REPORTS OF

THE GOVERNMENT INDUSTRIAL DEVELOPMENT LABORATORY, HOKKAIDO

北海道至業開発試験所報告

第 6 号

昭和46年5月

工業技術院北海道工業開発試験所

北海道工業開発試験所報告 第 6 号

プラスチックの天然暴露試験に関する研究

目 次

1	緒 言	1
2	暴露台の概要	2
3	暴露試験体の種類・組成の概要	4
	B・1 不飽和ポリエステル樹脂・FRP	
;	3・2 硬質塩化ビニル樹脂······	
	3・3 メタクリル樹脂	
;	・4 スチロール樹脂	8
4	試験項目と観察期間	
2	•1 試験項目	8
4	- 2 試験体の取扱いと状態調節	
4	・3 観察期間	
5	外 観 変 化·······	
,	・1 変退色測定用試験体の変退色	9
	・1・1 測定方法とその問題点	
	・1・2 グレースケールによる測色結果	
	・1・3 分光光度計による測色結果	···13
Ę	・1・4 分光光度計による測色結果とグレースケールによる測色結果の比較	…14
Ş	・1・5 Yellow Index による標示とその結果の検討	…14
	・2 無彩色試験体の変退色と表面変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
Ę	・2・1 不飽和ポリエステル樹脂・FRP	18
Ę	・2・2 硬質塩化ビニル樹脂	…19
	・2・3 メタクリル樹脂	
Ę	・2・4 スチロール樹脂	
6	試験体の寸法変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	・1 測 定 方 法	
	・1・1 長さの測定·····	
	・1・2 厚さの測定·····	
	• 1 • 3 ソリ・ネジレの測定·····	
6	- 2 測定法の問題点	
	・3 測定結果	
	・3・1 長 さ	
	・3・2 厚 さ	
	・3・3 ソリ・ネジレ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	紫外線照射量の測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	• 1 测定方法	
	・1・1 暴露面の受ける紫外線照射量の測定	31
7	・1・2 紫外線昭射景の経時変化の測定	20

7・1・3 水平面の受ける紫外線照射量の測定	32
7・2 気象の概要	
7・3 測定結果と考察	37
7・3・1 暴露面の受ける紫外線照射量	
7・3・2 紫外線の経時変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
7・3・3 水平面の受ける紫外線量	41
8 強度特性	42
8・1 曲げ強さの全国平均値と札幌の値の比較	42
8・2 初期強度と組成の関係	
8・3 強度低下と組成の関係	
9 変退色・強度・組成の相関関係	49
10 観察期間に関する検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
11 ま と め	51
参考文献	
資 料 編·······	55
Synopsis	111

.

プラスチックの天然暴露試験に関する研究

 鈴木
 智
 窪田
 大

 西村興男
 鶴江
 孝

1. 緒 言

プラスチックは、最近の目ざましい発達につれ次第 に種類とその用途を拡大しつつあるが、天然資源の涸 渇と価格の高騰、人件費、工事費の節約などの目的か ら、さらに飛躍的な消費の増大が期待されている。し かし現状をみると工業用、雑貨用を問わず短期ないし は中期の消費材としての使用が大部分で、建築用構造 部材などのような長期耐久材として積極的に使用され る段階にまでには至っていない。これは、その歴史が 浅く長期間使用された場合の特性性状に関するデータ の蓄積がなく、したがって、信頼できる選定基準、試 験方法も確立されていないのが大きな原因であると考 えられる。

プラスチックが長期にわたる耐久材として使用される場合に問題になる重要な特性の一つに、いわゆる "耐候性"がある。金属材料、塗料、染料などの分野においては古くからこの点に関する研究が行なわれており、その成果も数多く発表されているが、プラスチックに関しては上述のような現状にある。

工業技術院では、昭和34年よりプラスチック製品の標準化の一環として、プラスチック建築材料の耐候性試験方法の立案を企画し、建築用プラスチック製品標準化委員会に諮問した。その結果昭和35年に同委員会に第一分科会(主査、十代田三郎氏のちに田村恭早大教授)が設けられ活動が開始された。

一方,工業技術院では第一分科会に技術面で協力すべく,工業標準化特別研究として"プラスチック建築材料の耐候性試験に関する研究"を傘下研究機関に行なわしめた。

これは産業工芸試験所(現在の製品科学研究所,東京)を幹事試験所(幹事小松和氏)とし北海道工業開発試験所(札幌市),産業工芸試験所東北支所(現在の東北工業技術試験所,仙台市),大阪工業技術試験所(大阪市,のちに池田市に移転),産業工芸試験所九州出張所(現在の製品科学研究所九州出張所,久留米市)の全国5ヵ所の試験研究機関の共同研究として行なわれた。この研究期間は昭和36年4月から昭和45

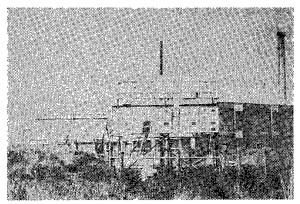
年3月までの9ヵ年にわたり、この間、共通仕様に基づく暴露台の設計、建設、天然暴露予備試験ならびに5ヵ年間にわたる共通暴露試験が実施された。

共通暴露試験に用いた試験体の種類は,不飽和ポリエステル樹脂FRP(樹脂単体1種類を含む)6種, 便質塩化ビニル樹脂8種,メタクリル樹脂3種,スチロール樹脂3種,合計20種類である。

この共通暴露試験の目的は、第一に、天然暴露試験 実施通則(案)に基づいて実際に暴露試験を行ない, その実施の段階で生じた問題点に検討を加え、それを 天然暴露試験方法標準原案(JIS原案)に反映する ことであり、第2に、プラスチック建築材料の耐候性 に関するデータを蓄積することであって、この代表的 試験体の劣化特性を把握するとともに、全国5ヵ所の データをもとに地域差をも合せ検討することにあっ た。

第一の目的に関しては、昭和43年に耐候性委員会から答申があり、JISA-1410「プラスチック建築材料の屋外暴露試験方法」、JISA-1411「プラスチック建築材料のウエザリングの評価方法」の2案が制定公布された。

第2の目的に関しては、上記試験体について変退色、 機械的特性の変化、外観変化、寸法変化、紫外線量の測 定などが行なわれた。変退色については、特に全国5ヵ 所の変退色測定用試験体を製品科学研究所に集め一括 測定した。同じく機械的特性については経年変化測定 用試験体を大阪工業技術試験所に集め一括測定した。


本報は、天然暴露試験方法の概要を述べるとともに、 共通暴露試験開始後5ヵ年間にわたって観察測定され たデータのうち北海道の分をとりまとめ、いろいろな 角度から検討を加えたものである。

なおこの試験に使用した試験体は関係業界の各社から提供を受けたものであるが、業界の事情などにより、 その組成を明らかにすることができないものが多かった。したがって得られた諸物性と組成の相関について 立入った検討を加えることができなかった。

ただ試料を提供された各社においては、それぞれの 立場からこの点について今後充分検討を加えられるも のと考えられるし、また生のデータを公開することに 大きな意義があると考えたので、本報告の末尾に全デ ータを付した。これらのデータが有効に使用され、よ り良い"材料"の開発に資することを希望するもので ある。

2. 暴露台の概要

暴露台は建築用プラスチック製品標準化委員会第一分科会が設計したものであるり。暴露台は当所庁舎前庭の地上(周囲は芝生)に直接設置された。暴露台設置位置は北緯43°1′,東経141°27′で東京より7°28′だけ北に寄っている。

写直 2-1

暴露台の外観を写真2・1に示す。すなわち正しく 南に向き45°の傾斜をもち, 3.6 m×1.8m の広さの暴 露面を有する2台の暴露台から成っており、それぞれ の暴露台には試料支持枠が10面取り付けられるように なっている。上下のほぼ中央に横の足場板が、また幾 分右よりに桟のついた縦の足場板が固定されており試 験体取扱い作業に便利なように作られている。右手の 暴露台の左寄り中央に紫外線測定装置の受光部が取り 付けられている。暴露架台の構造と主要寸法を図2・ 1に示す。地面から試験体の最下端までの間隔は90cm であるが、北海道の場合は、積雪の影響を考慮して 1.8m になっている。枠ぐみはビル工事などにおいて 足場材として使われている防錆処理を施した鋼管足場 材を使用した。なおこの鋼管は5カ年間の天然暴露を 終了した現在でもほとんど錆は発生していない。主架 台一面あたりの所要材料を表2・1に示す。

試験体支持枠は耐食アルミ合金で作られており、外法寸法は図2・2に示すように縦1.2m、横0.6mで、これに285mm 角の試験体が8枚取り付けられるようになっている。試験体は15×15×2mmのアングルで四囲をおさえ、そのアングルをステンレス製のビスで固定した。なおスチロール樹脂は175mm 角なので厚さ1mmのジュラルミン板で図2・3のような支持具を介して

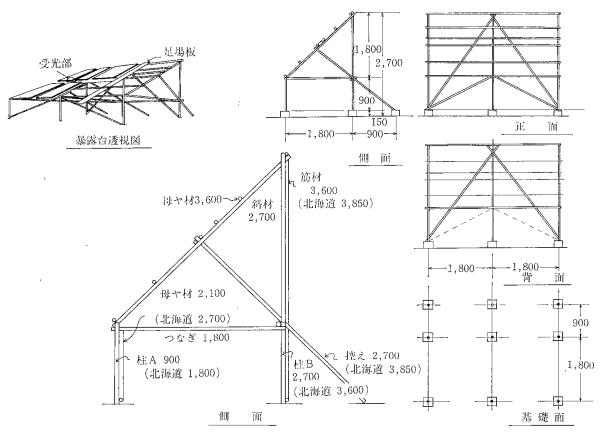
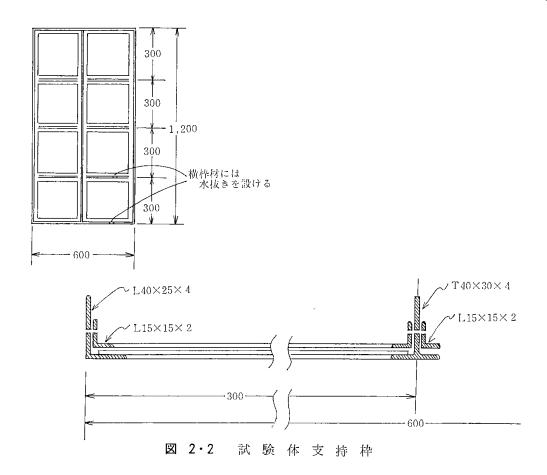



図 2・1 暴露台の構造と主要寸法(プラスチック製品標準化委員会SC-1設計)

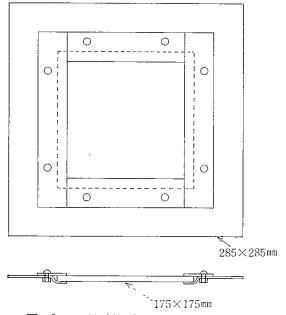


図 2・3 補助枠 (スチロール板用)

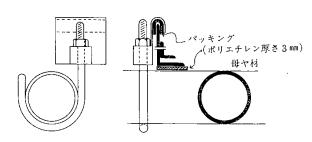


図 2・4 支持枠固定具

支持枠に固定した。

支持枠は図2・4に示したような固定具で骨組み鋼管に固定したが、電蝕を防止するために厚さ3mmのポリエチレンシートを介して固定した。

試験体は図2・5に示すように配置し取りつけた。 この配置は各試験所共通のものである。試験体の取り つけは、厚さ、長さおよび幅の何れの方向にも自由に 動き、試験体にストレスがかからぬよう配慮した。

図 2.5 試験体配置図

表 2·1 主 架 台 所 要 材 料

単単部	管	材長品	900,		00), 2,70	0, 3,600,			ョイント,	枠取付ボル	·
	パイ	プ長	900	1,800	2,700	3,600	3, 850	PL	R C	FC	PS
——— 柱:		材	3	(3)*	3	(3)*					
	なぎ	材		3		1					
斜		材			3						
母	屋	材丨		_		6					
筋		材		(2,100)	(2)*	2	(2)*				
			3(0)	5 (6)	6 (5)	9 (10)	0(2)				

(注) ()* 北海道の所要本数

3. 暴露試験体の種類・組成の概要

試験体の選定は第一分科会が行なった。その基本方針は市販品をそのまま暴露することは避け、将来の品種改良の手がかりになるようなデータを得ることを主目的に組成が決められた。そしてその組成は不飽和ポリエステル樹脂については強化プラスチックス技術協会が、また塩化ビニル樹脂については便質塩化ビニル板協会がそれぞれ中心になって、組成、配合、提供会社などをとりまとめた。

試験体の種類はすでに述べたように不飽和ポリエステル樹脂・FRP(以下PEと略記)6種,硬質塩化ビニル樹脂(以下VCと略記)8種,メタクリル樹脂(以下Aと略記)3種,スチロール樹脂(以下Sと略

記)3種の合計20種からなる。なお1969年頃から、これら樹脂の正式の略称として、UP、PVC、PMMA、PSが用いられているが、本文では全て委員会発足当時につけた記号を用いた。

これらの各々は 285×285 mm の寸法を有する(ただし、Sは 175×175 mm)おおむね 8 枚の試験体からなる。すなわち 5 カ年間の経年変化を測定するために 1 年毎に順次抜きとっていく同一組成の経年変化用試験体($I \sim V$ の記号で表わす) 5 枚とこの組成をベースに厚さ、顔料、添加剤などを変化させ 5 カ年間通して暴露される試験体 3 枚(a, b, c の記号で表わす)からなる。

また一部に変退色測定を主目的に着色されたタンザ ク状 (285×50mm) 試験体が 5 種26枚ある。

表 3・1 暴露試験体の種類とその特性(不飽和ポリエステル樹脂・FRP)

大	,	極	メチレン	然加利	G.C.	か	珣	外	製造会社
品 留 器	$I \sim I$	/オルソフタル酸系	34%	MMA#910%		2.2		照 燈	A
	а_	"	30	"		2.2			A
田 始	q	"	30	"		1.8		*	A
世 母	U	"	30	"		2.2	3色	透明, 赤・黄・淡青の3色	А
粉田	$ m I \sim I$	*	34	紫· 熨, 0.2~0.5%	28%	2.3		淡黄味,気泡あり	B
// / / / PE-2	а	"	34	"	20	1.35		淡黄・青味あり	В
耐候性良	ф	*	34	*	28	1.4		" "	В
	o	"	34	"	28	2.2	5色	赤・黄・緑・青・乳白の5色	В
	$\Lambda \sim I$	"	38		28	1.8		淡黄珠	၁
- 報 用 P E-3	а	*	 88 85		20	1.0		"	ပ
:	p	*	 88 85		28	1.1		// 気泡あり	ပ
	ပ	無水フタル酸系	33		28	1.2		// G.F.目立つ	D
	$I \sim V$	I~V オルソフタル酸系	26	紫·吸, 0.2~0.5% Cl* 20%	28	2.1		黄 床, 気泡多し	B
難 然 用 P F-4	в.	*	56	" "	20	1.2		淡黄味	闰
耐候性良	p	*	56	" "	28	1.2		/ 気泡あり	田
	၁	"	26	" "	28	2.2	5色	赤・黄・緑・青・乳白の5色	Ħ
_	$\Lambda \sim I$	I~V 無水ャワイン酸系	27	"	28	2.1		淡黄味,気泡あり	D
難 燃 用 P E-5	હ	"	27	*	20	1.2		" "	Ω
2	Ъ	*	27	"	28	1.3		" "	Q
	C	オルソフタル酸系	30	"	28	1.4		/ 青味あり	В
	$I \sim V$	イソフタル酸系	40	紫·吸, 0.2~0.5%	28	2.1		// G.F.目立つ	ŢŦ
耐候性特に P E-6	ಣ	*	40	"	20	1.2		" "	ĹΤΙ
良し	ф	*	40	"	28	1.0		" "	ĹŢ.
	၁	オルソフタル酸系	35	"	28	1.4	_	/ / / / / / / / / / / / / / / / / / /	<u>田</u>

* CI がヘット酸等で約20%含有

^{**} 色もののみ50×285(mm), 他は全て285×285(mm)

表 3.2 暴露試験体の種類と特性(硬質塩化ビニル樹脂)

-	製造会社	0000	нння	нннн	P	XXXX	ныны	ZZZZ	MMM
	その街			耐 衝 撃 剤 製法が異なる 製法が異なる	売てん剤5部		金網入り	丑	
ļ	紫 及 校 校 登	α α 21 α		,		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	α	מ מ מ מ	
	染料・顔料		後軸	徴徴徴徴	数数数 晶晶晶		被被被後		(美)
/ Hr/fiel	螢光剤				数 叛			被被被單量量	
١ ١	TiO2 (部)			77.25	3 0.1			0.1	0.1 0.1 0.05
に見てく	滑 剤 (部)	0.5 0.5 1	0.5		0.5			0.5 0.5 0.5	0.5 0.5 0.5
1	可整角(部)	က			0.1		0.5	徴 数 数 数 画 画 画	一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次
新田 公	(報)	0000	22.5	വവവവ	Pb 3.5 Pb 5 Pb 5	ကကကက	23.52	ਹਾਰਾ ਰਾ	2.5 2.5 4.5
生養養	安定剤	Sn(1) // Sn(2)	Sn(!) // // Sn(2)	Pb	Sn(1) 2 Sn(1) 3 Sn(1) 3 Pb 6	Sn(1) // Sn(2)	Sn(1)	Sn(1) //	Sn(2) // // Sn(1)
出	(mm) 酢ビの量		95:5		100:10	95:5 88:12 95:5	95 : 5 95 : 5 95 : 5	95 : 5 95 : 5 95 : 5	95 : 5 95 : 5 95 : 5
7.0 32	(mm) > 首	22.1	2.1 3.0 1.1 1.8	2,0 2,0 1.6 2.1	3.0 1.6 1.9	1.9 2.0 1.9 1.8	2.2 2.2 2.0 2.0	275.0 2000 2000	1.9 2.8 0.9 2.0
	劺	無色透明	無色透明 " 着色品(7色)	不透明灰"	不透明青灰 不透明淡青 不透明 白 不透明 白	無色透明 " " *透明乳白	無色湯 " " " " " " " " " " " " " " " " " " "	半透明乳白 // // // // // // // // // // // // //	半透明乳白 " 着色品(6色)
	特	ストレート配像性良	ストレート耐険発悪	ストレート工業用	コポリマー成型用	コポリマー耐候性良	コポリマー耐候性悪	コポリマー 所 候 性 良	コポリマー耐候性良
	中	$\begin{array}{c} I \sim V \\ a \\ b \\ c \end{array}$	$\begin{array}{c} I \sim V \\ b \\ c \end{array}$	$ \begin{array}{c} I \sim V \\ a \\ b \\ c \end{array} $	$\begin{array}{c} I \sim V \\ b \\ c \end{array}$	$ \begin{array}{c} I \sim V \\ b \\ c \end{array} $	$\begin{array}{c} I \sim V \\ a \\ b \\ c \end{array}$	$\begin{array}{c} I \sim V \\ a \\ b \\ c \end{array}$	$\begin{array}{c} I \sim V \\ b \\ c \end{array}$
	1,111	V C -1	V C-2	V C-3	V C -4	V C-5	V C –6	V C -7	V C-8

Sn(1).....laurate, maleate Sn(2).....mercaptol

したがって試験体の総数は181枚である。

3・1 不飽和ポリエステル樹脂・FRP

PEの組成の概要を表 $3\cdot 1$ に示す。 PE-1 は注型 板であるが, PE-2 ~ 6 は全て FR Pである。

PE-1の経年変化用はスチレンが34%であるが, a~cは30%と変えてある。またbは厚さが薄くなっている。cは変退色測定用のタンザク状試験体で赤, 黄,青の3色である。なお後述する特性の測定結果から考えると耐候性を改善するための何らかの添加剤が加えられているものと推定される。

PE-2は耐候性の良い一般用樹脂からなる FRP でガラス含量は28%である。a, bは他よりも薄く作られている。cはタンザク状の変退色測定用試験体で赤,黄,緑,青,乳白の5色からなっている。

PE-3 は一般用で紫外線吸収剤などは加えられていない。スチレン含量は38%と多い。a, b, c は厚さが薄い。aだけがガラス含量が20%と少ない。

PE-4 は難燃タイプである。耐候性を良くするため紫外線吸収剤が加えられている。スチレンの量は26%と最も少ない。 a, b は薄い。 c は PE-2 の c と同じく 5 色からなるタンザク状試験体である。

