 2580, 2420 cm~! (Fig. 7) and 3500,
3280 cm—! (Fig. 8) arise obviously from D,O or H,0
present in the water mixtures. Only one HOD bending
band appeared at 1465 cm=*. The 1660 cm~! band

_corresponds to HOH bending vibration as previously

described.



SUMMARY OoF TIE IR BANDS OF MOLEGULAR
SIEVES—WATER SYSTEMS

HDO s-stem (cm-1)

TaBLE ].

—_—
Band sg':s)igm sggeom Stretching ) As-
sign (cm-1) (em-1) regions sznc.lmg sign
—— region
OD OH
[13X-water System]
a(g) 2736 3752 2756 3750 D
b 2727 3697 2710 3690 2)
c (i) 2682 3645 2680 3645 3)
d 2645 3390 2638 3590 4)
c 2470 3360 2470 3350 3)
£ 2395 3230 6)
h 2708 3685 2708 3685 7
2945 8)
2120 9)
- 1476
1650 o 15} 10)
b’ (2725) (1650)
r (2395) } i)
(2120)
[4A~walter Sysiem]
2760 3750 12)
3 13)
f) o [ =4
Eg’fg 3188} 9530 3420 14)
2427 3280 15)
2910 16)
1660 1165 17)
(2580) (3500) (1660)
(2420) (3280) 18)
(2140)

13, 3), 7), 12) OD(H) stretching of structural deuter-
oxyl groups.  2), 5), 10) free OD(11) sirelching,
hydrogen-bonded  OD(II) stretching and HOH
(FLOD) bending of asymumnelrically adsorbed water
(Type WX-I), respectively.  4), 13) OD(H) streich-
ing of adsorbed watcr of Types WX-IT and WA-TII,
respectively, 6), 15) DOD(HOH) overtone bending
of Types WX-1 and WA-I water, respectively. 8),
16) HOD overtone bending or combination of adsorb-
cd HDO? 9) Combiralion of adsorbed H,O. 11,
18) Arising from D, or H,O impurities.  14) OD
(H) stretching of symmetrically adsorbed water
(Fype WA-I). 17) HOH(HOD) hending of Type
WA-I water.

The obscrved bands are summarized with their
assignments in Table 1.

Discussion

13X-Waier System. Discussion has been made
as to whether various absorption bands, especially those
of b, i, d, and b, arise from surface hydroxyl groups or
from adsorbed water molecules.™™ The use of HDO
gives more detailed information.  If a band arises from
the former, the wavenumbers of the corresponding two
OH (or OD) vibration bands, one appearing in the
H,O (or D,O) adsorption system and the other in the

HDO adsorption system, should be exactly the same as
each other, and if it arises from the latier the wave
numbers would not be equal. Thus, the residual bands
g, b, and i can be atiributed to the stretching vibrations
of surface hydroxyl groups, since their corresponding
bands appear at the same frequency in the two systems.
Bands a and c are also attributable to hydroxyl groups.
They would be the same bands as g and i, respectively,
because ol cqual frequency. However, the origin of
band b differs from that of h. The fact that band b in
HDO system appears in the OD stretching region at a
frequency 16 cm~! Jower than that in D,O system (as
well as in the OH stretching region 7 e lower than
that in H,O system) indicatcs that the band does not
arise from structural hydroxyl groups but from adsorbed
water molecule. Band e is attributed to the OH stretch-
ing vibration of the water molccules hydrogen bonded
o the surface. The absorption d was reported by
Hahgood,® Ward” and also by Kisclev ef al.12 However,
no assignment was made. Only Uylterhoeven ef al1)
attributed the band to OH groups in ions of the type
Met(OH). However, the results in the present experi-
ments indicate that its origin is not the structural OH
groups but a certain type of adsorbed water molecule.
Band f was considered by Ward® and Abramov et a2
to arise from the OH streiching of another type of water
molecule adsorbed in a different way from the origin of
band e. Kisclev ef al'? attributed it to the overione
bending vibration of the water molecules, which are the
origin of band e, enhanced by Fermi resonance, Our
results support the assignment by Kiselev ef of. The
frequencies of the overtone bending vibrations of HDO
would be near 2952 and 2830 em~! if they appear,
since the fundamentals were obscrved at 1476 and
1415 em~t.  However, since they differ a great deal
from the frequency of any stretehing vibration of HDO,
no resonance would occur.  Thus, il the band ariscs
from the overtone bending vibration it would not appear
in the spectra of HDO system, or would be only slightly
obscrvable at frequencies necar 2952 and 2830 cm-l.
There is some uncertainty in the attribution of the
observed 2945 ¢cmi~! band 1o the overtone bending of
HDO molecules. If we suppose that the 2945 cm—!
band is the overtone of 1476 cm-! band, we cannot
explain the reason why that of 1415 cm~! band does not
appear. However, at least the disappearance of band
from the spectra of HDO system is in line with the
assignment by Kisclev e /. On the other hand, if
Ward’s assigniment is accepted, no reason can be found
for the disappearance of the band.