PE-5は難燃タイプであるが難燃剤の種類が変えてある。また紫外線吸収剤は加えられていない。 cのみが飽和酸の種類とスチレン含量が異なる。 a, b, c ともに薄い。

PE-6 は特に耐候性が良く作られたものであるが、スチレンの含量は40%と最も多い。紫外線吸収剤が入っている。 c は飽和酸の種類とスチレン含量が変えてある。厚さはb , a , c の順に1.0mm から1.4mm まで段階的に変えてある。

以上, 飽和酸, 不飽和酸, スチレン架橋剤の種類, スチレンの量, 紫外線吸収剤の有無, 難燃剤の組み合わせ, ガラス含量, 厚さ, 染料, 顔料の種類を因子として耐候性を評価すべく組成が決められている。

3・2. 硬質塩化ビニル樹脂

VCの組成の概要を表 $3\cdot 2$ に示す。VC-1 から VC-3 までがストレートで,VC-4 から VC-8 までは主に酢酸ビニルとのコポリマーである。

VC-1は耐候性の良い透明の一般用のPVCで、安定剤、滑剤が加えられている。a, b, cに対して紫外線吸収剤を変えてあり、経年変化用を 3α としたときaには 5α , bには α だけの量が入っている。cには入っていない。

VC-2は透明な一般用のPVCでVC-1の組成とほとんど同じであるが、紫外線吸収剤が含まれておらず安定剤も幾分少ない。 したがって VC-1よりは当

然耐候性が悪いことが予想される。 a , b は厚さが変えてあり経年変化用の 2 mmに対し a は 3 mm , b は 1 mm である。 c は変退色測定用のタンザク状試験体で赤, 黄, 緑, 藍, 青, 紫, 橙の 7 色である。

VC-3は TiO_2 を $5\sim7\%$ 程度含む工業用ブランドのもので不透明灰色をしている。経年変化用は鉛系の安定剤を 5%含むが a, b, cには更に滑剤が加えられている。また aには耐衝撃性改良剤が加えられているほか, a, b, cともに成形法も変えてある。

VC-4は不透明灰色で 10% の酢酸ビニルを含むコポリマーとストレート PVC の比較を目的としたもので,経年変化用と b がコポリマー, a と c がストレートである。経年変化用にはこのほか 5% のフィラーが含まれている。 a と c には滑剤は含まれていない。 b には可塑剤も含まれている。

VC-5 は透明な 5% 酢ビのコポリマーである。紫外線吸収剤と安定剤を含むので耐候性は良い。 a だけは酢ビ12%のコポリマーである。 b は紫外線吸収剤の量が他の半分である。 c は同じ錫系の安定剤であるがその種類が違う。このため薄い乳白色を呈する。

VC-6 は灰色がかった色を呈する5%酢ビのコポリマーである。紫外線吸収剤を含まない。したがって耐候性は良くない。安定剤の量もVC-5よりは幾分少ない。経年変化用からa,bまでの安定剤の量を段階的に変えてある。cだけはストレートで微量の可塑剤と紫外線吸収剤を含むほか,内部に金網が入っている。

VC-7は半透明乳白色の 5% 酢ビのコポリマーで紫外線吸収剤を含むほか、微量の滑剤、 TiO_2 、螢光剤を含む。 a はこのほか可塑剤を含む。 b には滑剤は入っていない。 c はストレートであって TiO_2 、 滑剤を含まない。

VC-8は半透明乳白色の 5% の酢ビコポリマーであるが紫外線吸収剤を含まぬため耐候性は悪い。安定剤の種類も VC-7とは異なるが,その他の点ではVC-7と同じである。 a, b は経年変化用に対し厚さを変えてある。 c は変退色測定用のタンザク状試験体で赤,藍,黄,緑,青,黒の 6 色からなっている。

結局, V C においてはストレートと酢ビコポリマーの比較, 厚さ, 安定剤, 可塑剤, 滑剤, TiO₂ などの充塡剤, 紫外線吸収剤などの他, 成形法などを因子として耐候性を評価すべく組成を決めたものと考えられる。

3・3 メタクリル樹脂

Aの組成の概要を表3・3に示す。

A-1 はストレートで無色透明な板である。 a に少量の紫外線吸収剤が加えられている。厚さの影響を調

記	号	特	微	色	,	厚さ (m	m) ;	紫外線吸収剤	製造会社
A-1	$I \sim V$	スト	レート	無色	透明	2.0			N
	a			11		2.3		入	N
	b			//		2.7			N
	С	ļ		"		5.8			N
A-2	$I \sim V$	コポ	リマー	無 色	透明	2.2		 入	N
	а	,		//		1.8			N
	b			//		2.9		入	N
	c			"		6.4		入	N
A-3	$I \sim V$			乳	白	2.1		·	N
	a			遺	į	2.5			N
	ь			力 力	,	2.1			N
	С			青	Ī	1.8			N

表 3・3 暴露試験体の種類とその特性(メタクリル樹脂)

表 3・4 暴露試験体の種類とその特性(スチロール樹脂)

記	号	特	徴	色	厚さ (mm)	紫外線吸収剤	製造会社
S-1	$I \sim V$	一般用	ストレート	無色透明	3.0		0
	a	"	"	不透明白	2.9		О
	Ъ	"	11	黒	3.0		О
	С	"	//	不透明乳白	3.0	入	О
S-2	$I \sim V$	耐衝撃タイプ	コポリマー	半透明乳白	3.0		О
	a	"	"	不透明白	2.9		О
	b	"	<i>"</i>	黒	2.9		О
	С	"	//	不透明乳白	2.9	入	0
S-3	$I \sim V$	耐光タイプ	コポリマー	透明淡紫	2.9		0
	a	"	//	不透明白	2.9		0
	b	"	//	黒	2.9		О
	c	"	"	半透明赤	2.9	入	0

べるために経年変化用の $2 \, \text{mm}$ から $c \, o \, 6 \, \text{mm}$ まで厚さを順に増している。

A-2は数 % のアクリルエステルを含む透明なコポリマーである。

A-3 は半透明の着色品で乳白, 黄, 赤, 青に染めてある。厚さは全て2mmである。したがって着色剤の影響を求めようとしたものである。

3・4 スチロール樹脂

Sの組成の概要を表 3 · 4 に示す。厚さは全て 3 □ m で寸法 も 175 m 角である。

S-1はG P タイプと呼ばれるストレートである。 a には TiO_2 が,b にはカーボンブラックが,そして c には紫外線吸収剤が含まれている。

S-2はH I タイプと呼ばれるコポリマーで耐衝撃性のものである。 <math>S-1 と同じくaには TiO_2 が,b

にはカーボンブラックが、そしてcには紫外線吸収剤が入っている。

結局,樹脂のタイプ,充塡剤の種類,紫外線吸収剤の影響を因子として耐候性を評価すべく組成を決めたものと考えられる。なおこの樹脂は室内用のものであると明示されて提供されたものである。

4. 試験項目と観察期間

4·1 試験項目

分光光度計による測色(製品科学研究所担当)とインストロンによる強度試験(大阪工業技術試験所担当)

を除いた試験項目は次の3項である。

- 1) 外観観察
- 2) 寸法変化
- 3) 紫外線量の測定,天候の記録
- 1)はさらに汚れ変退色の総合評価としてのグレースケールによる測定とヒビ、割れなどの表面状態の変化の肉眼観察に分かれる。2)は長さ、厚さ、ソリ、ネジレの4項目に分かれる。1項と2項については次に述べる観察期間毎に全部の試験体を暴露台から取り外し観察測定した。

紫外線量については天然暴露試験の全期間を通して 側定記録した。天候については特に測定記録は行なわず、気象台から発表されるデータから必要部分を抜き 出して利用した。

4・2 試験体の取扱いと状態調節

暴露台から取り外した試験体は,柔らかなスポンジで水道水をかけながら水洗いし,表面に付着した土砂や汚れなどを取り除いた。水洗後写真4・1に示した

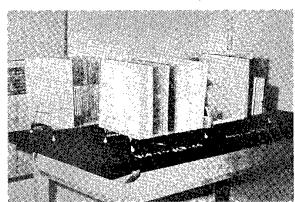


写真 4-1

ようにホルダーにかけて乾燥させ20℃,65%RHの標準状態で24時間以上状態調節をしたのち観察測定を行なった。試験体の取扱いには写真に示したような丈夫なレコードホルダーを用いるようにし、試験体をなるべく重ねないよう注意した。これは重ねることによって試験体にすり傷がつくことを防ぐためであるが、このほかソリ、ネジレが重ねたことによる"おもし"の効果によって変ることを防ぐのにも役立った。

4.3 観察期間

観察期間は

初年度 1 ヵ月, 2 ヵ月, 3 ヵ月, 4 ヵ月, 6 ヵ月, 9 ヵ月, 12 ヵ月

2~5年度 3カ月,6カ月,9カ月,12カ月 と初年度7回,次年度以降年4回,合計30回にわた る観察がなされた。

5. 外観変化2),3)

5・1 変退色測定用試験体の変退色

5・1・1 測定方法とその問題点

変退色を測定する方法としては、

- (イ) 自記分光光度計による分光測色方法
- (ロ) 光電色彩計などによる刺激値直読方法 簡便法としては
- (ハ) 色見本による方法
- (二) 汚染用グレースケールによる方法
- (対) 変退色用グレースケールによる方法 などがある。

また色差を表示する単位としてはNBS単位があるが、その色差を計算する式には次の三つがある。

- (イ) UVW系による色差式(CIEの色差式ともいう)。
- (ロ) Vx, Vy, Vz 系による色差式 (Adams の色差 式ともいう)。
- い Lab系による色差式(Hunter の色差式ともいう。

表 5・1 視感覚とNBS単位との関係

感 覚 的 な 差	色差(NBS単位)			
trace (わずかに)	$0 \sim 0.5$			
slight (かすかに)	$0.5 \sim 1.5$			
noticeable(検知し得る程)	$1.5 \sim 3.0$			
appreciable (明らかに)	$3.0 \sim 6.0$			
much (顕著)	6.0 ~12.0			
very much (非常に顕著)	12.0以上			

表 5・2 汚染用グレースケール

色 号	色 差(NBS単位)
5	0
4	4.0 ± 0.3
3	8.0 ± 0.5
2	16.0 ± 1.0
1	32.0 ± 2.0

表5・3 変退色用グレースケール

色号	色 差(NBS単位)
5	0
4	1.5 ± 0.2
3	3.0 ± 0.2
2	6.0 ± 0.5
1	12.0 ± 1.0

NBS単位と感覚的な色の差とは大体表 $5 \cdot 1$ のような関係にあるという 9 。また汚染用グレースケールの色票と色差の関係は表 $5 \cdot 2$ のように,変退色用グレースケールの色票と色差の関係は表 $5 \cdot 3$ のようになる 5 。色票の番号が小さい程色差が大きくなる。

プラスチックの外観の変化は、単なる退色、着色あるいは黒化度(白化度)、色相の変化に止まらず、光沢、反射率、曇価の変化、表面アレ、ヒビ、キズなどが総合した形としてあらわれてくる。そこでこれらを総合した評価方法が要求されるが勿論そのような方法は確立されていない。

および染料の洗濯堅ろう度試験方法」に規定されているものであって、日本規格協会染色堅ろう度委員会で 作られた暫定のグレースケールによった。

しかし、表5・3にもある通り判定できる色差はたかだか十数NBSであるのに対し、分光測色方法では50~60NBS以上の色差が生じており、本質的に意味のあるデータが取れたかどうかはわからない。汚染用グレースケールを用いるのが次善の策であったかもしれないが当時はまだ出来ていなかった。

5・1・2 グレースケールによる測色結果

変退色測定用のタンザク状試験体26枚と着色試験体7枚合計33枚の暴露面の変退色をグレースケールで測定した結果を表5・4に示す6)。

PE-1 は注形板である。 c-1 (赤) は良好な耐候

		. /=:	WIII - 5	暴		· · · · · · · · · · · · · · · · · · ·	期	間	
記	号	色	3カ月	6 カ月	1 年	2 年	3 年	4 年	5 年
P E-1	c-1 2 3	赤 黄 淡青	5 4 4	4 4 ◎ 3	□ 4 □ 4 □ 3	© 3 © 2	4	□ 4 □ 3 □ 2	3 ③ 3 ◎ 2
P E-2	c – 1 2 3 4 5	赤黄緑青,白	4 5 4 4 0 4	© 4 5 4 4 © 4	© 4 4 4 4 0 3	© 3 4 4 4 0 2	© 3 © 3 © 3 © 3 © 2	© 3 © 3 © 2 © 2	© 3 © 2 © 2 © 1 © 1
P E-4	c - 1 2 3 4 5	赤黄緑青白	4 5 3 4 4	3 4 3 4 4	3 4 © 3 2 © 3	$\begin{array}{c c} & 1\\ 2\\ \bigcirc & 2\\ & 1\\ \bigcirc & 2 \end{array}$	$\begin{array}{c c} & 1\\ & 2\\ \bigcirc & 1\\ & 1\\ \bigcirc & 2 \end{array}$		$ \begin{array}{c c} 1\\ 1\\ 0\\ 1\\ 0\\ 2 \end{array} $
V C-2 (T-3)	c -A B C D E F G	赤黄緑藍青紫橙	5 4 4 4 4 4 4	5 4 4 4 4 4 4	5 4 © 4 4 4 4 0 4	© 4 4 4 4 4 0 4	© 4 © 4 4 4 0 4	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	3
V C-8	c-1 2 3 4 5 6	赤藍黄緑青黒	5 4 4 4 4 5	5 4 0 4 4 4 5	© 4 © 4 © 4 0 4 4	© 4 © 4 © 4 © 4 3 4	© 4 © 3 © 4 © 4 3 4	© 2 © 3 © 4 © 4 3 4	© 2 © 2 © 2 © 2 1 3
A-3	a b c	黄赤青	5 5 5	4 4 4	© 4 4 4	© 4 3 3	4 3 3	4 3 3	3 3 2
S-1	b	黒	4	4	3	3	3	3	3
S-2	b	黒	4	4	4	3	3	3	3
S-3	ъ с	黒赤	5 5	5 5	5 4	3 3	3 3	3 3	3 3

表 5・4 着色試験体の変退色(変退色用グレースケールによる色号で表示)

注 ◎印は樹脂の劣化による着色(黄変化)が起ったことを示す。

性を示すが半年後にわずかに(slight)に退色し、それが4年目まで持続するが5年目には再び退色の進行が明らか(noticeable)になる。 c-2(黄)は6カ月頃までわずかに(slight)退色が進行するが1年目頃からは樹脂の黄変化(yellowness)に基づく着色が支配的になり逆に色が濃くなる傾向を示す。しかし5年後でもその着色の度合いは検知し得る(noticeable)程度である。c-3(淡青)は3カ月目までは退色するが6カ月目から逆に黄変化が始まり着色し始める。この傾向はc-2よりも早い時期に現われその程度も大きいが,これは本来の着色の程度が少ないため黄変化が早い時期に検知されるためと考えられる。2年後で着色の度合いが明らか(appreciable)になるが5年後でもそう大きな変化はない。

PE-2は耐候性の良い一般用FRPである。c-1 (赤)は3カ月目まではわずかに(slight)退色するが6カ月目からは樹脂の黄変化が支配的となる。一方表面層にあるガラス繊維部分の樹脂が脱落しガラス繊維束が露出することに帰因する白化(whitening)が1年目頃から目立ち始める。そしてこれらの二つの現象が併行して進行する。他の4枚も程度の差および劣化の遅速に幾分の差はあるがほぼ似たような傾向を示す。ただしc-5(乳白)だけは最初から着色が顕著である。白化の程度はほとんど差はないがc-2(黄),c-3(淡緑)に比べc-4(青),c-5の方が着色の度合いが大きい。

PE-4は難燃型の FRP である。紫外線吸収剤は 含まれているけれども РЕ-2 に比較すると耐候性は 悪い。c-1(赤) は3ヵ月目ですでにわずか(slight) ながら退色が認められる。6ヵ月目にはこの退色がさ らに進行するが、この頃からガラス繊維の浮き出しに よる白化も併せて発生するようになる。1年目には退 色は明らか(appreciable)となるがまだ退色が支配的 である。しかしそれ以後は完全にガラス繊維の浮き出 しによる白化が支配的になり、樹脂部分は引きつづき 退色しているにもかかわらず総合評価としては2年目 以降は同一の評価 (very much) となる。 c-2(黄) は PE-4 では最も良い耐候性を示し1年後も変色は 極くわずかである。しかし1年3ヵ月を過ぎる頃から ガラス繊維の浮き出しが認められるようになり、5年 後ではほとんど他との差はなくなる。 c-3(淡緑) は 退色の程度が最も早い。ガラス繊維の浮き出しはc-2 と同程度である。しかし1年目頃から黄変化が認めら れるようになり 5年目にはその程度は顕著 (much) となる。c-4(青) は退色, 白化ともに最も早い速度 で進行し、2年目ですでに顕著 (much) となった。

しかし5年目の評価は他とほぼ同列である。これは,この試験体が最も濃く着色されていたため,他よりも退色が検知し易かったためと考えられる。 c-5 (乳白)はc-3と同じく色が薄いためc-3とほぼ同じ劣化の傾向を示した。黄変度もほぼ同じ程度であった。

VC-2の c は暴露の都合上 VC-2 の記号が付してあるが実際は VC-5 の c と同一の組成であると考えられる。

したがってこれは 5% 所 ビのコポリマーであって安定剤は錫(mercaptol)系の安定剤を含む。また比較的多量(2α)の紫外線吸収剤も含む。よって耐候性は良い。c-B(黄)、c-C(緑)、c-G(橙)などに $1\sim3$ 年目以降にかすかに(trace)黄変化が認められるが,総体的に退色の程度は僅か(slight)ないしは検知し得る程度(noticeable)である。

VC-8も5%酢ビのコポリマーでありmercaptol系の錫安定剤を含むが紫外線吸収剤を含まない。そして微量の滑剤, TiO_2 ,螢光剤などを含む。退色の程度は2年目頃まではVC-2とほとんど差はないが,3年目頃から退色が目立って(appreciable)になってくる。一方1年目頃から樹脂の黄変化も始まり5年目には相当顕著(much)となる。表5・4ではVC-8のこの中では黄変化に差があるような結果がでているが実際は必らずしもそうではなく,c-5(青),c-6(黒)はその色にかくれて黄変化を見出せないに過ぎない。

A-3は着色品で透明度を変えたものであるが、A-1のタイプをベースにしたものか A-2 をベースにしたものかすなわちストレートなのかコポリマーなのか明らかにされていない。a(黄)は6カ月後にはかすか(trace)に退色するが1年日、2年日は僅か(slight)に着色する。しかしその後は表面光沢が低下して白っぱく見えるため結果的には5年後には検知し得る程度(noticeable)に退色したと評価された。b(赤)とc(青)は2年後には検知し得る程度(noticeable)に退色したが5年後まで顕著な退色の進行は認められなかった。

S-1, S-2, S-3 の b は何れもカーボンブラックを充塡したものである。b 以外のものは著しく劣化しているのに対しb の劣化は表面層に限定されており,また濃く着色されているという効果と相俟って良い耐候性を示す。S-3 はアクリルとのコポリマーなので1年目頃までは良い成績を示すが,2年目以降はストレートとの差は無くなる。ゴム系の添加物が入っていると推定される S-2 のb が比較的良い結果を与えているが,これはカーボンブラックの入ったものの変退色に限られた特性であると判断すべきであろう。これを

逆に言えば、変退色の激しい樹脂でもカーボンブラックを入れることが許されるならば非常に有効な対策となし得ることを示している。S-3のc(赤)も濃く着色されており、アクリルと紫外線吸収剤の相乗効果と相俟って非常に良い耐候性を示した。耐候性の悪いス

チロール系樹脂の耐候性向上の方策がここにあること を明示したものと云える。

表5・5に上に述べた着色試験体の裏面の変退色を グレースケールで測定した結果を示す。

当然のことではあるが,透明なPE-1, VC-2,

暴 記 号 色 3カ月 6カ月 年 年 年 年 年 2` 4 PE-1 c-13 2 3 $\frac{3}{2}$ 淡青 c-13 4 P E-2 \bigcirc $\frac{4}{3}$ $\frac{3}{3}$ 淡緑 青乳白 P E-4 c-1赤黄緑 3 $\begin{array}{c} 3 \\ 3 \\ 4 \end{array}$ 青乳白 3 V C-2 c - A赤黄 (T-3) $\frac{4}{4}$ В 緑藍青紫橙 D $\frac{1}{4}$ E F G V C-8 赤藍黃緑青黒 c - 14 4 $\begin{matrix} 3\\4\\4\\4\end{matrix}$ 4. 4 4 黄 A-3a 赤青 b С 黒 S-1b S-2黒 b S-3

表 5・5 着色試験体の裏面の変退色(変退色用グレースケールによる色号で表示)

注 ◎印は樹脂の劣化による着色(黄変化)が起ったことを示す。

VC-8, A-3の大部分は表裏とも同じ変退色の傾向を示す。ただVC-8のc-5は2年目から差が認められた。また5年目にはVC-2のc-B, c-C, VC-8の $c-1\sim5$ に差がみられた。これらは何れも黄変化した試験体であり,黄変化が表面層から始まることを示している。

また不透明なPE-2, PE-4, $S-1\sim3$ には初期から表裏の劣化の差が現われた。

PE-2は表側の耐候性の良かったFRPであるが,

c-5 を除いては表裏差がなく紫外線や雨雪の影響をほぼ完全に吸収し得ていたことを示す。5 年目には $c-1\sim4$ にも差が出たがその差は極く僅かであった。

PE-4 は表面劣化の激しかった FRP であるが, 1 年目から差がでていた。裏面の変退色は比較的少なく判断可能(noticeable \sim appreciable) な程度 で ある。

S-1のb, S-2のb, S-3のbも表裏の劣化に差があった。

透明で特に色の薄かったPE-1, c-3を除いて裏面の変退色は比較的少なかった。

5・1・3 分光光度計による測色結果7)

変退色測定用のタンザク状試験体26枚と着色試験体7枚合計33枚について変退色を分光光度計で測定し、得られた XYZ 系の三刺激値から Lab を計算し

Hunter の色差式から色差 Δ E を計算した結果を表 5・6 ,表 5・7に示す。なおこの元の値(三刺激値)は製品科学研究所の村山技官らが日立製の分光光度計E PR-2型によって測定したものである。測定方法の詳細ならびに三刺激値は別途,製品科学研究所から報告されるはずである。

表	5 • 6	分光	:光 度	計計に	よる	測も	色結 果	(透過法)
---	--------------	----	------	-----	----	----	------	-------

				暴	露 期	間	
記記	号	色	1 年	2 年	3 年	4 年	5 年
P E-1	C-1 2 3	赤 黄 淡 青	1.5 3.0 4.7	2.2 5.7 6.8	2.8 6.2 8.1	2.0 8.0 9.4	1.6 15.2 15.6
P E-2	C-1 2 3 4 5	赤 黄 淡 青 乳	5.3 1.3 3.1 18.4 2.0	7.3 3.0 16.4 1.3	9.4 2.2 8.6 23.1 5.6	13.7 2.1 11.4 32.4 2.5	$14.7 \\ 4.6 \\ 21.1 \\ 36.2 \\ 1.6$
P E-4	C-1 2 3 4 5	赤 黄 淡 青 乳	3.4 2.3 10.3 21.6 1.7	3.6 12.4 46.8 43.9 2.7	5.7 11.9 66.4 42.3 6.3	4.8 9.8 52.6 42.0 3.7	9.9 10.7 58.1 43.0 2.3
V-C 2 (T-3)	C-A B C D E F G	赤黄緑藍青紫橙	11.0 8.7 4.3 20.6 20.2 42.9 8.2	13.4 13.7 9.9 28.1 14.6 50.6 13.4	10.1 17.1 17.3 27.1 16.3 16.1	13.5 26.6 18.8 38.7 23.4 18.9	16.9 33.1 23.3 46.1 22.3 50.3 23.6

注 1. 製品科学研究所にて測定。

表 5・7 分 光 光 度 計 に よ る 測 色 結 果 (反射法)

				暴	露 期	間	
記:	号	色	1 年	2 年	3 年	4 年	5 年
P E - 2	C-1 2 3 4 5	赤 黄 淡 青 乳	1.1 3.4 6.4 3.7 11.1	4.8 3.6 22.8 14.9 19.8	4.2 5.7 19.9 13.0 23.9	9.7 4.8 20.5 19.1 16.9	11.7 9.9 15.6 21,1 21,5
P E-4	C-1 2 3 4 5	赤 黄 淡 青 乳	12.6 4.2 13.5 10.7	30.4 11.1 32.0 5.9 18.1	25.8 16.9 33.9 8.4 18.6	31.3 12.0 34.9 6.7 17.5	30.5 14.4 32.1 7.4 20.7
V C-8	C-1 2 3 4 5 6	赤藍黄緑青黑	7.3 4.7 4.2 2.6 9.3 2.9	10.5 4.5 4.4 4.0 22.1 3.1	17.3 10.4 9.5 12.4 44.2 1.7	26.0 20.4 13.0 28.3 48.0 5.6	36.5 37.4 34.3 40.9 48.8 4.6

注 1. 製品科学研究所にて測定。

注 2. Hunter の色差, 単位 NBS。

注 2. Hunter の色差,単位 NBS。

測色結果を肉眼での観察結果と対比して論述する。 表 $5\cdot6$ によると PE-1 は c-1 がわずか(slight)に変化したのに対して c-2, c-3 は非常に(very much)変化している。これは c-2, c-3 が黄変化したという点では一致するけれども肉眼的にはそれ程顕著な劣化をしたとは見えない。

PE-2の色差からみた序列は乳白, 黄,赤,淡緑,青の順で劣化度が大きくなっている。一方肉眼的には淡緑,黄,乳白,赤,青の順で劣化しており乳白と淡緑に大きな食い違いが生じている。これは本来の色が薄いことと黄変化とガラス繊維の浮き出しによる白化との交互作用の評価の仕方の相違に起因すると考えられる。

PE-4 はガラス繊維の浮き出しも、 黄変化も顕著 であるが、色差からみた序列は乳白、赤、黄、青、淡緑であるが、肉眼的にはほとんど差を認めない。強いて云えば乳白の方が淡緑より大きく劣化していると判断される。これは乳白板において黄変化と白化が相殺されて最も少ない色差が生じたものと考えられる。

VC-2(T-3)では何れも大きな色差が生じているのに対し、肉眼的には検知し得る程度 (noticeable)の差しか認めていない。これは濃く着色されていたためにその色に紛れて目には変色が映りづらかったものと考えられる。

VC-8 は黒が最も劣化が少なく、青が最大の劣化を示し、他は劣化にあまり大きな差は認めなかった。この傾向は目での評価とほぼ完全に一致する。これは着色の程度が中位であったためと考えられるが、別の見方をすれば黄変化する樹脂は濃く着色することによって見かけの外観変化を少なく押えることができることを示唆している。

なおスチロール樹脂については試験体が小さく、分 光測色用の試験片がとれなかったので測定値はない。

5・1・4 分光光度計による測定結果とグレースケールによる測定結果の比較

グレースケールによって評価した色票番号を表5・3から色差に換算し、分光測色結果と比較した一例が図5・1である。縦軸に色差 Δ EをNBS単位で表わし、横軸に暴露期間を1年単位で表示してある。実線がグレースケールによる測定結果、破線が分光光度計による値である。両者の測定結果の相関は極く一部を除いてあまり良くない。

一般にグレースケールの方が低い値を示す傾向は顕著である。また見た目とは、当然のことであるが、グレースケールの方が良く合う。またグレースケールは 着色剤の退色と黄変化による着色を区別できるという

利点があるが、分光測色結果を唯単に色差だけで表示 したのではこの辺の細かな傾向は全くわからない。図 5・2は PE-1 の変退色を Hunter のL, a, bの 色度座標に表示した例であるが、劣化の傾向が必らず しも明確ではない。c-3についてはaがこの図の枠か ら飛び出ており表示できなかった。ただ明度を示すL がある傾向を示しそうである。明度の経年変化を示し たのが図5・3である。この図と表5・4を対比して みると黄変の生じた試験体(表5・4では◎印を付し てある)は明らかに図5・3においては明度の急激な 減少を示しており、 乳白色の試験体である PE-2の c-5, PE-4のc-5を除いてはほぼ完全な対応を 示す。したがって、分光光度計の測色結果を表示する 場合、単に色差のみを表示すれば退色によって生じた 色差か、着色によって生じた色差か判然としないが、 明度Lを併記することによってその差を弁別すること が可能になる。

5・1・5 Yellow Index による標示とその結果の検 計

最近、プラスチックの黄色度と黄変度の試験方法に関するJIS規格原案ができ現在審議中である^{8),9)}。 その概要は、試験装置は、光学条件 45°方向から照射し、垂直方向に受光する幾何学条件をもつ測色色差計または分光光度計を用い、三刺激値XYZを測定して次式から黄色度YI(Yellow Index の略)を求める。

$$Y I = \frac{100 (1.28 X - 1.06 Z)}{Y}$$
 (1)

黄変度 AYI は次の式によって計算する。

$$\Delta Y I = Y I - Y I_{0o}$$
 (2)

Y Io; 試料の初期の黄色度

Y I ; 劣化試験後の黄色度

この計算によって求められた $\Delta Y I$ が プラスのとき, 黄色度が増加したことを示す。

変退色測定用試験体の黄変度を表5・8に示す。この結果大部分は視感と一致せず、樹脂の劣化に基づく 黄変度の表示方法としては着色試験体には適用できな いことが明らかになった。

5・2 無彩色試験体の変退色と表面変化

経年変化測定用試験体とその組成をベースに一つだけの組成因子の水準を変えたa,b,cと表示した試験体(これを変退色測定用試験体と区別するために無彩色試験体と呼ぶ)の変退色を分光測色結果と肉限観察結果ならびに組成との相関において次に論ずる。

経年変化測定用試験体の変退色を分光光度計で測定 した結果を表5・9に示す。また黄変度を表5・10に 示す。

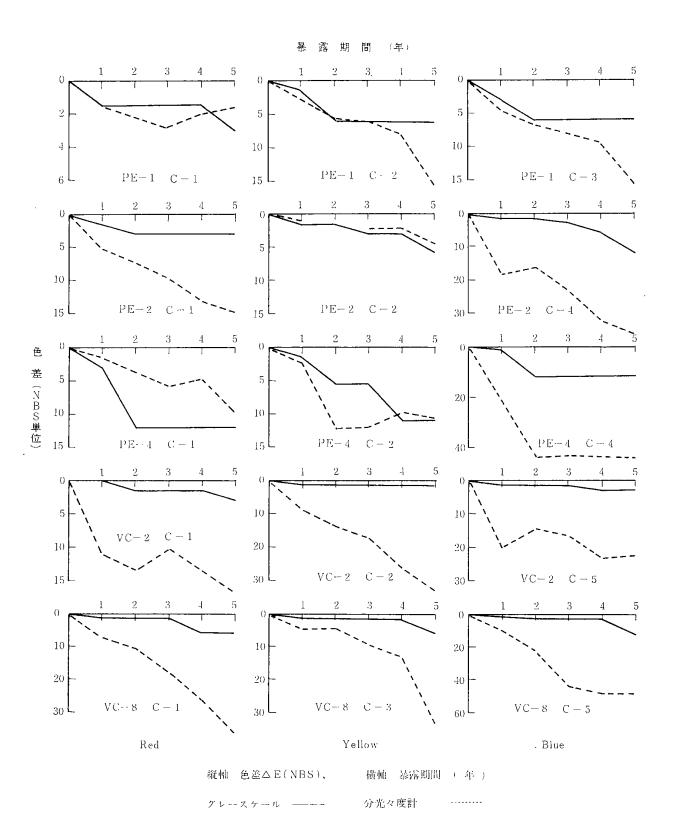
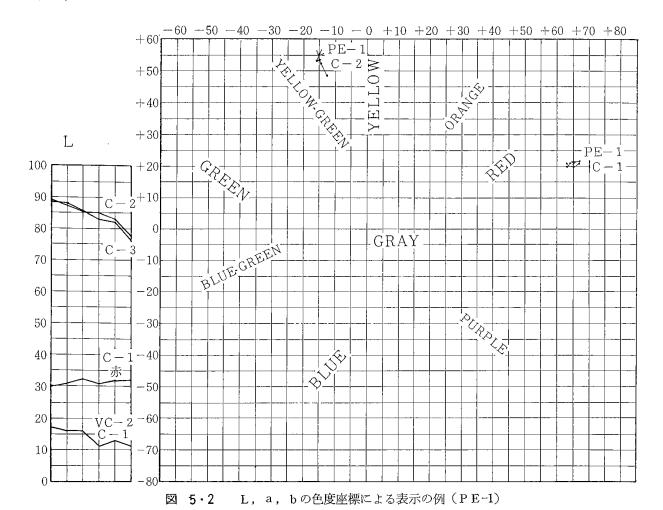



図 5・1 変退色の比較 (グレースケールと分光光度計の比較)

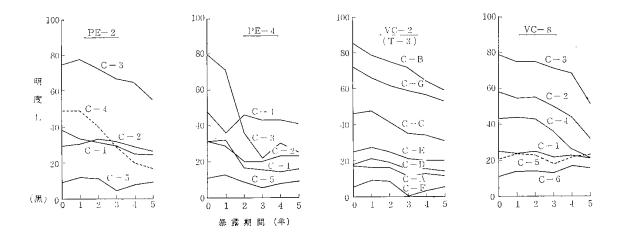


図 5・3 変退色測定用試験体の明度の変化 /注 PE-2のC-4, VC-8のC-5を破線で示したのは他とクロスすい

るので見易くするためで他意はない。

					露 月	間	
記 	号	色	1 年	2 年	3 年	4 年	5 年
P E-1	C-1 2 3	赤 黄 淡 青	-11.0 2.1 5.3	$ \begin{array}{r} -15.5 \\ -1.7 \\ 8.9 \end{array} $	$\begin{array}{c} 9.3 \\ -1.2 \\ 9.2 \end{array}$	$ \begin{array}{c c} -1.6 \\ -1.0 \\ 11.7 \end{array} $	-7.9 -1.8 15.9
P E-2	C-1 2 3 4 5	赤 黄 淡 青 乳 白	-5.6 -5.2 -0.7 -1.6 -1.3	$ \begin{array}{r} -4.4 \\ -1.7 \\ 11.6 \\ -3.4 \end{array} $	-6.1 -2.7 0.3 15.7	$ \begin{array}{r} 6.6 \\ -3.3 \\ -1.5 \\ 35.5 \\ 43.2 \end{array} $	$ \begin{array}{r} 6.4 \\ -7.8 \\ 7.4 \\ 29.3 \\ 28.0 \end{array} $
P E-4	C-1 2 3 4 5	赤 黄 淡 青 乳	$\begin{array}{c} 9.1 \\ -5.3 \\ 6.2 \\ 40.5 \\ 4.2 \end{array}$	36.2 -14.6 15.5 175 -17.1	50.0 -1.1 40.8 170	53.3 -14.5 23.2 168 59.4	52.0 -24.8 24.2 171 34.7
V C-2 (T-3)	C-A B C D E F G	赤黄緑藍青紫橙	-64.1 2.4 17.4 125 3.1	-81.1 1.5 7.1 79.0 1.6	2.9 9.4 27.7 4.4	-55.6 3.2 8.6 68.0 3.9	-19.6 2.8 7.7 64.6 3.2
V C - 8	C-1 2 3 4 5 6	赤藍黄緑青黒	$ \begin{array}{c} -25.9 \\ 2.4 \\ 2.0 \\ 7.0 \\ -10.0 \\ 5.1 \end{array} $	$ \begin{array}{r} -49.3 \\ -5.1 \\ 0.4 \\ -3.8 \\ 172 \\ -1.9 \end{array} $	$ \begin{array}{r} -59.4 \\ -4.0 \\ 2.1 \\ 6.1 \\ 308 \\ -4.4 \end{array} $	$ \begin{array}{r} -118 \\ -18.0 \\ 3.0 \\ 20.1 \\ 350 \\ -0.1 \end{array} $	$ \begin{array}{r} -166 \\ -48.4 \\ 0.7 \\ 20.4 \\ 364 \\ -3.3 \end{array} $
A-3 S-1 S-2 S-3	a b c b b c						

表 5・8 着 色 試 験 体 の 黄 変 度(ΔΥΙ)

表 5・9 経年変化用試験体の変退色

				暴	露期	間		
記 号	透明度	色	1 年	2 年	3 年	4 年	5 年	備考
P E - 1 P E - 2 P E - 3 P E - 4 P E - 5 P E - 6	透	無 黄 // // // // // // // // // // // // /	2.8 7.8 14.5 23.5 27.9 6.0	3.1 5.9 15.3 46.3 37.5 10.9	3.2 14.1 17.0 48.7 32.6 22.9	4.1 6.1 24.8 59.8 34.6 18.4	6.8 9.7 19.6 51.9 40.0 20.4	
V C-1 V C-2 V C-3 V C-4 V C-5 V C-6 V C-7 V C-8	透 不 透 半 % / % / / / / / / / / / / / / / / / /	黄紫 〃紫灰白白 紫珠色 味味	1.1 28.0 2.5 20.7 23.7 11.6 7.6 27.4	54.3 3.0 16.0 21.9 54.8 14.4 37.8	2.8 65.0 2.6 24.7 23.0 68.4 27.1 47.5	8.1 70.3 3.4 23.6 23.5 68.3 40.9 48.5	5.0 73.5 4.5 25.5 28.6 70.9 45.7 47.8	R R
A-1 A-2 A-3	透 明 / / / / / / / / / / / / / / / / / /	無 色 〃 乳 白 色	1.1 1.9 2.0	0.9 1.8 0.9	0.6 1.7 1.8	4.1 3.6 2.0	2.8 3.5 0.2	R

注 1. 製品科学研究所にて測定。 注 2. Hunter の色差, 単位NBS。 注 3. 備考欄のRは反射法で測定したことを示す。

				暴	露 期	間	
記 号	透明度	色	1 年	2 年	3 年	4 年	5 年
P E-1 P E-2 P E-3 P E-4 P E-5 P E-6	透光	無 黄 // // // // // // // // // // // // /	3.5 11.7 31.8 13.4 -0.5 -1.1	3.8 12.8 33.8 25.2 3.9 9.3	3.3 20.5 32.6 27.1 9.5 14.6	4.5 8.3 35.0 21.6 8.2 15.6	6.6 5.6 31.3 31.0 10.6 24.3
V C - 1 V C - 2 V C - 3 V C - 4 V C - 5 V C - 6 V C - 7 V C - 8	透不透光纸	策紫 ∥紫黄白白 淡淡灰 淡淡	2.0 48.1 4.3 -46.8 21.4 18.0 69.4 2.2	90.5 13.0 -38.7 120 34.0 88.0 0.1	3.9 123 7.9 -29.0 151 65.5 90.9 -0.6	$\begin{array}{c} -0.3 \\ 134 \\ 9.0 \\ -26.9 \\ 139 \\ 88.1 \\ 79.0 \\ -1.1 \end{array}$	5.6 140 9.5 -14.5 159 82.4 78.1 1.0
A-1 A-2 A-3	透明光透明	無 色 〃 乳 白 色	-2.1	-2.7	-2.8	-2.0	-2.3
S-1 S-2 S-3	不透明						

表 5・10 経年変化測定用試験体の黄変度(ΔΥΙ)

5・2・1 不飽和ポリエステル樹脂・FRP

まず経年変化測定用試験体の変退色について比較する。

PE板の変退色および明度の経年変化を図5・4,図5・5に示す。(なお,それぞれの図は見易くするために二つにわけて書いた。)PEにおいて耐候性の良かったのは次の序列である。