There were two bending vibrations in the adsorhbed
HDO molecules, but only one in adsorbed H,O. This
supports the schematic structurc of water adsorption
originally proposed by Bertsch and Habgood® I. 1f
the structure is adopted, the adsorbed HDO molecules
would take either of the two forms onto the surface
by equal chance as illustrated in (II}-a and (IT)-D,
then the adsorbed HDO molecules as well as the H,O

Hoones  Hoina PNonNa
I 1
H..O- D...O- H..O0-
5 (I1)-a (I)-b



molecules should yield the bending vibrations in
accordance with the observed results. This adsorption
model also supporls the experimental fact on the
stretching vibration of the adsorbed molecules. There
were two OH (OD) stretching vibration bands, one of
free OH {OD, band b) and the other of hydrogen
bonded OH (OD, band e), in both spectra of H,O
(D,0) and HDO systems.

4A-Water System. First, the band at 3280 cm—?
in the spectra of H,O system (at 2427 cm~" in the D,O
system) is assigned to the overtone bending of adsorbed
H,0 (D,0) in the same manner as in the discussion on
13X-water system, although there remains some doubt
in attributing the 2910 cm™' band in HDO system
to the overtone of 1465 cm=! band in analogy of the
case of 13X—water system. Then, the existence of two
strong OH (OD) stretching bands, presumably corre-
sponding to the », and », vibrations, and onc bending
band in the spectra of H,O (D,O) system suggests that
there exists only one adsorbed species with two equiv-
alent hydroxyl bonds. This is also supported by HDO
adsorption experiment. If HDO molecule is adsorbed
in this manner, OH, OD stretching bands and HOD
bending band arising from the adsorbed molecule
should all be single. This is in line with the observed
results.

The weak bands at 2737 and 2645 cm™ (Fig. 5) are
possibly assigned to the 3 and »; vibrations of another
adsorbed D,O molecule, which may fit the origin of the
weak 2705 cm~! band in HDO system (Fig. 7). How-
ever, the reason is not clear why the bands corresponding
to them, except for at~3715 cm™! in HyO system, do
not appear in the OH regions. :

Bands at 2945, 2120 cm™ in 13X-HDO System and at
2010, 2140 ¢em™ in 44-HDO System. The frequency
ratios of each couple of bands, 1.39 and 1.36, seem to
suggest that they arise from OH and OD stretching
vibrations of HDO molecules adsorbed. However, these
assignments contradict the fact that the frequencies
are too low and no band corresponding to them could
be detected in the spectra of 11,0 or DO adsorption
systems. In order to investigate the origin of these
bands the spectra of pure H,0, D,O and mixtures of
D,0 and H,O were measured in liquid phasc. The
results show that there is a band at 2140 cm~! in the
spectrum of pure FL,O, its intensity decreasing with a
decrease in H,O content. No band around 2945—2910
cm~! was detected in the spectrum of either pure H,O
or D,0, but a band appeared in the spectra of mixed
walters at 2920 cm2. Simultaneously, an HOD bending
band was observed at 1450 cn—! in the latter spectra.
From a comparison of the spectra of liquid water with

(Bulletin of the Chemical Society of Japan vol.50,

those of adsorption systems, the band at 2120 or 2140
cm-1 is considered to arise from a combination band of
adsorbed H,0O molecules existing in the mixed water.
The band at 2945 or 2910 cm™? can be attributed to a
overtone bending or a combination band of adsorbed
HDO molecule.

The present technique is widely applicable to spectral
analyses of adsorption systems including XH, type
molecules, with the use of partially deuterated XH, ,D
or XHD,_, molecules. It is applicable, in some cases,
to the compounds including the atomic groups of -XH,,

type.

The author thanks Dr., Toshio Sato for his helpful
advice and Mr. Okio Nishimura for his assistance in
electron microscopic techniques.
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Fig.2. Spectra of the H;O system in the adsorption

process.

(1Blank cell. (2) Evacuated at 500%C for 3h.
(3) 6.1, (4)12.2, (5)18.3, (6)24.4, (7 30.5
o (stp)/g of H.Ovapor were readsorbed.
Sample piece thickness 14mg /cof.
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Fig.3. Spectra of the D 0 system in the adsorption
process.