 $P\:E-1\:,\:\:P\:E-2\:,\:\:P\:E-3\:,\:\:\:P\:E-6\:,\:\:\:P\:E-5\:,\:\:\:P\:E-4$

一方, 肉眼で着色(黄変)の程度から判定した序列は PE-1, PE-2, PE-3, PE-4, PE-6, PE-5

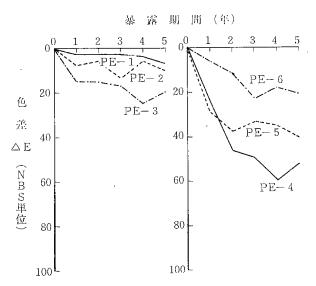


図 5・4 経年変化測定用試験体(PE板)の変退色

となり P E-4 に食いちがいが生じた。

明度Lの序列は

 $P\:E\!-\!1$, $P\:E\!-\!3$, $P\:E\!-\!2$, $P\:E\!-\!6$, $P\:E\!-\!5$, $P\:E\!-\!4$

黄変度▲YⅠの序列は

PE-2, PE-1, PE-5, PE-6, PE-3, PE-4

となり分光測色による色差と明度と肉眼視察結果はほ ぼ一致した。

この結果,注型タイプの PE-1 が最も良い耐候性を示した。FRPでは紫外線吸収剤を含む一般用のPE-2が最も着色が少なかった。一般用のPE-3がこ

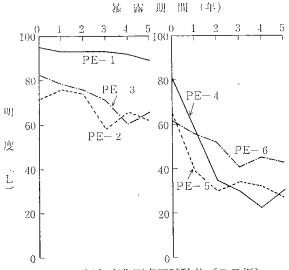


図 5・5 経年変化測定用試験体(PE板) の明度(L)の変化

れに次ぐ成績を示したが、PE-2 との組成の差は紫外線吸収剤を含まぬこととスチレンの量が4%多い点である。イソフタル酸系と表示し、しかも紫外線吸収剤も含むPE-6がPE-3より着色がひどいのは全く予想外の結果であった。あるいは番号のつけ違いではないかとも考えられるが、確認することはできなかった。難燃タイプのPE-5とPE-4の耐候性の良くなかったのは予想されたところであるが、紫外線吸収剤を含むので耐候性が良いと表示されたPE-4の方がそれを含まぬPE-5よりも悪い結果を与えたが、これは難燃剤の種類の相違に起因すると考える。

次に経年変化測定用試験体と、それをベースにして 組成の一部を変えた a, b, cについて肉眼観察によ る変色と表面変化を中心に比較する。

PE-1 の経年変化用試験体(以下 V と略記する) と a , b の相違点は次の通りである。

V (スチレン34%, 厚さ2.2 mm)

- a (スチレン30%, 厚さ 2.2 mm)
- b (スチレン30%, 厚さ 1.8 mm)

スチレンの少ない a , b がわずか (trace \sim slight) に 色が濃い。

PE-2のVとa, bの相違点は次の通りである。

V (ガラス含量28%, 厚さ 2.3 mm)

- a (ガラス含量20%, 厚さ 1.4 mm)
- b (ガラス含量28%,厚さ1.4 mm)

Vは明らか(appreciable)に黄変しており、ガラス繊維は僅かではあるが露出している。 a の色が他より幾分濃く見えるが、これはガラス含量が少なく繊維の露出が少ないためであろう。厚さの薄い a , b にはソリが認められた。

PE-3のVと a, b, c の相違点は次の通りである。

V (ガラス含量28%, 厚さ2.1mm, C社製)

- a (ガラス含量20%,厚さ1.0mm, C社製)
- b (ガラス含量28%,厚さ1.1mm, C社製)
- c (ガラス含量28%,厚さ1.2mm, D社製)

ガラス含量が少なく、厚さも薄い a が他より幾分変 色が少なく見える。 c は製造者が違いスチレン量も少 ないがあまり差はない。厚さの薄い a, b, c は共に 裏面にもガラス繊維の露出がみられた。

PE-4のVとa, bの相違点は次の通りである。

V (ガラス含量28%, 厚さ2.1mm)

- a (ガラス含量20%, 厚さ1.2mm)
- b (ガラス含量28%, **厚さ1.2**mm)

Vは変色、ガラス繊維の浮き出しがPE中で最も激しかった試験体である。ただ変色は表面に止まっていて

白っぽくかすれて膜がかかった感じである。a, bは変色が同じ程度であるが、ガラス繊維の露出はVほどではなかった。

PE-5のVと a, b, c の相違点は次の通りである。

- V (無水マレイン酸, ガラス含量28%, スチレン27%, 厚さ2.1mm, D社製)
- a (無水マレイン酸, **ガラス含量20%**, スチレン27 %, 厚さ1.2㎜, D社製)
- b (無水マレイン酸, ガラス含量28%, スチレン27 %, **厚さ1.3**mm, D社製)
- c (オルソフタル酸, ガラス含量28%, スチレン30%, 厚さ1.4㎜, D社製)

Vは非常に激しく黄変しかつ表面が、白っぽく白亜化しガラス繊維も露出した。しかし劣化は表面層にのみ集中的に起った。a,b,cは厚さが薄いこともあってVほどの着色(黄変化)は示さないが、オルソフタル酸を用いたcの変色の色合いが他とは異質で幾分褐色がかった感じがする。cはガラス繊維の露出が比較的多かったほか、ソリも激しかった。

PE-6のVと a, b, c の相違点は次の通りである。

- V (イソフタル酸, スチレン40%, ガラス含量20%, 厚さ2.1^{mm}, F社製)
- a (イソフタル酸, スチレン40%, **ガラス含量20**%, **厚さ1.2**mm, F社製)
- b (紛失)
- c (オルソフタル酸, スチレン35%, ガラス含量28 %, 厚さ1.4mm, E社製)

Vは黄変度が大であったが、ガラス繊維の浮き出しは 比較的少なかった。cは明らかに耐候性は良く、FR P板中で最も変色が少なかった。

5·2·2 VC板

まず経年変化測定用試験体の変退色を比較する。

VCの変退色および明度の変化を図5・6,図5・7に示す。VCにおいて耐候性の良かった(着色の少なかった)のは次の序列である。

VC-3, VC-1, VC-4, VC-5, VC-7, VC-8, VC-6, VC-2

一方肉眼で着色,退色の程度から判定した序列は、 VC-3, VC-1, VC-4, VC-5, VC-7, VC-2, VC-8, VC-6

となりVC-2に食い違いが生じた。

明度の序列は分光測色による色差の傾向とほぼ一致 した。なお図5・7において明らかなように VC-3 と VC-4の二つだけ明度が向上した。この二つはと

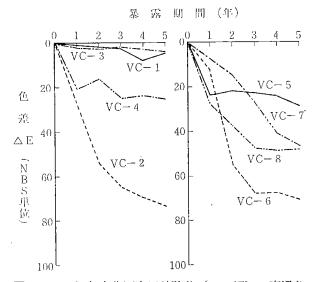


図 5・6 経年変化測定用試験体(VC板)の変退色

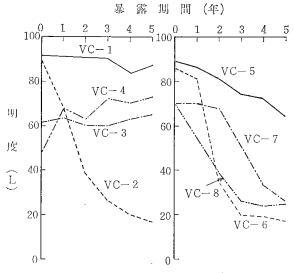


図 5・7 経年変化測定用試験体(VC板) の明度(L)の変化

もに TiO_2 を $3\sim7$ %含むもので充塡剤の露出により 白亜化が起っている。他は全て樹脂の劣化による着色 が生じている。そこでまずVC-3 とVC-4 について 比較すると、ストレートである VC-3 がコポリマー である VC-4 より優れた耐候性を示した。

着色を生じた方の試験体では,ストレートで錫系安定剤(maleate)と紫外線吸収剤を含む VC-1が最も優れた耐候性を示し,酢ビ5%コポリマーで錫(laurate,maleate)と紫外線吸収剤を含む VC-5がこれに次ぐ特性を示した。同じコポリマーであるが,紫外線吸収剤の量が少なく滑剤,可塑剤,充塡剤を含有する VC-7がそれに次いだ。

紫外線吸収剤を含まぬ V C-8, V C-6, V C-2 は共に耐候性が非常に悪く濃褐色〜黒色に変色した。しかし、同じく紫外線吸収剤を含まぬ V C-3 と V C-4 は比較的良好な耐候性を示した。この二群の相違点

は安定剤の種類で、前者は錫系の安定剤、後者は鉛系の安定剤を含む。したがって鉛系の安定剤は単独でも良好な耐候性を示すが、錫系安定剤は適量の紫外線吸収剤と併用しなければ耐候性は発揮し得ないと言える。 V C-6 が黒紫色〜黒色に変色し他とは異質な劣化を示した。安定剤が他とは異質であることを物語っている。

次に経年変化測定用試験体とそれをベースにして組成の一部を変えたa,b,cについて肉眼観察による変色と表面変化を中心にして比較する。

VC-1 のV と a , b , c の相違点は次の通りである。

V (錫 maleate, 滑剤 0.5, 紫·吸 3 α)

a (錫 maleate, 滑剤 0.5, 紫・吸 5 α)

b (錫 maleate, 滑剤 0.5, 紫・吸α)

c (錫 mercaptol, 滑剤1.0, 紫・吸0, 可塑剤3)

全体に僅かに黄変した程度であるが、紫外線吸収剤を最も多量(5α)に含む a の黄変度が大であった。紫外線吸収剤を α だけ含む b と 3α 含む V との差はほとんどなかった。このことから紫外線吸収剤は α 程度で充分と考えられる。紫外線吸収剤を含まなかった。が良い耐候性を示した。他との相違点として錫 mercaptol 系の安定剤を使用している点があげられる。したがって mercaptol 系安定剤の方が maleate 系安定剤より優れていると云える。

VC-2のVとa, bの相違点は次の通りである。

V (厚さ2mm)

a (厚さ3㎜)

b (厚さ1㎜)

紫外線吸収剤を含まぬので全て褐色に変化した。このうち厚さが $1 \,\mathrm{mm}$ しかないbの劣化が特に顕著であった。またV, a, bとも表面にわずかではあるが白亜化現象 (Chalking) が認められ、さらに $1 \,\mathrm{mm}$ 前後の白い星状の斑点が多数認められた。この斑点の生因は不明である。これらの点から maleate 系錫安定剤は単独で用いたのでは耐候性が非常に悪いと言える。

V (滑剤0)

a (滑剤 1.0, 衝撃吸収剤を含む)

b (滑剤 1.0, 製法異なる)

c (滑剤 1.0, 製法異なる)

TiO₂ を 5 ~ 7 部含むほか灰色に着色してあったが, いずれも表面が白亜化した。滑剤,衝撃吸収剤を含む 影響は認められない。 b だけが特に白亜化が著るしい が,それは製法に起因すると考えられる。 VC-4のVと a, b, c の相違点は次の通りである。

- V (酢ビ10部コポリマー, 錫 laurate 2, 鉛安定剤 5, 可塑剤 0, 滑剤 0.5, TiO₂ 3,螢光剤 0, **充填剤 5**)
- a (ストレート, 錫 laurate 3, 鉛安定剤 3, 可塑 剤 0.1, 滑剤 0, TiO₂ 3, 螢光剤 trace)
- b (酢ビ10部コポリマー, 錫 laurate 3, 鉛安定剤5, 可塑剤 3, 滑剤 0.5, TiO₂ 0.1, 螢光剤 trace)
- c (ストレート, 錫 laurate 0, 鉛安定剤 6, 可 塑剤 0, 滑剤 0, TiO₂ 0, 螢光剤 0, 顔料 4)

V, a, b ともに白亜化が顕著であるが, c は白亜化の程度は少なかった。 c はまた幾分黄変し, ソリ, ネジレも認められた。この V C-4 の系列は色もちがい組成も非常に複雑なので厳密な評価は困難であるが, コポリマーとストレートにわけて評価する。酢ビ10部コポリマーである V と b では安定剤の量が多い b の方が白亜化の程度は少ない。ストレートである a と c では鉛系安定剤を 6 部含む c の方が鉛系 5 部と錫系 3 部を含む a より良い耐候性を示した。

VC-5のVと a, b, c の相違点は次の通りである。

V(酢ビ5%, 錫 maleate 3, 紫・吸2α)

- a (**酢ビ12**%, 錫 maleate 3, 紫·吸2α)
- b (酢ビ5%, 錫 maleate 3, 紫・吸 5α)
- c (酢ビ5%, 錫 mercaptol 3, 紫·吸2α)

VC-6 のV, a, b, c の相違点は次の通りである。

V(酢ビ5%, 錫 laurate, maleate 2)

- a (酢ビ5%, 錫 laurate, maleate 2.5)
- b (酢ビ5%, 錫 laurate, maleate 3.5)
- c (ストレート, 錫 maleate 2.5, 可塑剤 0.5, 紫・吸α, 金網入り)

これは最も激しい劣化を示し、V, a, bとも黒褐色となった。またVとbの表面にはVC-2にもみられたような白い斑点が生じた。また安定剤の多いa,

bの表面が白亜化した。cはストレートであり紫外線 吸収剤も含むので耐候性は良かった。

VC-7のV, a, b, c の相違点は次の通りである。

V(酢ビ5%, 錫 maleate 4, 可塑剤少量)

- a (酢ビ5%, 錫 maleate 4, 可塑剤5)
- b (酢ビ5%, 錫 laurate, maleate 4, 可塑剤少量, 滑剤含まず)
- c (ストレート, 錫 maleate 4, 螢光剤 0, 可塑剤 少量, 着色剤 0)

VC-8のV, a, bの相違点は次の通りである。

V (厚さ 2 mm)

a (厚さ3mm)

b (厚さ1mm)

紫外線吸収剤を含まぬので耐候性は悪く褐色に着色 した。また表面に白く大きい斑点が多数見受けられ た。厚さが3mmであるaが相対的には黄変度がわずか に少なかった。

5·2·3 A 板

経年変化測定用試験体の色差と明度の経年変化を図 5・8に示す。色差からみた序列は

A-3, A-1, A-2

であるが肉眼での観察結果はこれと一致する。すなわ

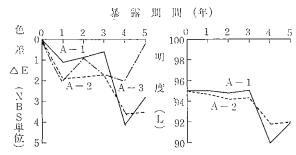


図 5・8 経年変化測定用試験体(A板) の変退色と明度(L)の変化

ち着色試験体であるA-3とストレートであるA-1は 共に変化が認められなかった。それに対しコポリマー である A-2 は紫外線吸収剤を含むにも拘らず僅かに 黄変した。

つぎに経年変化測定用試験体とその組成の一部を変えたa,b,cについて肉眼観察結果を中心に比較し

てみる。

A-1の V, a, b, c の組成の相違点は次の通り である。

V (厚さ2mm)

- a (厚さ 2 mm, 紫外線吸収剤を含む)
- b (厚さ3 mm)
- c (厚さ6mm)

紫外線吸収剤を含むと表示された a のみ が 黄 変 した。他は変化を認めなかった。厚さによる差も認めなかった。

A-2の V, a, b, c の組成の相違点は次の通り である。

V (厚さ2mm, 紫外線吸収剤を含む)

- a (厚さ2mm, 紫外線吸収剤を含まず)
- b (厚さ3 mm, 紫外線吸収剤を含む)
- c (厚さ6 mm, 紫外線吸収剤を含む)

これも紫外線吸収剤を含むと表示されたV, a, c が黄変した。 A-1 の結果とあわせると紫外線吸収剤はアクリル樹脂においては黄変化を促進させるという結論になる。厚さによる相違はここでも認められなかった。

A-3 は透明度を変えたものでかつ着色してある。 V(乳白)とa(黄)に変化は認められなかったがb (赤)とc(青)は表面がかすかに白亜化した。また bの表面には微細なクラックが多数見受けられた。

5·2·4 S 板

Sは試験体の寸法が小さかった(175 mm 角)ので分 光測色用試験片をとることができなかった。したがっ て以下は肉眼による観察結果である。

経年変化測定用試験体では耐衝撃タイプの S-2 の 黄変度が大きく,一般用の S-1 がこれに次いだ。コポリマーである S-3 は暴露の初期には比較的良好な 耐候性を示したが,5年後には相当程度黄変した。

つぎに経年変化測定用試験体とその組成の一部を変えたa,b,cについて比較してみる。

S-1の V と a , b , c の組成の相違点は次の通りである。

V (自然色)

- a (チタンホワイト含有)
- b (カーボンブラック含有)
- c (チタンホワイト・紫外線吸収剤含有)

Vは濃く黄変した。 a は黄変しかつ表面が白亜化し 艶を失なった。 b も表面が白亜化した。 c も黄変し紫 外線吸収剤の効果は全く認められなかった。

S-2もS-1と同じ変化をもたせてある。全体的に 劣化度がS-1より大きいだけで傾向そのものは全く 変らない。紫外線吸収剤を含むcはaよりも黄変度が 大きかった。

S-3 の a はコポリマーであるが、S-2 の a と同じ程度の劣化を示した。しかし S-2 の a は裏面も黄変したのに対し、S-3 の a では裏面の黄変は認められなかった。(b と c については変退色測定用試験体のところで述べた。)

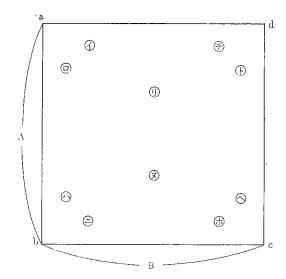
6. 試験体の寸法変化3)

6·1 測定方法

前述の暴露試験実施通則案によって,長さおよび厚さの測定はJISK-6911「熱硬化性プラスチック一般試験方法」に規定されている $5\cdot 5\cdot 1$ の積層板の寸法に関する規定,ソリ率またはネジレ率については $5\cdot 6\cdot 1$ の積層板のソリ率またはネジレ率に関する規定によるかまたはソリおよびネジレの規定についてはJISA-5730「内装用プラスチック化粧ボード」 $7\cdot 2$,ソリ測定方法の前半を参考にしても良いことになっている。

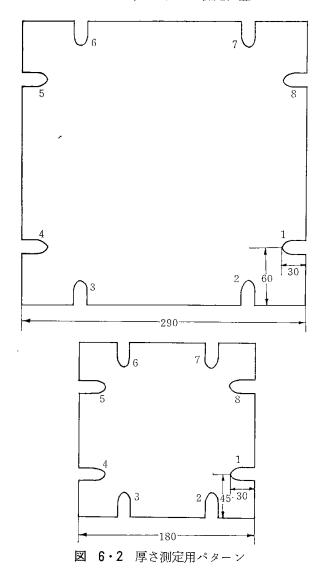
実際に採用した測定方法の概要は次の通りである。 なお寸法変化の測定はすべて $4 \cdot 2$ で述べたように温 度 $23^{\circ}\pm 2^{\circ}$ C,湿度 $65\%\pm 5\%$ で24時間以上状態調節 を行なったのち同じ条件下で測定を行なった。

6・1・1 長さの測定


JISK-6911によれば

"長さおよび幅はJISB-7512(鋼製巻尺)の1級(1 mmのもの)またはこれと同等以上の精度を有するもので,板を垂直または水平に保持し,板の周辺に平行に,長さおよび幅方向の長さを1 mmまで測る"としている。しかし1 m×2 m程度の大きな板状製品の検査をする場合ならともかくこの試験の場合のように28 cm前後(1 部のものは17 cm前後)の試験体を対称にして,しかもその経年変化を測定する場合,この程度の精度では不充分と考えられるので,特にバーニヤキャリパー300mmのものを用意し,暴露後3カ月目以降の測定にはこれを採用し,前記の方法に比べ誤差を少なくとも1桁下げることができた。測定の位置は図6・1に示す。

6・1・2 厚さの測定


厚さの測定では図 $6 \cdot 2$ のようなパターンを作り毎回ほぼ同じ個所を測定出来るように心掛けた。測定には全て精度1/1000のマイクロメータを使用した。JISK-6911によれば1個所の測定を2回行ない,その平均値をその点の厚さとすることになっているが実測の結果,有意な差が出てこなかったので1回しか行なっていない。また測定機器の都合で測定点記号10,

ヌに相当する点(中央部分の2個所)の測定は行なっていない。

注 イ, ロ……は端面から25㎜以上内側の点 注 A, Bはそれぞれ端面ab,beで測定

図 6・1 厚さ・長さの測定位置

6・1・3 ソリおよびネジレの測定

JISK-6911のソリ率およびネジレ率の測定方法 は次の通りである。

板を図 $6 \cdot 3$ の(a)に示す通り一辺の中央で垂直につり、その辺に平行に直定規をあてる。別の直定規を板の凹面にあて、直定規と板の面との間の最大のへだたりを1mmまで測る。他の辺についても順次測定し、最も大きなへだたりをその板の最大ソリとする。また板を図 $6 \cdot 3$ の(b)に示す通り一スミで垂直に

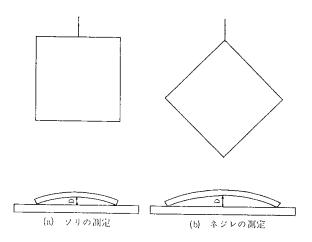


図 6・3 ソリ, ネジレ測定方法(JISK-6911)

つり、その板の水平な対角線に直定規をあて、最大ソリと同様にして最も大きなへだたりを求め、これを積層板の最大ネジレとする。

一方, JISA-5730 のソリ測定方法は図 6 ・ 4 の通りである。

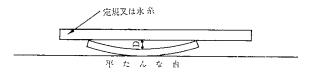


図 6・4 ソリ測定方法(JISA-5730)

板は全形のままを用い図6・4に示すように,凸部を下にして平坦な台上にのせる。次に重さ500gの定規または水糸の両端にそれぞれ約250gのおもりをつけた水糸を用いて,長さ方向および幅方向の最大ソリを0.5mmまで測る。

このソリおよびネジレの測定方法は試験体の観察項目の中では最も問題の多い方法の一つである。すなわち JISK-6911 の方法で測定する場合, 2人の測定者を必要とし、しかもうまく呼吸を合わせないと直定規と金属製直尺をあてる押付け力がすぐ変ってしまう

し、また金属製直尺で試験体表面にキズをつける機会が非常に多くなる。また JISA-5730 の方法は定規の重さが500 g と非常に大きいので、この暴露試験のような小さな試験体の測定に適用する場合どの位の重さの直尺を選ぶか大きな問題になる。ソリの場合はともかく、この方法でネジレを測定するとなると試験体の相対する頂点に荷重が集中してかかる結果ネジレがソリに比較して常に小さくでることになる。

筆者らは止むを得ず次のような簡便法で測定を行なっている。すなわちソリは図6・5のように机上の白

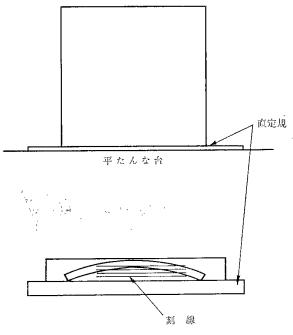


図 6・5 ソリ測定方法(北開試案)

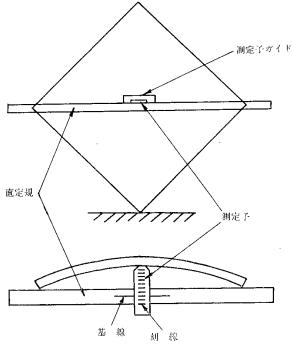


図 6・6 ネジレ測定方法(北開試案)

い平板上に直定規を固定し、これを平行に1mm間隔で刻線を引いておく。平板上に測定せんとする一端を下にして試験体を立て、軽く直定規にあてる。中央部分の直定規からへだたりを刻線によって0.5mmまで読み取る。これをその試験体のその辺のソリとしている。ネジレについては試験体の一頂点を左手で軽く摑んで机上に立て左右にきた頂点に図6・6のように試作した軽いプラスチック製の定規の中央部分を右手で持ちながら軽くあて、中央の測定子を親指で軽く押し出して試験体のへだたりの一番大きいところにあてる。その測定子を繰り出した長さをその定規に刻みこんだ刻線からやはり0.5mmまで読みとりネジレとしている。

ソリ率およびネジレ率は次の式で表わしている。

$$W_{1000} = \frac{D_{1000} \times 100}{1000}$$
 (%)

 D_{1000} は 1,000mmに対するソリまたネジレ(mm) ただし D_{1000} は

$$D_{1000} = \frac{D}{1^{2}} \times (1000)^{2} \text{ (nm)}$$

D; 最大ソリまたは最大ネジレ (mm)

L;板の直定規をあてた部分の長さ(mm)

6・2 測定法の問題点

長さの測定でパーニヤキャリパーを使用したことにより精度は向上はしたが、試験体自体に成型時のソリやネジレがあったり、端面(A、B方向)の成型が悪く凹凸があったり、相対する端面が必ずしも平行でなかったり、樽形あるいは糸巻状になっているものもあり測定誤差の原因となるものは多かった。また薄くて柔かい材料も測定が難しかった。試験体の上に標点を印しておき、その間の寸法を測った方が良かったと考える。

厚さ測定を行なうにあたっても、測定開始時点において図6・1のようなパターンを決め測定個所を指定したが、暴露期間が長期になるに従い、表面に凹凸が生じ正確に測定することは困難であった。特にPEにおいては表面層の樹脂の脱落によってガラス繊維が露出してふくれあがり、どこまでが真の板厚かを確かめることは困難であった。

ソリおよびネジレについては、前述の図6・5および図6・6の方法でソリおよびネジレを測定する場合、長手方向および幅方向の長さ(ただしソリの場合はへだたりの大きい方の方向の長さを、ネジレの場合は長手と幅方向との対角線の長さとしている)を基準としているが、実際のソリおよびネジレは単なるわん曲でなく波打つようなことが非常に多いので、厳密にソリおよびネジレ率を測定するのに計算の基礎となる部分

の長さLの基準をどこにおくか再検討する必要がある と考える。

6・1・3の方法で測定した値は、ソリおよびネジ レ率そのうちネジレ率は対角線の長さを基準とする関 係上、実際のソリ率は勿論、ネジレ率も非常に小さく 出るが実際は局部的に非常に大きいソリおよびネジレ 率を示すことが多いから6・1・3の方法ではこの点 は明らかにならない。また厚さが薄く柔軟性に富む試 験体については6・1・3の方法でその板自体の重さ によってソリおよびネジレが小さく出る場合が多い。

以上のように寸法測定をみてもこのように複雑であ るのでプラスチック材料を実際に天然暴露する場合に は成形方法や使用目的に従って必要な最低基準を決定 し判断すべきであろう。必要以上の精度は試験を繁雑 にするだけである。

6·3 測定結果

6・3・1 長 さ

前述した理由によって測定器具が3ヵ月目から変わ ったので、暴露前の測定値を基準として変化率を算定 したのでは若干値に違いが出てくるが、暴露前と2ヵ 月暴露後の経年変化に有意差がなかった事 実に 基づ き, 3ヵ月日の測定値を基準にして5ヵ年間の長さの 変化を示したのが表6・1~6・4である。表6・1 に示すように P E のうちガラス繊維を含まぬ注型品P E-1と塩パラ系の難燃剤を含む PE-4 に長さの減 少がみられた。また P E-1 では縦 (A) 方向より横 (B) 方向の寸法変化が大きかった。

PE-2のbは縦方向に伸び、幅方向に縮む結果を 示した。組成などに照らし合わせても特に思いあたる 要因が見当たらない。

PE-3 のaはやはり組成に特異点はないが、後述 する通りソリとネジレが大きな試験体だったので, そ れが長さの変化に影響を与えたものと考えられる。ガ ラス繊維を含浸してある P E-2~P E-6 については 次のような変化が見られた。

暴露 1~2年目は元の長さを保持するが3年目頃よ り長さの減少が見られ、特に厚さの薄い樹脂でガラス 繊維含有量の多いものに多かった。その他暴露期間が 長くなるに従い減少してゆくものもあった。

VCは樹脂, 安定剤, 可塑剤, 滑剤, TiO₂, 顔料, 螢光染料,厚さの差などいろいろ変えた試験体を暴露 したが表7・2に示したように同じ組成のものでも長 さの減少するものや増加するものがあるなど複雑な性 状を示した。VCについてもPEと同じように暴露後 数年間は元の長さを保持するか、あるいは増加するよ うな様相を呈するが暴露期間が長くなると次第に減少

表 6·1 長さの経年変化 (PE)

		<u>-</u>			(単位	0.1 mm)
暴露 試験片	s =数 	1	2	3	4	5
P E 1-V	A B	- 3 - 3	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -3 \\ -4 \end{bmatrix}$	$\begin{bmatrix} -4 \\ -4 \end{bmatrix}$	- 5 - 5
P E 1- a	A B	- 3 - 7	- 1 - 6	- 3 - 7	$ \begin{array}{r} -4 \\ -10 \end{array} $	- 6 -12
P E 1- b	A B	$\begin{bmatrix} -1 \\ -2 \end{bmatrix}$	$-\frac{0}{2}$	- 2 - 3	- 5 - 5	- 5 - 7
P E 2-V	AB	$-1 \\ -2$	$-\frac{0}{2}$	- 1 - 1	$-\frac{0}{1}$	- 1 0
P E 2- a	A B	$-1 \\ 0$	0	$-\frac{1}{0}$	0	- 1 - 1
P E 2- b	A B	$-\frac{3}{1}$	5 0	$-\frac{4}{1}$	5 - 1	$-\frac{4}{2}$
P E 3-V	A B	$-\frac{2}{1}$	1 1	2 0	1 0	- 1
P E 3- a	A B	0	0	$-\frac{2}{0}$	- 4 - 1	- 5 - 1
РЕ3-ь	A B	0	1 1	0 0	$-{0 \atop -1}$	- 1 - 2
P E 3- c	A B	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	1 0	$-\frac{0}{1}$	$-\frac{0}{2}$	$-\frac{0}{2}$
P E4-V	A B	0	0	- <u>1</u> 1	$-\frac{1}{0}$	- 2 0
P E4- a	A B	- <u>1</u> 0	0	- 1 0	$-2 \\ -1$	- 2 - 2
P E4-b	A B	$\begin{bmatrix} -1 \\ -2 \end{bmatrix}$	$-1 \\ -2$	$ \begin{array}{c c} $	- 1 - 4	$-2 \\ -4$
P E 5-V	A B	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	0	$-\frac{1}{0}$	$-\frac{1}{0}$	- <u>1</u> 0
P E5- a	$\left egin{array}{c} A \\ B \end{array} \right $	0	$-\frac{1}{1}$	$\begin{bmatrix} 0 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -2 \end{bmatrix}$	- 2 - 1
РЕ5-ь	A B	0	0	0	- 1 1	- 1 0
P E5-c	A B	0	0 0	$-\frac{1}{1}$	- ⁰	- ^{.0}
P E 6-V	A B	- 0 - 1	0 + 2	$\begin{bmatrix} 0 \\ -1 \end{bmatrix}$	- 2 - 1	- 1 - 2
P E 6- a	A B	$-\frac{1}{0}$	0	- 1 1	- 1 0	$-\frac{1}{0}$
P E6-c	A B	$-\frac{2}{0}$	1 1	- 2 - 1	$-\frac{2}{0}$	- 3 - 1

する傾向を示すものが非常に多い。その他暴露ととも に一様に長さの減少するものもこれに次いで多かっ た。方向性については縦(A)に減少が見られた。こ れは板の成形法の影響とも考えられる。

暴露年試験片	数 /	1	2	3	4	5	暴露 年数 試験片	1	2	3	4	5
V C 1-V	$\left egin{array}{c} \mathbf{A} \ \mathbf{B} \end{array} \right $. 1 0	1 1	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1 1	0	V C 5-V A B	0	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	0
V C 1- a	A B	- 1 0	1 1	- 2 0	- 3 0	- 3 - 1	V C 5- a A B	$-\frac{0}{1}$	2 1	1 1	1 1	- 1 0
V C 1- b	AB	0	1 1	0	1 1	- 2 - 1	V C 5- b A B	1 1	$-\frac{1}{1}$	0	$-\frac{0}{2}$	$-1 \\ -2$
V C 1- c	A B	- 0 - 1	2 2	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{array}{c c} 1 \\ 2 \end{array}$	1 1	V C 5- c A B	0 1	3 3	2 3	$\begin{bmatrix} 2\\4 \end{bmatrix}$	1 3
V C 2-V	A B	- 2 - 1	0 1	$-\frac{2}{0}$	0	$-2 \\ -1$	V C 6-V A B	- 1 - 1	1 1	- ²	$-\frac{2}{1}$	$-\frac{0}{2}$
V C 2- a	A B	- 3 - 1	$-\frac{2}{0}$	- 2 - 1	- 2 - 1	- 3 - 2	V C 6- a A B	- 2 - 1	- 1 1	- 2 - 1	- 3 - 1	$-4 \\ -2$
V C 2- b	A B	$-\frac{0}{2}$	$-\frac{2}{1}$	$-\frac{1}{3}$	1 - 3	$-1 \\ -4$	V C 6- b A B	2	$-\frac{4}{2}$	$-\frac{4}{1}$	4 0	$-\frac{2}{2}$
V C 3-V	A B	- 5 1	- 3 1	$-4 \\ 1$	$-4 \\ 1$	$-\frac{4}{0}$	V C 6- c A B	$-\frac{1}{2}$	0	$\begin{array}{c} 0 \\ 2 \end{array}$	- 1 1	$-\frac{1}{0}$
V C 3- a	A B	3 0	4 1	4	3 1	3	V C 7-V A B	- 3 1	$-\frac{1}{2}$	0 2	$-\frac{1}{2}$	$-\frac{1}{0}$
V C 3- b	A B	0 2	0	1 1	1 1	0 2	V C 7- a A B	- 1 0	- 1 1	- 1 - 1	$-2 \\ -1$	- 3 - 2
V C 3- c	A B	0	1 2	$-\frac{1}{0}$	0 1	-1	V C 7- b A B	$-{0\atop 1}$	0	$-\frac{1}{0}$	$-\frac{1}{0}$	- 2 - 1
V C 4-V	A B	- 2 - 1	$-\frac{2}{0}$	$-\frac{2}{0}$	$ \begin{array}{r r} $	- 3 - 1	V C 7- c A B	- 1 - 1	- 1	0	1 0	0
V C 4- a	AB	0	1 0	$-\frac{1}{0}$	$\begin{array}{c c} & 0 \\ -1 & \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	V C 8-V A B	- 2 - 2	0 0	$\begin{bmatrix} -1\\0 \end{bmatrix}$	0	$-1 \\ -2$
V C 4- b	A B	$-\frac{1}{0}$	1 1	$-\frac{1}{0}$	- 1 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	V C 8- a A B	- 2 - 1	0	$-\frac{1}{0}$	-1	$-\frac{2}{0}$
V C 4- c	AB	- 2 2	-42	- 9 1	-11 -1	-13 -5	V C 8- b A B	0 1	3 2	2 2	2 2	1 1

VC-1 では a だけが縦方向に寸法の異常が認められるがその原因は試験体のネジレに起因する と 考える。 c は縦横両方に寸法が増加しているこの試験体はmercaptol 系の錫安定剤を含み紫外線吸収剤を含まない。mercaptol 系の錫安定剤を用いている他の試験体はVC-5のc, VC-8のV, a, b などであるが,このうちVC-5のc とVC-8のbがほぼ同じ程度の寸法増加を示していることから考えると,この安定剤がその原因の一部を担っていると考えられないことはない。

VC-2のVの a, b はただその厚さが異なるだけで組成は全く同じである。この a, bに比較的大きな寸法変化が見られるが、aはソリ、ネジレ共になく、

bはネジレが見られるだけであり、その理由は判然と しない。

VC-3 は TiO_2 を含んでいるが,そのうちでも衝撃吸収剤を含んでいる b と滑剤を含まぬVがやや大きい変化を示す。

V C-4 では充塡剤を含む V がやや大きい変化を示す。

c は非常に大きな変化を示し、測定具の精度から考えて明らかに有意な変化である。ソリ、ネジレ共に大きく変化していること、他と成形法が異なることから成形条件の不適による寸法の経時変化が起ったものと考えられる。

VC-5のうち mercaptol 系の錫安定剤を含む cの

表 6·3 長さの経年変化(A)

(単位 0.1 mm)

暴露	素 E数 /_	1	2	3	4	5
A 1-V	A B	$-\frac{2}{0}$	0 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} -3\\-2 \end{vmatrix}$	- 3 - 3
A 1-a	A B	0	0 2	$\begin{bmatrix} -1\\0 \end{bmatrix}$	$\begin{bmatrix} -2 \\ -2 \end{bmatrix}$	$-1 \\ -2$
A 1-b	A B	$-\frac{1}{0}$	0 2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} -3\\-1 \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
A 1-c	A B	0 - 1	+ 2	- 1 0	- I - 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
A 2-V	A B	- 1 - 1	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 2 - 3	- 3 - 4
A 2 – a	$\begin{vmatrix} A \\ B \end{vmatrix}$	- 1 - 1	1 0	$\begin{bmatrix} -1 \\ -2 \end{bmatrix}$	- 3 - 3	- 3 - 3
A 2 - b	A B	0	2 0	$-\frac{0}{1}$	$\begin{array}{c c} & 0 \\ -2 & \end{array}$	$-1 \\ -2$
A 2-c	A B	0	3 2	1	- 1 0	- 1 - 1
A 3-V	A B	$\begin{bmatrix} 0 \\ -1 \end{bmatrix}$	0	$-2 \\ -1$	$\begin{bmatrix} -2 \\ -3 \end{bmatrix}$	- 3 - 3
A 3 - a	A B	+ 1 - 1	+ 1 - 1	+ 1 - 1	$-\frac{0}{2}$	$-1 \\ -2$
A 3-b	A B	$\begin{bmatrix} -1 \\ -2 \end{bmatrix}$	-1	$-\frac{1}{2}$	- 3 - 3	- 3 - 4
А 3 - с	A B	- 1 - 1	1 0	- 2 - 2	- 3 - 2	- 3 - 2

みが寸法増加を示した。

VC-6 ではaだけが特異な変化を示したがこれは ソリ,ネジレに起因するものと考えられる。

V C-7 はほぼ良好な寸法安定性を示した。

VC-8は複雑な変化を示すが、ソリ,ネジレ,安 定剤の種類の影響と考える。

可塑剤の影響についてはVC-4のVとVC-4のbとでは可塑剤の入らぬ方が減少率が大きく出るがVC-7のVとVC-7のaとでは可塑剤の入っている方が減少率が大きく出るなどその関係が複雑であった。暴露期間が長くなるにつれて次第に長さの減少がみられた。

スチロール樹脂については縦および横方向とも全体に長さの増加が見られた。

以上,長さの変化と組成などの関連について述べた。測定にあたっては状態調節は勿論,測定具も同一のものを使用し,測定も同一人に固定して実施したが, 暴露試験が非常に長期にわたったので表7・1~7・4の値をどのように評価するかは大いに議論のあると

表 6·4 長さの経年変化(S)

(単位 0.1 mm)

5
$\begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
$\begin{array}{c c} 1 & 0 \\ 0 & 0 \end{array}$
$\begin{array}{c c} 3 & 2 \\ 1 & 1 \end{array}$
1 3 1 3
$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
0 0 1 0
$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$
2 2 2
$\begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
$\begin{array}{c c} 1 & -1 \\ 2 & 2 \end{array}$
3 3 2

ころである。0.2mmの変化は率にすれば、285mmに対して0.07%程度でありほとんど問題にするに足りないかも知れない。なお、測定具の精度は0.05mmであった。以上の結果から特徴的な点を列挙すると

- ① PEの注型板は長さに経時変化が認められたが FRP化することによって改善された。
- ② VCでは押出し品など成形方法に起因する寸法 変化が認められた。また安定剤の種類によっても 寸法安定性に差が認められた。
- ③ Aは極くわずかであるが年々長さが減少する傾向を示した。
- ④ それに対しSは長さの増加が認められた。
- ⑤ 薄い試験体は一般に長さの変化が大きかった。