(1) Evacuated at 500C for 3h. (2) 5.0, (3}
10.0, (4)15.0, (5)20.0 ¢ (stp) /g of DO
vapor were readsorbed. Sample piece
thickness 14 mg /caf
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Table 1. Summery of the IR bands of Zn-Y Zeolite-
water system

Band D;0 Hz20 HDO system (cn'l)
sign system system Stretching Deformation
[emt ] [em? ] regions region
o~
0D OH
[in the adsorption process]
a 2762 3743 2762 3745
b 2717 36857 3685
c 2675 3635 )} 277 3640
d 2615 3538 2615 3540
e 2200 2900 2240 3200
f 1625
g 1610
h 2910
k 1500
1 1460
m 1427
[in the desorption process]
a 2762 3743 2762 3745
c 2682 3640 2682 3640
d 2615 3535 2615 3535
h 2925
p 2702 3667 2702 3667
q 1655
r 1615
s 1480
t 1430
u 1410
w 2445 3300
X 2260 2950 2270 3130
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Fig.4 Spectra in the OH stretching and deformation
regions of the HDO system in the adsorption
process.

(1)Evacuated at500°C for 7h. (2)9.2, (3)27.6 ml(st
p)/g of the vapor of HXO-D:0 1 te 5 mixed water
were readsorbed. Sample piece thickness 18 mg
Jem®, The spectra in the deformation region

were obtained by rationing the observed spectra

against that of the sample after 500°C evacuation.
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Fig.5 Spectra in the OD stretching region of the HDO
system in the adsorption process.
(1)Evacuated at 500 C for 3h. (2)4.6, (3)9.2,
(4)13.8, (5)18.4 ml (stp)/g of the vapor of
H:0-D-0 3 to 1 mixed water were readsorbed.

Sample piece thickness 40 mg/cn?.
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Fig.6 Spectra of the H20 system in the desorption
process. Evacuated at (1) 80 'C for 1h, (2)
120 °C for 1h, (3) 165 C for 30 min, (4) 185
‘C for 30 min, (5) 215 °C for 1h, {6) 253 ¢
for 30 min, (7) 300 °C for 40 min, (8) 500 C
for 3h after exposure to the H:0 vapor.

Sample piece thickness 14 mg/em?.
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Fig. 7 Spectra of the D:O system in the desorption

process. Evacuated at (1) 90 C for 1h 30 min,

(2) 300 C for 45 min after exposure to the

D:0 vapor. Sample piece thickness 14 mg/em?.
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Fig.8 Spectra in the OH stretching and deformation

regions of the HDQ system in the desorption
process.
Evacuated at (1) 90 C for 1h 10 min, (2) 120
C for 50 min, (3) 165 C for 30 min, (4) 200
‘C for lh, (5) 500 °C for 3h after exposure to
the vapor of H0-D;0 1 to 5 mixed water.

Sample piece thickness 18 mg/cm?. The spectra
in the deformation region were obtained by
rationing the observed spectra against that of

the sample after 500 C evacuation.
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Fig.9 Specetra in the OD stretching region of the
HDO system in the desorption process.
Evacuated at (1) 90 ‘C for 1h, (2) 165 C for
30 min, (3) 300 T for 45 min, (4) 500 C for
3h after exposure to the vapor of the H,0-D,0
3 to 1 mixed water.
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Infrared Studies on Water Adsorptidn Systems with the Use of HDO

M. Zn-Y Zeolite

Masao HINO and Yasuko HIRAMA

Infrared spectra of Zn-Y Zeolite—HZO, —D,0, and —HDO systems were measured in
the adsorption and desorption processes. As a result, the followings were elucidated. There
are three kinds of structural hydroxyl groups on the surface of Zn-Y Zeolite, which gives abso-
rption bands at 3667, 3640, and 3535 cm !, respectively. These hydroxyl groups are produced
by the adsorption of water at room temperature on the Zeolite evacuated at 500C. Heat
treatment at higher temperatures promotes the reaction of the groups formation. But the groups
are reduced in quantity at temperatures higher than about 180C and disappears by evacuation
at 500C.

Two kinds of adsorbed water are formed on the adsorption of water at room temperature.
One of which, giving bands at 3685, 2900, and 1625 cm !, is of the asymmetric type which is
analogous to those on the systems of Na-Xand Na-Y Zeolites. The other, giving bands at 3500
and 1610 em?, is that of adsorbed in the symmetric mode. Two kinds of adsorbed water are
also observed in the desorption process. But, both of them are in different states from those
in the adsorption process.

It was emphasized that comparison of the spectra must be made not only in the OH stretch
ing region between H,0 system and HDO system, but also in the OD streiching region between

D:0 system and HDO systemto determine whether a band arose from a structural hydroxyl groups
or from adsorbed water molecules.
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