6・3・2 厚 さ

 $6 \cdot 1 \cdot 2$ の厚さの測定方法に従い,5 ヵ年間の測定値を示したのが図 $6 \cdot 7$ である。

PEではPE-4のV, PE-5のVに大きい厚さの減少が認められたが、これは明らかに難燃剤の影響と

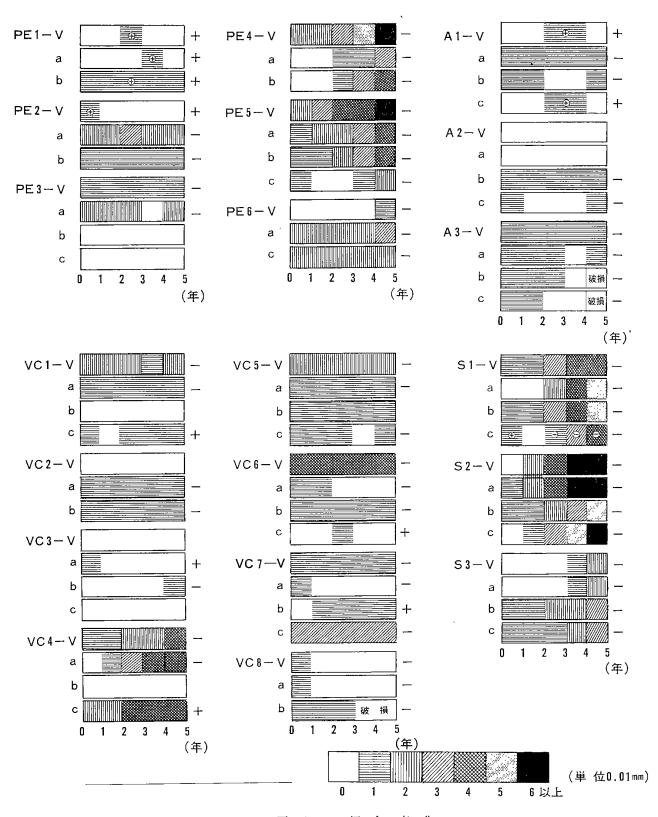


図 6・7 厚 さ の 経 年 変 化

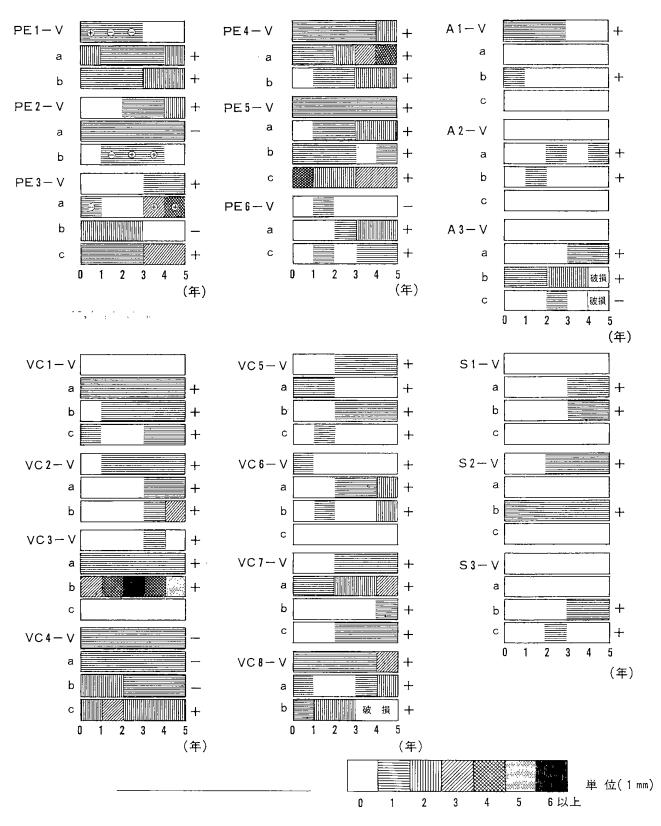


図 6・8 ソ リ の 経 年 変 化

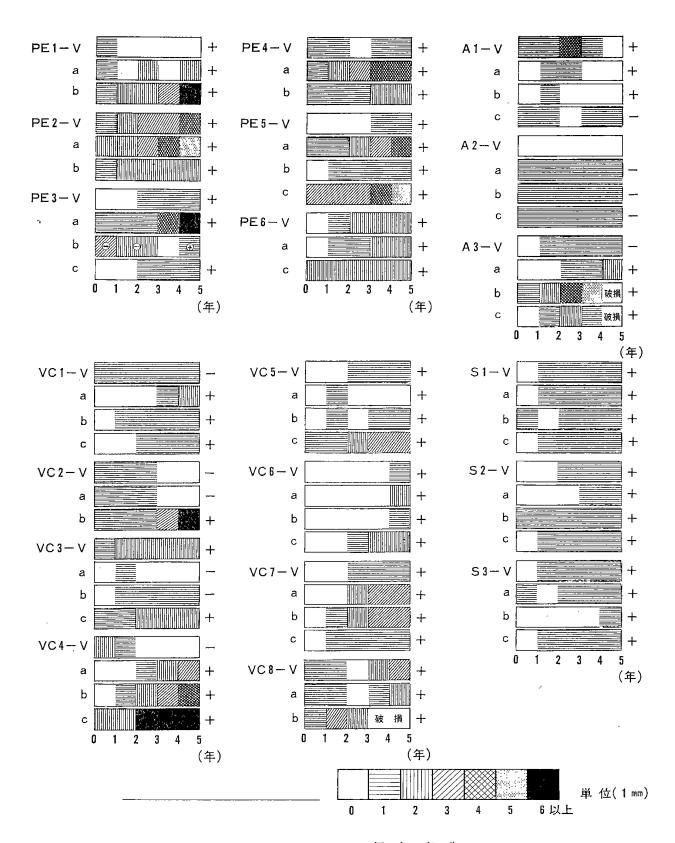


図 6・9 ネジレの経年変化

考える。また薄手の試験体の厚さの減少も顕著であったが、その値はガラス含量28%のものよりは20%のものの方が大きかった。

VCではPVCストレートのVC-1~VC-3は厚さの減少が認められなかったが酢ビとのユポリマーの多くは3年目頃から厚さの減少が顕著となった。

VC-4のうちVとbが酢ビのコポリマーであるが、 TiO_2 とフィラーを含むVの方が厚さが減少しているのに可塑剤を含むbは変化していない。aとcはストレートで組成はVC-3とほぼ同じなのにVC-3は変化なくVC-4のaとcは変化している。強いて両者の相違点を挙げると製造会社が異なることとVC-4のaとcの方が滑剤を含んでいる点である。

VC-5ではVのみが厚さが減少しているが組成にその根拠となる点が見当らない,測定誤差とも考えられる。

VC-6 についても VC-5 と全く同一のことが云える。

VC-7ではcだけが変化している。V, a, b との相違点は成形法であって,cのみが押出し品である。結局,成形法によって厚さの経時変化が異なる一つの証拠である。

VC-8 は滑剤を含むがコポリマーであるせいか厚 さの減少は認められない。

Aは着色品に極く僅かの変化が認められたに過ぎなかった。

Sは耐衝撃性でブタジエン系のコポリマーである S-2 が全体的に大きな厚さの減少を示した。ストレートである S-1 も S-2 に次ぐ厚さの減少を示したが、アクリルとのコポリマーである S-3 はこの点でも明らかに改善されている。

以上の結果を要約して列挙すると

- PEでは難燃化処理をしたPE-4, PE-5に 顕著な厚さの減少が認められた。
- ② VCでは長さのときと同じように押出し品(VC-7のc)など成形法に帰因する寸法変化が認められた。
- ③ Sの厚さの変化が大きかったがアクリルと共重合することによって充分改善された。

6・3・3 ソリおよびネジレ

測定結果を図6・8,図6・9に示す。

PEは比較的ソリ、ネジレの大きかった樹脂群であるが、特に難燃化処理をしたPE-4、PE-5ならびに薄い試験体においてこの傾向は顕著であった。PE-2も特にこの特性が悪かったが、暴露前からソリ、ネジレが見られた点から考えると成形に原因があったの

ではないかと推定される。

VCでは VC-4 のネジレが顕著であるが、これは暴露台の支持枠の変形が原因であって組成に起因するものではない。また VC-3 の b は暴露前からソリが認められた試験体である。したがって暴露によるソリ、ネジレはほとんど認められないといって良い。

AはA3-b, A3-cを除いて変化が認められなかった。

Sは全体にネジレが認められたがその程度は極く僅かであった。

以上を要約すると

- ① PEは注型板,FRPともにソリ,ネジレが認められたがこの傾向は難燃タイプと薄い試験体に 顕著にあらわれた。
- ② VC, A, Sともにソリ, ネジレは殆んど認め られなかった。

7. 紫外線照射量の測定^{2),3),10)}

7.1 測定方法

7・1・1 暴露面が受ける紫外線照射量の測定

紫外線照射量の測定には東洋理化製 PH-11型積算 照射度計を使用し、受光部は暴露試験体と同じ南面45°の傾斜を持たせて設置した。照度計受光部は図2・1や図2・5に示すようにVC-5の枠とA-2の枠の中間に設置することになっていたが、暴露台と庁舎の距離が遠く(暴露台設置当初は当所が建設段階にあり、将来計画に支障を来たさぬ位置に暴露台を設置したため、リード線は最低100mを必要とした)管理上もいろいろ不便なので、耐候性分科会の承認を受けて、昭和39年3月24日受光部を庁舎屋上に、また積算照射計を恒温恒湿のプラスチック試験室に移設した。なお受光部は図7・1に示したような台に取り付け設置した。

照度計の点滅は当初,図7・2のような機構をもった光電式自動点滅器(ナショナルEL-58型)とマイクロスイッチリレーによっていたがのちに電気式万能時計(太平機器製BA-301型ベルタイマー)に変更した。また年間を通じての紫外線照射量を測定するための時刻は表7・1に示す時刻にセットした。この時刻は日の出より大分早い方に,また,日没よりは大分遅い方にずらしてある。光電式自動点滅器の場合,作動するためにはある程度の光量を必要とする。すなわち,点滅器は朝ある程度明るくなってから作動し,夕方はまだ残光のあるうちに作動する。したがって,点滅の前またはあとにある紫外線量は(極くわずかではあるが)数え落すことになる。測定の正確さを期するためには,紫外線の出初める前に照度計のスイッチを

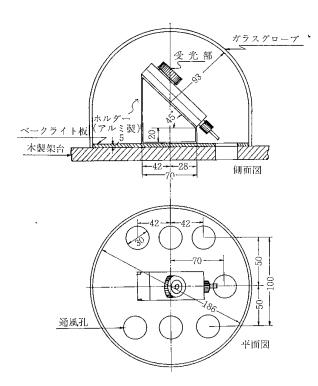


図 7・1 受光部取付図(45°傾斜用)

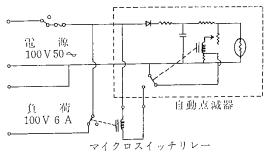


図 7・2 光電式自動点滅機構

表 7·1 照度計点滅時刻表

開始時刻	終了時刻
5. 00	18. 00
4. 00	19. 00
3. 00	20. 00
4. 00	19. 00
	5. 00 4. 00 3. 00

入れておき,ある程度ランニングさせておいてから実際に紫外線の受光を開始させ,夕方は完全に暗くなってからスイッチを切ることが望ましい。この種の積算照度計で,そこまで厳密に考える必要があるかどうかは議論のあるところと思うが,後述する経時変化測定装置は,30分乃至1時間のヒートラン後測定に入ることが必要なので,突発的な停電による電気万能時計の

遅れなど問題はあるが、前述の点と考え合わせて全装 置が同時に点滅するような機構にしている。

積算値の読みとり方法は、日曜、祭日を除いた毎日、午前9時30分に照度計のカウントの数字と翌日の同時刻の読みとの差をその日のカウント数としている。これに1カウント当りのエネルギーを掛けて1日の照射量とした。

7・1・2 紫外線照射量の経時変化の測定

水平面または暴露面の受ける日射エネルギーの測定 例は比較的多く,また経時変化の測定も行われている し,計算によってもおおよその傾向を求める方法も提 案されている。しかし,紫外線照射量の経時変化の測 定は,適当な方法も確立されていないし,分光分布な ど複雑な要素の影響を受けるためデータがあまりな い。そこで,直達紫外線および散乱紫外線を含めた紫 外線照射量の経時変化を測定するための装置を試作し た。

手持ちの積算照度計の受光部にビニルコードをつけ 経時変化測定装置に接続した。装置は直流 定電 圧電源, 記録計を使い図7・3の(a)のような回路を構成した。受光部の取付方法は, 既設の積算照度計と同じく南面45°にした。

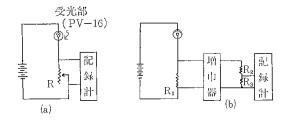


図 7・3 紫外線経時変化測定装置

この装置で測定した結果、針が非常に細かく振れ、紫外線の変化に応じてインク切れが生ずるほどの早さでペンが振れ、さらに雨が降ると絶縁が著しく低下して記録計の零点が大きく移動し測定が不可能になるなどの支障が発見された。そこで、交流変換型直流増幅器(東亜電波製PM-18)を採用した回路に変更し、受光部をガラスグローブで覆うなどの処置を講じて測定したのが図 $7\cdot 4$ である。

その後、定電圧電源の故障、記録計、増幅器のほかへの転用などで経常的に記録をするに至っていない。 装置のブロックダイヤグラムは図7・3の(b)に示す通りである。この増幅器と記録計は内部が熱的平衡 状態になるまで約30乃至1時間のヒートランを必要と するので前述のような点滅時刻を採用した。

7・1・3 水平面の受ける紫外線照射量の測定

昭和39年7月1日より水平面の受ける紫外線照射量

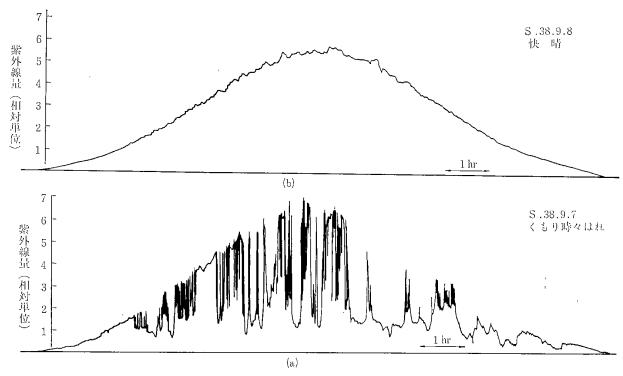


図 7・4 晴天時と曇天時の紫外線量の比較

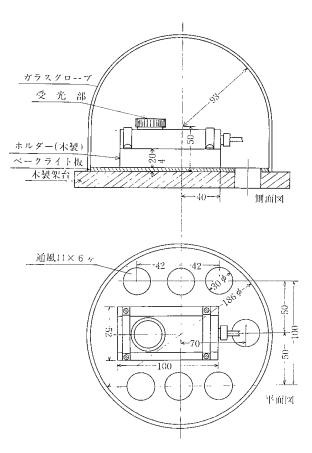


図 7.5 受光部取付図(水平用)

の測定を開始した。受光部を図7・5のように設置した点を除くと天然暴露試験用の積算照度計と全く同じである。測定を行なっているうち、1カウント当りの紫外線エネルギーの検定が不充分だった事がわかったので、メーカーに依頼し再検定後9月1日より測定を開始した。しかし、約2カ月後装置のセッテングにミスのあることを発見したので、39年11月1日よりこれを正常な状態にもどした。その後、42年2月まで測定したが、装置の都合によりそれ以降は中止した。

7・2 気象の概要11),12)

地域によって気象状態がどう変化するかを札幌と東京を例に、日照時間、水平面日射量、平均気温、平均相対湿度等を図7・6、図7・7、図7・8 および図7・9に示した。なお、データは気象庁月報および理科年表から引用した。

まず図 $7 \cdot 6$ より月毎の日照時間を見ると年によって差はあるが、札幌は東京にくらべ冬期間の日照時間は短かいが夏から秋にかけては札幌の方が長い。東京では8月が最長、 $9 \sim 10$ 月が最短を示すのに対し、札幌は5月に最長、 $12 \sim 1$ 月に最短を示す。また、最長時と最短時の比は東京が204/136 (時間)に対し、札幌は213/91 (時間)とその差が大きい。また、年間の総日照時間は東京の方が幾分長いことを示している。気象平年値(1931年 ~ 1960 年までの平均)は東京が

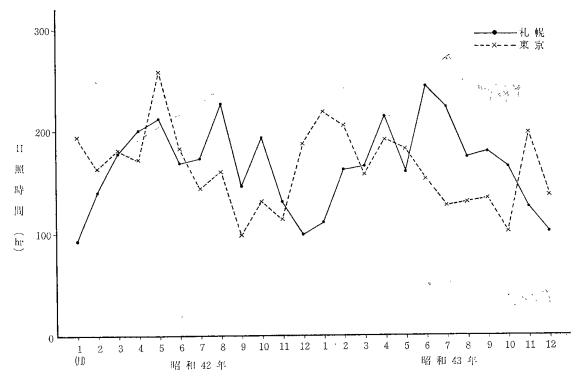


図 7・6 東京と札幌の月別日照時間

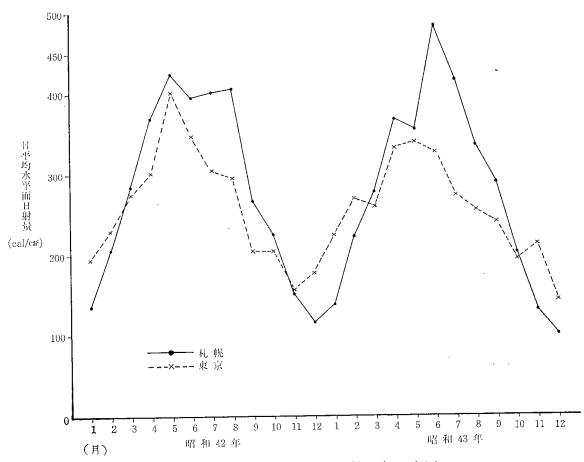


図 7・7 東京と札幌の月別水平面日射量(1日当り)

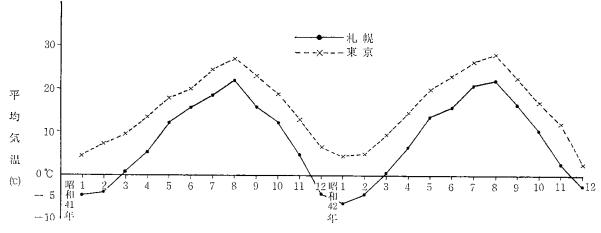


図 7・8 東京と札幌の月別平均気温

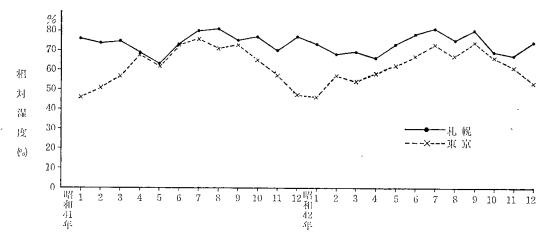
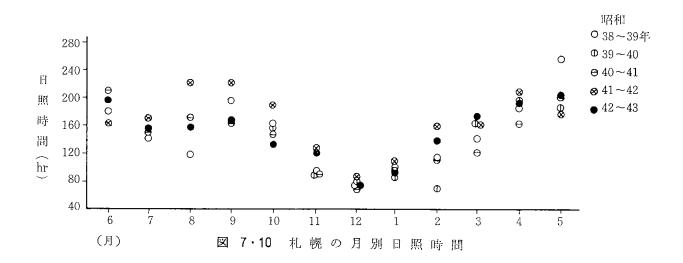
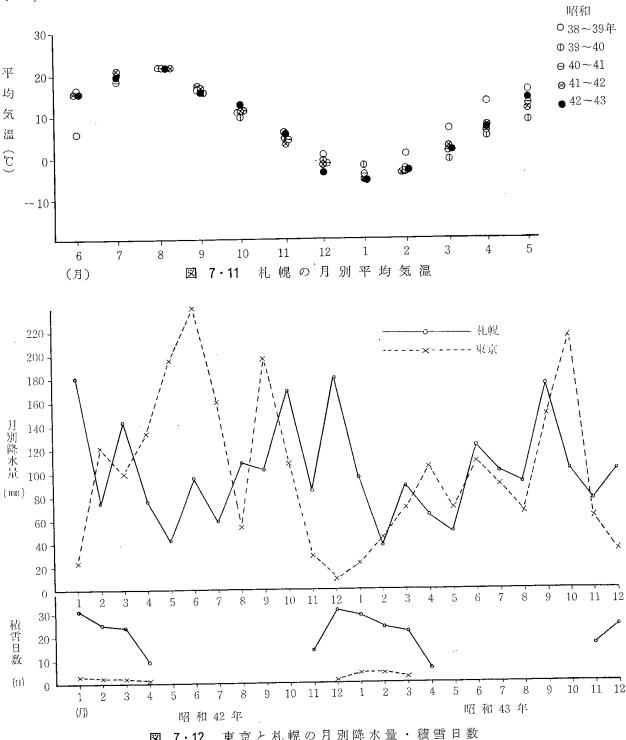




図 7・9 東京と札幌の月別平均相対湿度

2,019 時間,札幌は 1,916 時間である。 また図 $7\cdot 10$ に暴露期間中の札幌における日照時間を示したが年による変化は少ない。

つぎに月別の1日当りの水平面日射量を図7・7に 示す。この図よりやはり日照時間同様,積雪などのた め11~2月頃まで札幌の日射量が少なく出ているが、3月頃東京と札幌との差が一番小さく、その後、4~8月頃までは逆に札幌の方が高い値が出ている。結局年間の総日射量は日照時間とは逆に札幌の方がわずかに多い。図7・8は札幌と東京の平均気温を示したも

東京と札幌の月別降水量・積雪日数 図 7・12

のである。平均気温は月によっても若干ちがうが冬期 で10℃前後, 4~10月頃は約7~8℃前後の気温の差 が出ている。年間平均気温は東京の14.7℃に対し、札 幌は7.6℃ で札幌が7.1℃ 低い。図7・11は暴露期間 中の札幌の月別平均気温の推移を示す。

図7・9に札幌と東京の月別平均の相対湿度を示す。 平均相対湿度は冬期においては東京の方が低いが4~ 10月でほぼ同じような値を示している。年間の平均湿 度は東京の71%に対し札幌は76%とやや高い。

降水量の月別経過を図7・12に示す。年間降水量は 東京が 1,563mm であるのに対し札幌は 1,136mm と非常 に少ない。

最後に、東京と札幌の気象の一番大きな差は雪であ ろう。積雪日数(地面に1日中雪がある日数)は東京 は0日であるが、札幌は132日と4カ月余におよぶ、 積雪の深さとその深さ別日数を示すと表7・2のよう になる。しかし暴露台は南に面し45°傾斜しており風 通しの良い構造なので地面に雪が積っていても暴露台

	10 月	11 月	12 月	1 月	2 月	3 月	4 月	年 間
10 cm 未 満	1	7	6	0		3	4	20
10 cm 以上	0	4	19	31	28	27	2	111
20 cm 以上		2	13	31	28	25	1	99
50 cm 以上		0	4	20	24	14	0	62
100 cm 以上		,		2	5	2		9
				<u> </u>	J	<u> </u>		<u> </u>

表 7・2 札幌の積雪の深さとその深さ別日数(1941年から1960年までの平均)

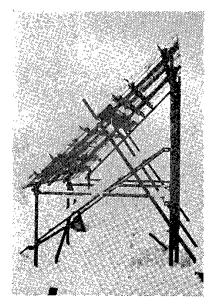


写真 7-1

上にはほとんど雪がない。もちろん写真7・1に示すように1日に数10cmの積雪をみることもまれではないが,そのあとに続く好天によって融けてしまう。したがって積雪による影響は比較的少ないのではないかと考える。

以上の結果に基づいて東京と札幌の気象の特徴的相 違をまとめたのが表7・3である。

7・3 測定結果と考察

7・3・1 暴露面の受ける紫外線量

札幌における南面45°の紫外線量を表7・4に示す。 試験所間の差が大きく,また同一試験所においても第 1年度から第5年度まで大きく変化している。この間 の経緯について以下すこし詳しく述べる。

共通暴露試験開始後6ヵ月を経たところで,第一分 科会に各所の紫外線量の測定結果を持ちよったところ 表7・5の如きデータが得られた。その結果,東京を

	単位	東		京				札		幌				
	単位	最 高	最	底	平	均	最	高	最	低	平	均	備	考
日照時間	hr/月	204(8月)	136(9	~10月)	1	68	213	(5月)	91	(12月)	16	50	(1, 931~	~1,960)
日射量	cal/cm/日	376(5月)	157	(11月)	2	68	458	(6月)	109	(12月)	27	74	(1,966~	~1,969)
平均気温	℃/月	26.4(8月)	3.7	(1月)	14	.7	21.7	(8月)	-5.5	(1月)	7.	6	(1,931~	~1,960)
平均湿度	%RH/月	80(7月)	60(1	~2月)	,	71	82(7~8月)	69	(4月)	7	76	(1,931~	~1,960)
降 水 量	nm/月	220(10月)	48	(1月)	1	30	145	(9月)	59	(5月)	ç	95	(1,931~	-1.960)

0

表 7・3 東京と札幌の気象状況の比較

1としたとき仙台が 1.1, 久留米が 1.5, 札幌が3.5という比率になり, $2 \sim 3$ 倍も差があるのは少し大き過ぎはしないかという意見がでた。そこでメーカーに検討を依頼したところ,較正試験時の試験データは次の通りであるとのことであった。

日/年

積雪日数

東京 57.489 µW-min/cm₂/カウント 大阪 95.438 // 久留米 65.621 // 札幌 60.659⁴ // ただし、2 ケタ目以下の精度には問題があるので丸めて例えば東京の場合 $0.06 \mathrm{mW-min/cm^2}$ として検定値を出しているとのことであった。したがって、札幌の場合測定器に添付してあった較正値の $0.1 \mathrm{mW-min/cm^2}$ は誤りで $0.06 \mathrm{mW-min/cm^2}$ が正しい値であることが明らかになった。そこで表の値を計算し直すと札幌は東京の2.1 倍と依然として高い値を示した。

132

 $(1,941\sim1,960)$

一方, 当時発表されていたデータによれば, 東京において測定された平面の紫外線照射量の累計は次の通りであった。

		1/5/1	0 /F Fi	3年目	4年目	5年目	6年目	7年目	8年目
		1年目	2年目						
		$ 1963\sim1964 $	$1964 \sim 1965$	$1965 \sim 1966$	$1966 \sim 1967$	$ 1967\sim1968$	$1968 \sim 1969$	1969~1970	$1970\sim1971$
6	月	26.45	13.89	26.30	16.67	46.70	65.20	48.77	65.94
7	月	21.62	16.16	20.41	7.82	60.49	66.32	54.18	
8	月	20.96	欠	22.77	8.88	65.63	49.98	54.19	
9	月	17.72	欠	17.77	8.51	47.75	45.61	55.79	
10	月	17.52	欠	15.07	7.11	35.06	38.05	39.10	
11	月	8.68	10.82	9.12	4.01	28.43	27.93	19.15	
12	月	5.43	7,66	7.74	2.31	13.66	20.05	20.79	
1	月	9.31	11.87	3.25	27.86	30.64	31.63	22.93	
2	月	11.69	13.04	13.30	30.55	37.62	36.78	26.91	
3	月	17.27	27.52	17.18	45.03	48.10	60.29	41.13	
4	月	18.58	28.71	17.32	49.94	50.59	51.26	52.39	
5	月	17.07	27.46	17.09	53.72	42.28	38.54	44.14	
合	計	192.30	(157.13)	187.32	262.41	507.95	531.72	479.47	
東京の	合計	80.16	199.76	278.86	456.98	475.			
仙台の	 合計	59.98	172.69	266.93	313.72				
久留米の	合計	101.67	210.09	303.77	490.01				

表 7·4 暴露面の受ける紫外線量(札幌南面45°)

(注) 単位 W/cn

表 7・5 暴露開始直後の各地の紫外線量の比較

測定年月日	札幌	仙 台	東京	大	阪	久 留 米
1963 6 月 6/1 ~ 6/30	26.45	5.82	5.87			8.38
7月7/1~7/28	21.62	4.86	6.39			8.79
8月 7/29~ 8/25	17.14	6.73	6.87			7.03
9月 8/26~ 9/22	17.26	6.29	4.20	-		6.98
10月 9/23~10/20	15.83	6.14	4.09			8.05
11月10/21~11/17	10,63	4.48	3,74			6.54
計	108.93	34.32	31.15			45.77
比	3.5	1.1	1.0			1.5
訂正後の比	2.1		1.0			

(注) 単位 W/cm

1960年 3 月~1961年 2 月 168.0W/cm²/year 1961年 3 月~1962年 2 月 156.1 // 1962年 3 月~1963年 2 月 138.3 // 3 年間の平均 154.1 //

(東京都新宿区東洋理化㈱にて測定)

攀松氏は、日射エネルギーを、直達光線のみとし、しかも晴れている場合を仮定して計算した結果、暴露面が水平面になす角と日射エネルギーの関係は、図7・13のようになる、としているから、もし紫外線エネルギーがこの日射エネルギーと同じ比例関係にあるとす

れば南面 45° の暴露面は水平面に対し約1.11倍の紫外線エネルギーを受けることになるから, $154.1\times1.11=171.7$ W/cm/year なり,札幌における1年間の総紫外線量 192.3W/cm $_2$ /year はこれと比較して決して過大であると言えぬと考えた。

これと併行して、暴露試験用積算照度計の1カウント当りのエネルギーをチェックする意味で、昭和38年9月20日、東洋理化㈱より副原器として使用されている積算照度計を持参してもらい、短時間であるが比較試験を行なった、この結果を表7・6に示す。この較

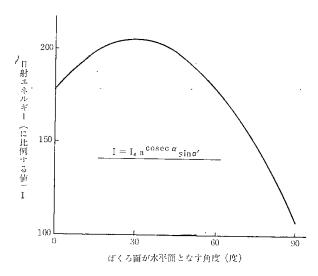


図 7·13 暴露面の受ける日射エネルギーの 計算値(峯松)

表 (· b 積算照度計検定結果	表	7 • 6	積算照度計検定結果
-------------------	---	-------	-----------

カウント 時間 (分)	副 原 器 A	ばくろ用 B	B/A×100
1	24	37	154
2	46	75	163
3	68	113	166
4	89	150	169
5	111	188	170
6	132	225	170
7	154	263	171
8	176	300	170
9	197	337	171
10	218	374	172
15	323	552	171
20	425	737	173
25	526	913	173
30	625	1,086	167

備考:測定日時 S 38. 9. 20 (天候 快晴) 12.06~12.36 (30分間)

試験状態

ばくろ台に設置されている受光部のガラス グローブを取外し,ばくろ用受光部に並べて 副原器受光部を置き,南面45°になるよう保 持した。

1カウント当りのエネルギー

副 原 器 公称 $0.167 \mathrm{mW\text{-}min/}_{cn}$ ばくろ用 公称 $0.1 \mathrm{mW\text{-}min/}_{cn}$ 測定結果

がた mW-min/cm/30分 副原器 625×0.167=104.4 ばくろ用 1,086×0.1=108.6 // 正試験の範囲では、副原器の示すエネルギーが正しいとすれば、札幌の暴露試験用積算照度計の示すエネルギーは 1 カウント当り 0.1mW/cm^2 としてもわずか 4%高い値を示すに過ぎないという結果が得られた。

以上の二点を論旨として札幌の測定値の妥当性を主張した。一方、メーカーはこの副原器を用いて、他の4カ所の測定器をチェックするとのことであったが、その結果も入手できなかったのでこの間の事実は今もって明らかにできない。

しかし、第2年度目からは、例えば東京の測定器をメーカーに較正に出したところそれまで1カウント当り0.06mW-min/cm²という較正値が0.22mW-min/cm²という3倍以上の値になって返戻されて来たため前年に比較して3倍以上の紫外線量を示すという新たな問題点が生じたが、各所の測定値はオーダー的にほぼ一致する結果が得られるようになった。これはメーカーが2桁の精度を持つ較正値を出すようになったためである。

つぎに、暴露1年目から5年目にいたる紫外線量の 大きな変化について述べる。例えば東京の場合、表7 ・4 に示した通り、1年目80W/cm²/年、2年目200W/ cm²/年,3年目280W/cm²/年,4年目460W/cm²/年, 5年目 475W/cm²/年 と年毎に大きく増加している。 1年目から3年目までは照度計,受光部ともに同一形 式のものであるにも拘らず検定の度毎に較正値が大き く変化している。 この点に関してはメーカーからは 測定精度の向上(1桁から2桁へ)としか説明がなされ ていない。しかし4年目の中頃、すなわち1966年末か ら1970年初めにかけて新しい受光部が開発され、それ を使用することにしたため,大きな変動が生じ較正値 が2倍近く上昇している。それまで受光部の光電管と して東芝製 P V-16を U V フィルターと組合せていた が新しい形式の受光部には PV-34が使用されるよう になったためである。

受光部に用いられた光電管の定格を表 $7\cdot7$ に示す。 P V-16は可視用であって最大感度波長は $400m\mu$ であるが,これは代表的な特性であって実際に作られる個々の球では $\pm50m\mu$ のバラッキがある。P V-34は光電面に用いられる金属は P V-16 と同じアンチモンセシウムであるが,P V-16 はバルブとして普通の軟質ガラスを使っているのに対し紫外線透過ガラスを用いているので最大感度は $340m\mu$ に移る。光電管の分光感度特性はSナンバー(S 1,S 2,…S 5,……など)で表示するがこの表示方法はアメリカ,イギリスにおいて古くから用いられてきたもので現在は日本でもこれを採用している。P V-16,P V-34の分光感度

形 名	種	別	摘 要	分感特 性	最大感度 波 長 mμ	陰 極	標 準 感 度 μA/lm	平 均 陰極電流 μAdc	陽 極 電 圧 Vdc	周 囲 温 度 ℃
P V-16	真	空	可視域用	S 4	400±50	Sb-Cs	25	2	250	50
P V-34	真	空	紫外・可視域	S 5	340±50	Sb-Cs	0.13	_	250	50

表 7・7 受 光 部 用 光 電 管 の 定 格

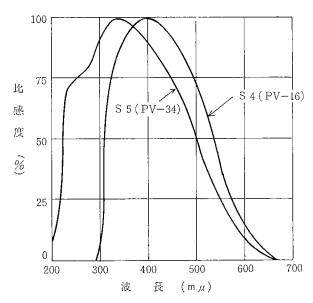


図 7・14 光電管の分光感度曲線

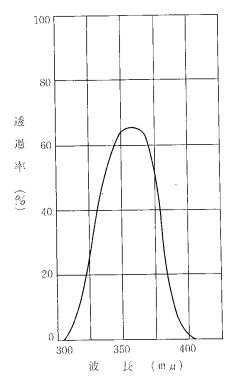


図 7·15 UV-D1Cフィルターの 分光透過率

特性を図 $7 \cdot 14$ に示す $^{(3)}$ 。この光電管にフィルターをかぶせて $300\sim400$ m μ の範囲以外をカットして使用している。フィルターは東芝製 UV-D1C 型の黒ガラスである。その分光透過特性を図 $7 \cdot 15$ に示す $^{(4)}$ 。光電管の分光感度特性とフィルターの分光透過特性が組み合わされて受光部の総合分光感度特性を形成するわけであるから,紫外域の測光用としては当然 PV-34が優れていると云える。

したがって、新型受光部が使われるようになってからは地域別データをとってみても年度別データをとってみても、日射量と対比してほぼ納得できるデータが得られるようになったし、較正の前後で測定値が大きく変動することもなくなった。

以上のことから表7・4に示したデータのうち使用できるのは昭和42年2月以降のものに限られる。

なお昭和45年7月,鉄研の峯松氏の提唱により,照 明学会の中に線外線測定方法専門委員会ができ活動を 開始した。ここでは紫外線の分光分布エネルギーを含 めた絶対測定などに関し検討されていると聞く。一日 も早くその成果をあげられることを期待するものであ る。

7・3・2 紫外線の経時変化

前述したように、この装置はまだ完成されたものと は言えず、従って恒常的測定を行なうに多くの問題点 が残っている。

図7・4の(b)に昭和38年9月8日快晴の日に測定 したデータを掲げる。

これはすでに掲げた図7・4の(a)を測定した翌日のもので測定回路および条件は全く同じものである。この両方のカーブを比較した場合,時々刻々の紫外線エネルギーをみると,曇りのとき著しく高い値を示していることに気付く。これは,晴れた日は紫外線の大部分が直達エネルギーの形をとり散乱エネルギーが比較的少いのに対し,曇った日は,散乱エネルギーが晴れた日より大分多くなっていて晴れ間には直達エネルギーがこれに加わるために紫外線が多量に観測されるものと考える。

この装置において、今後に検討すべき点は多い。次にその問題点の二、三をあげる。

(イ) 周囲温度,湿度の影響

光電管 P V-16や P V-34は,周囲の温度が変化する につれ当然感度も変化すると考えられるが,その温度 依存性を示すデータがまだ入手できない。

この装置で問題になるのは、むしろ、湿度の影響であって、受光部、コード、接点を含めた絶縁の変動によって零点が大きく動くことである。特に降雨によって大きな影響をうける。また、風が強い場合、リード線がゆれ動くにつれ記録もこまかに変動する。これらの問題の解決を意図して、20mmの塩化ビニルパイプの中にリード線を通しパイプを壁面に固定した。この方法は風によって記録が変動する点を解決したが、湿度の影響を除去という点では殆んど改善がみられなかった。受光部(リード線の接合点を含めて)の完全なシールを考えなければ解決しない。

(ロ) 経時変化と積算値の相関関係

現状の記録紙速度(15~20mm/hr)では快晴の日を除いて,手動で積算値を求めることは非常に困難である。記録紙を早くすれば可能であるかも知れないが,積算の手間,記録紙の消耗,その保管整理が大変な仕事となる。零点のドリフトもあるから別の意味で誤差が相当大きくなるので,現実にはこれも不可能である。そういうことで,まだ積算値と経時変化の継続的な比較は行なっていない。

(ハ) 紫外線照射量と記録値の関係

紫外線照射量と記録値すなわち記録計出力電圧との 相関関係を求める必要があるが、増幅器記録計の特性、 回路抵抗、絶縁抵抗などの要素が変わると相関関係も ずい分異なったものになる。また、紫外線照射量の絶 対値を正確に測定できる原器もないから多くの困難が ある。

相対比較するために,好天の日を選んで,積算照度 計の示す単位時間内のエネルギーと経時変化量の記録

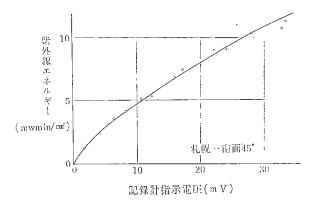


図 7・16 紫外線エネルギーと測定値の 関係(その1例)

値との関係を調べた結果の一例が図7・16である。 両者の間には次のような関係が得られた。

 $E = 0.85 V^{0.75}$

ここに E;紫外線照射量 mW-min/cm²

V;記録計出力電圧 mV

この結果からみると、紫外線照射量と記録値との間には直線関係はない。したがって現状の装置のままでは積算したとしても正確な値を求め得ない。この原因は光電管の特性によるものと考えられるので、出来るだけ直線に近い関係を有する条件を見出して作動させるか、あるいは別途の補正方法を考えなければならない。この点は未解決である。

7・3・3 水平面の受ける紫外線量

水平面の紫外線の測定結果を表7・8に示す。測定には旧型受光部を使用したので、精度等に問題があるが、測定開始後1年間のデータを南面45°と比較すると、南面45°の229.4W/cm²/年に対し水平面では190.4 W/cm²/年という値が得られた。水平面の方が17%程度低かった。

表 7·8 水平面の紫外線量 2年目 3年目 | 3年目 |

	2年目	3年目	4年目
	1964~1965	1965~1966	1966~1967
6月		18.43	24.40
7月		12.12	20.47
8月		13.28	20.10
9月		17.86	15.00
10月		11.02	10,20
11月	10.86	5.90	7.44
12月	6.72	5.32	5.92
1月	13.10	7.64	6.58
2月	17.26	12.24	9.01
3月	27.34	21.48	
4月	27.23	20,26	
5月	26.18	22.28	

7・3・4 測定装置における問題点

紫外線照射量測定装置や積算照度計などに種々の検 討を加えた結果すでに述べたほか次の問題点を見出し た。

(イ) 受光部の出力特性について

紫外線照射量の変動が激しい場合,当然受光部光電管の起電力の応答性が問題になる。実験の結果によれば、フルスケール 0.5 秒程度の記録計でも追従できかねるほどの早い応答性を有することが確かめられたので、この点に関して、受光部には問題はない。ただ経年変化の測定に際しては、実際に記録させ、その結果

を積分するという意味ではこの早い応答性が逆に誤差を生ずる原因になる。そのため、応答性を遅くするような回路を途中に入れることが必要になる。筆者等は 交流変換型直流増幅器にこの役目をもたせてその解決 策としている。

次に、受光部の出力特性の問題であるが、一般に1 台毎にちがうのが普通である。これは個々の光電管の 特性が全く同じでないことにもよるが、絞りと拡散板 (ディフューザー)を通って(更にフィルターをも通 って)光電管に達するまでの光の経路の機械的な相違 にもよる。また拡散板があるにしても入射角によって エネルギーが異なったものになるであろう。日の出 頃、日の入り頃で大きな相違が生じてくる。

(中) 経年変化

時間と共に光電管を含めた回路全体の特性は大分変ってくるはずである。例えば EPPLEY 社の PYRAN-OMETER の場合,感度特性の変化は数年にわたって 1%以内であるとのことだが PH-11型積算照度計の場合,3ヵ月から1年とのことである。

メーカーに送れば、再検定してくれるが、その期間 測定値に欠測が生じる。仮標準になる照度計を1台別 に保存しておいて、一定期間毎にそれと比較するのも 一法である。ただ、この方法によれば相当の誤差はさ けられない。また照度計が古くなると表7・9の如く

表 7・9 新,旧積算照度計の対比(南面45°)

	古くなったもの	新規検定
1967年1月	14.682	280,767
2月	54,695	402.321
3 月	49.111	568.201
4月	45.453	487.729
5 月	22.541	619.509

注1 単位 カウント/月

注2 古くなったものは受光部が旧型で使用開始後満 2年を経たもの。新規検定品は新型受光部を有 するもの。

一方の感度がどんどん低下して新旧のカウントが1対 1の対応を示さなくなる。この点からも連続使用した 場合の積算照度計の寿命を1年とし、そのたび再検定 することが妥当と考える。

(ハ) 受光部の清掃

受光部は長期間にわたって屋外に放置する関係上, ガラスグローブや受光部に塵や汚れが付着し,受光能 力の低下をまねき,測定値にも大きな影響を与えかね ないので,月に一度くらいは設置個所の点検や清掃が 必要であろう。

8. 強度特性

天然暴露試験体は全て大工試に集め一括測定した。 したがって以下に述べる特性値は全て大工試において 測定した値である。⁽⁵⁾

大工試における引張試験および曲げ試験結果を総括 して黒田、近藤らは次のように述べている。

- 試験体の縦横の方向に有意差のあるものはPE が17%, VC23%, S5%, A6%であった。
- 。 各樹脂とも $50\sim70\%$ の範囲で地域差はある。しかし緯度順(またはその逆)の地域差の生じたのは PE <math>0%, VC 10%, A 5%, S 14%に過ぎなかった。
- 。 例えば V C において, 劣化度は引張強さよりも 曲げ強さにおいて大きく示された。
- 。 引張特性より曲げ特性の方が一般にバラツキは 少ない。
- 。 曲げ弾性係数はVCの一部とSを除いて1年度 以降はほとんど変らない。

以上の結論にしたがえば、曲げ強さの劣化度が大き くあらわれ、しかもバラツキが小さいとのことである ので曲げ強さに焦点をしぼり耐候性を比較してみる。

8・1 曲げ強さの全国平均値と札幌の値の比較

図8・1に全国の経年変化測定用試験体の曲げ強さの経年変化を示す。また図8・2に札幌における経年変化測定用試験体の曲げ強さの経年変化(維方向のみ)を示す。値の大小に幾分の差は認められるが,劣化の傾向は全く変らない。したがって以下の記述は北海道におけるデータに基づいて論じたものであるが,大筋は全国の場合と比較して大きな差異はないはずである。

8・2 初期強度と組成の関係

(1) PE板

図8・2によれば、暴露前の初期強度は、その値が 12~13kg/mm² と低いグループ(PE-1、PE-2、PE-4)と、20kg/mm² の高い値を示すグループ(PE-3、PE-5、PE-6)の二つにわかれる。 しかし PE-1を除いては全てガラス含量28%の FRP であり、暴露前の値としてこれほど顕著な差がでるとは普通考えられない。注型板のPE-1とFRPのPE-2が同じ曲げ強さというのも従来のわれわれの経験的知識とは一致しない。また表8・1に示すようにバラッキも非常に大きい。以上のことから、初期強度の差は組成を主因とするものではなく製造者、加工者の相違や成形条件・硬化条件の相違に起因するところが大きいと考えられる。

暴露期間(年)

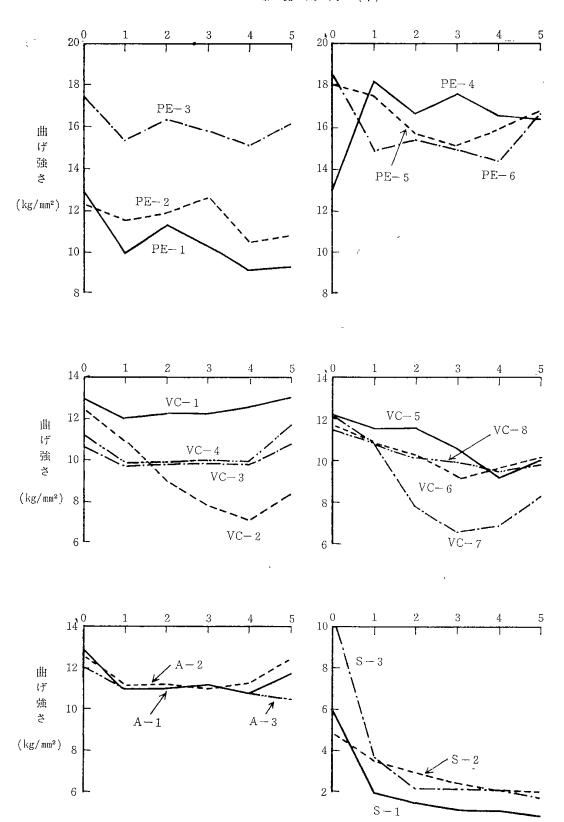


図 8・1 経年変化測定用試験体の曲げ強さの経年変化(全国, 縦横方向の総平均)

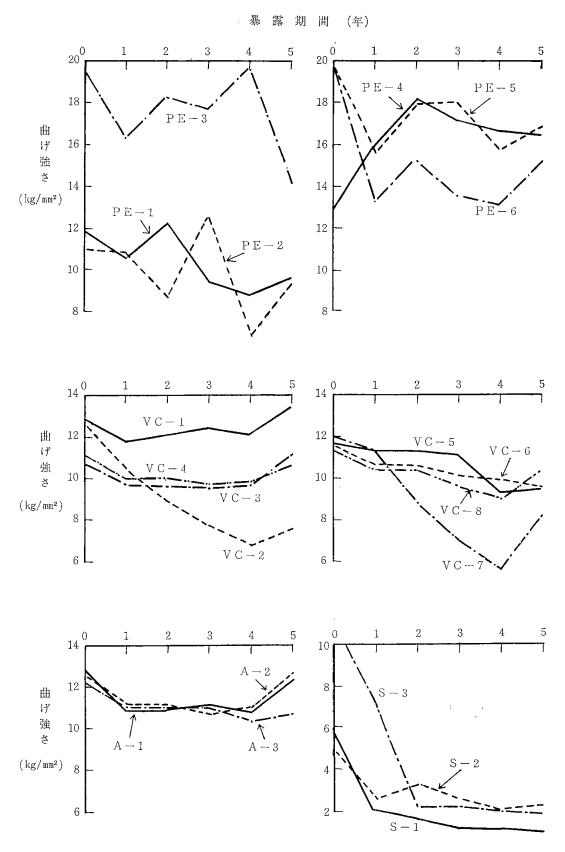


図 8・2 経年変化測定用試験体の曲げ強さの経年変化(札幌一縦方向のみ)

0 1 年 2 年 3 年 4 年 5 年 12.279.38 8.77 9.60 11.83 10.60 P E-1 (0.78)(1.23)(4.46)(2.19)(1.29)(1.28)10.81 8,68 12.646.949.31 10.96 PE-2(1.35)(0.23)(1.51)(0.76)(3.17)(1.34)16.32 18.16 17.84 19.66 13.98 19.51PE-3(1.01)(1.38)(1.50)(1.92)(1.06)(1.39)16.00 18.20 17.10 16.63 16.5412.94PE-4(0.77)(1.13)(0.43)(1.52)(0.71)(1.86)19.60 15.64 17.85 17.99 15.69 16.80 PE-5(2.29)(0.83)(1.92)(1.31)(0.53)(0.86)13.2615.2813.55 13.16 15.3419.75P E-6 (1.71)(0.93)(1.30)(0.29)(0.62)(1.95)

表 8・1 PE板の曲げ強さの経年変化(札幌)

単位:kg/mm²

() 内は試料標準偏差

C 5年 5年 5年 5年 9.60 11.65 9.64 10.37 10.11 11.83P E-1 (81)(83)(98)10.96 9.31 13.68 12.06 17.7617.23 PE-2(85)(88)(97)19.51 13.98 16.39 13.42 19.23 14.7516.74 10.91 PE-3(72)(82)(77)(65)12.94 11.81 11.65 16.54 19.55 17.84 PE-4(128)(99)(91)10.36 19,60 16.8015.26 17.38 16.87 19.54 20.87 PE-5(86)(68)(97)(107)15.77 19.75 15.3420.89 17.4918.59 14.07 P E-6 (75)(78)(76)

表 8・2 PE板の曲げ強さの変化(札幌)

单位:kg/mm2

()内は強度保持率(パーセント)

つぎに経年変化測定用試験体とその組成の一部を変えた a, b, c について,その曲げ強さを表 $8 \cdot 2$ に示す。一般にガラス含量が20%と低い a の強度が低い傾向を示すが,例外(PE-2, PE-6 など)もある。不飽和アルキドの種類,スチレン量,厚さ,難燃剤の有無などの影響については,バラツキが大きく系統的な傾向は把握できなかった。したがって成形条件による機械的性質のバラツキが大きいから傾向がはっきりでてこないという従来の説 16 %を再確認するに止まった。

(2) VC板

図8・2に示したように、VC板の初期強度は TiO2

を $3 \sim 7\%$ 含んだ V C-3 と、V C-4 が $10.6 \sim 11.1$ kg/mm² と低く、次いでコポリマーである V $C-5 \sim V$ C-8 が $11.4 \sim 12.0$ kg/mm² とこれに次ぐ。ストレートは $12.6 \sim 12.9$ kg/mm² と最も高い。また V C 板の曲げ強さのバラッキは表 $8\cdot 3$ に示したように P E E にくらべて非常に小さかった。

表8・4に組成を変えたa, b, cなどの曲げ強さを示す。VC-1のVとa, b, c のちがいは紫外線吸収剤の量である。aとりが低い値を示しているが,それが紫外線吸収剤に起因しているとは必らずしも断定できない。VC-2のV, a, b間の違いは厚さである。

0 1 年 2 年 3 年 4 年 5 年 12.88 11.80 12.11 12.40 12.14 13.37 V C - 1 (0.08)(0.05)(0.04)(0.07)(0.11)(0.34)12.59 10.43 8.95 7,65 6.78 7.62 VC-2(0.04)(0.76)(0.21)(0.49)(0.03)(0.20)10.65 9.729.59 9.62 9.7111.25VC-3(0.03)(0.14)(0.08)(0.00)(0.03)(0.09)11.10 9.93 9.95 9.81 9.90 10.71 VC-4(0.04)(0.04)(0.02)(0.06)(0.10)(0.13)11.7511.30 11.34 11.09 9.28 9.50 V C-5 (0.16)(0.04)(0.09)(0.02)(0.45)(0.19)11.66 10.66 10.57 10.10 9.919.57VC-6(0.03)(0.03)(0.09)(0.84)(0.06)(0.43)12.02 7.05 8.20 11,38 8.78 5.70 VC-7(0.32)(0.06)(0.59)(0.20)(0.29)(1.22)11.42 10.54 10.37 9.01 10.36 9,55 V C-8

表 8·3 V C 板の曲げ強さの経時変化(札幌)

単位:kg/mm2

() 内は試料標準偏差

(0.08)

С 0 5年 0 5年 0 5年 0 5年 10.78 12.88 13.77 9.79 8.04 4.9212.45 6.36 VC-1(107)(82)(51)(46)12.59 7.6212.36 7.57 11.02 7.78 V C - 2 (61)(71)(61)11.25 8.87 10.00 8.98 9.54 9.80 10.70 10.65 VC-3(113)(106)(109)(106)10.41 9.6210.16 11.49 10.1510.03 11.10 10.71 V C-4 (97)(106)(88)(104)11.759.50 11.99 12.61 12.0310,29 10.68 11.44 VC-5(81) (105)(86)(107)9.57 11,82 8.15 11.70 11.27 12.5611.08 11.66 VC-6(82)(69)(96)(88)8.20 12,49 10.04 7.64 12.02 11.82 4.7811.33 VC-7(67)(68)(40)(80)11.05 10.08 7.80 11.4210.36 11.72V C - 8 (77)(91)(94)

表 8·4 V C 板の曲げ強さの変化(札幌)

(0.16)

(0.44)

(0.07)

(0.16)

(0.03)

単位:kg/mm²

()内は強度保持率(パーセント)

厚さが薄い c が低い値を示す。VC-3 の要因は TiO_2 の量と製法の異なる点でもあるが, TiO_2 の少ないV は高い値を示す。 VC-4 は要因が複雑すぎて判断は

できない。 VC-5 は酢ビの量と安定剤の種類、紫外線吸収剤の量が主たる要因であるが、錫 (mercaptol)を含む c が幾分低い値を示すほかは差はない。 VC-6

は主因子として安定剤(錫 laurate)の量を変えてあるが、強度に差はない。(c はストレートで金網が入っているから比較から除外する。)V C-7 では可塑剤、滑剤を含まぬりが最も高い値を示す。V C-8 の主因子は厚さであるが、V C-2 と同じように厚さが 1 mm しかないりが低い値を示す。

以上の結果、VC板の暴露前の試験体の曲げ強さに ついて

- 。 ストレートの方が初期強度が高い。
- 。 TiO₂ を含むものは初期強度が低い。
- 。 厚さが1mm前後しかない試験体の曲げ強さは低

V.

。 滑剤は強度を幾分低下させる。 などの傾向が見受けられた。

(3) A板・S板

表8・5に曲げ強さとバラツキを示す。A板の初期 強度に有意差はなかった。S板においては、耐光性コポリマーである S-3 が非常に高い値を示した。耐衝 撃型コポリマーのS-2は一般用のS-1よりは幾分強 度は低かった。組成を変えた試験体の曲げ強さを表8・6に示す。

いずれも大きな差は示さなかった。

表	8 • 5	A板,	S板の曲げ強さの経年変化	(札幌)
---	-------	-----	--------------	------

	0	1 年	2 年	3 年	4 年	5 年
A-1	12.78 (0.20)	10.91 (0.09)	10.91 (0.08)	11.12 (0.36)	10.78 (0.36)	12.34
A-2	12.47 (0.07)	11.12 (0.03)	11.13 (0.04)	10.71 (0.82)	10.89 (0.18)	12.66 (0.17)
A-3	12.12 (0.82)	10.98 (0.06)	10.90 (0.21)	10.98 (0.40)	10.33 (0.45)	10.75 (0.49)
S-1	5.80 (0.23)	1.99 (0.01)		1.13 (0.01)	1.12 (0.01)	0.96 (0.18)
S-2	4.89 (0.08)	2.62	3. 20 (0. 11)	2.46 (0.27)	2.14 (0.52)	2.15 (0.45)
S-3	10.94	7.00 (0.01)	2.02	2.09 (0.06)	2.02 (0.01)	1.92 (0.05)

単位:kg/num2

()内は試料標準偏差

表 8·6 A板・S板の曲げ強さの変化(札幌)

	V		а		b		С	
	0	5年	0	5年	0	5年	0	5年
A-1	12.78	12.34 (97)	12.40	12.68 (102)	12.98	11.67 (90)	10.70	10.51 (98)
A-2	12.47	12.66 (101)	11.75	12.25 (104)	12.30	11.92 (97)	10.95	9.18 (84)
A-3	12.12	10.75	10.65	2.76 (26)	12.02	7.18 (60)	12.52	8,51 (68)
S-1	5.80	0.96 (17)	6.03	2.86 (48)	5.81	3.71 (64)	7.59	2.68 (35)
S-2	4.89	2.15 (44)	4.60	3.79 (82)	4.66	4.78 (102)	4.28	2.66 (62)
S-3	10.94	1.92 (18)	10.43	4.56 (44)	9.75	3.50 (36)	9.94	2.60 (26)

単位:kg/mm2

()内は強度保持率(パーセント)

8・3 強度低下と組成の関係

黒田らの報告 17 によれば、FRPの曲げ特性の経年変化は、1年目に大きな変化をしたのち $2\sim3$ 年以降はあまり大きな変化を示さない傾向を指摘している。

そこで経年変化測定用試験体については、バラッキの影響をすこしでも少なくするために3年目、4年目、5年目の測定値の平均値をとり、それと初期値を比較することにした。この結果を表8・7に示す。

	初期値	暴露後		初期値	暴露後		初期値	暴露後
P E-1	11.83	8.92 (75)	V C - 1	12.88	12.64 (102)	A-1	12.78	11.41 (89)
P E-2	10.96	9.63 (88)	V C – 2	12.59	7.35 (58)	A-2	12.47	11.42 (92)
P E-3	19.51	17.16 (88)	V C - 3	10.65	10.19 (104)	A-3	12.12	10.69 (88)
P E-4	12.94	16.76 (129)	V C-4	11.10	10.14 (91)			
P E-5	19.60	16.83 (86)	V C - 5	11.75	9.96 (85)	S-1	5.80	1.07 (18)
P E-6	19.75	14.02 (71)	V C - 6	11.66	9.86 (85)	S-2	4.89	2.25 (46)
,			V C - 7	12.02	6.98 (58)	S-3	10.94	2.01 (18)
			V C-8	11.42	9.64 (84)			

表 8・7 経年変化測定用試験体の暴露前後の曲げ強さの比較(札幌)

単位:kg/mm²

()内は強度保持率(パーセント)

暴露後の値は、3年目、4年目、5年目の測定値を平均したもの。

(1) PE板

暴露の結果,難燃タイプのうち HET 酸系のPE-4 は29%程度の強度の増加を示した。一方,一般タイプは12%程度の強度低下を示した。強度の低下率からだけ比較すれば紫外線吸収剤の入った PE-2 とそれの入らぬ PE-3 では差がなかったことになる。耐候性が特に良いと表示されていたPE-6 はおよそ 30%にもおよぶ強度低下を示した。透明タイプの注型板は25%の強度低下を示した。

曲げ強さの値そのものを比較すれば、PE-2という 例外を除いて、FRPは5年後でも 13kg/mm² を下まわることはなかった。曲げ強さの強度保持率の良かったものから順に列挙すれば次の如くなる。

P E-4>P E-5>P E-3≒P E-2>P E-1>P E-6 つぎに組成の一部を変えたV, a, b, c などにつ いて比較する。

PE-1 の主因子はスチレン量であるが、スチレン量が 30% と少ない a, b がやや良い結果を示した。 PE-2 は紫外線吸収剤を含むが、b が最も良い耐候性を示し、Vがこれに次いだ。 PE-3 の主因子は厚さで

あるが、薄い方が強度低下が少ないという意外な結果を与えた。 c は例外的な傾向を示したが、これはスチレンの量というよりは製造者が異なるためであろう。 PE-4 はヘット酸系の難燃タイプの樹脂を用いたものであるが、良い耐候性を示し、従来の定説 18 とは異なった結果を示した。紫外線吸収剤の量も変えてあるが、V が最も良くa、bがこれに次いだ。 PE-5 は同じく難燃タイプであるが、PE-4 とは難燃剤のタイプが異なる。この樹脂の主因子は不飽和アルキドの組成とガラス含量であるが、オルソフタル酸系と表示してある c が最も耐候性が良かった。ガラス含量の少ない a が、PE-3 の場合とは逆に耐候性が最も悪かった。 PE-6 は不飽和アルキドの組成、スチレン量、紫外線吸収剤の量などが主因子であるが、耐候性に大きな差はなかった。

(2) VC板

まず経年変化測定用試験体について比較すると,ストレートであるVC-1とVC-3は $2\sim4%$ の強度上昇を示した。VC-1は錫(maleate 系) 3部,紫外線吸収剤を 3 α 含む。VC-3は鉛系安定剤と酸化チ

タンを含むが、紫外線吸収剤を含んでいない。鉛系安 定剤と酸化チタンの耐候性に対する優秀性が良く示さ れている。一方 VС-2 は紫外線吸収剤を含まぬ点を 除いてはVC-1と同一組成であるのに対し、40%以 上の強度低下を示し maleate 系の錫安定剤だけでは耐 候性に対し不充分であることを示している。コポリマ ーでは V C-4 が優れた特性を示した。その強度低下 率はわずか 10% であるが、ここでもVC-3と同じよ うに鉛系安定剤と酸化チタンの相乗効果の優秀性が示 されている。 VC-5, VC-6, VC-8 は紫外線吸 収剤の有無、安定剤の種類の相違があるにも拘らず同 程度の強度を示し、強度の低下率も15%前後と変らな かった。特にVC-6とVC-8は予め耐候性が良くな いと表示されていたものである。これに対しVС-7 は紫外線吸収剤を含み耐候性が良いと表示されていた にも拘らず強度の点でVC板のうちでは最低の耐候性 を示した。

曲げ強さの強度保持率の高かったものから順に列挙 すれば次のようになる。

 $V C-3 \rightleftharpoons V C-1 > V C-4 > V C-5 \rightleftharpoons V C-6 \rightleftharpoons V C-8 > V C-2 \rightleftharpoons V C-7$

劣化後の曲げ強さの値そのものを比較してもその序列は $VC-3 \ge VC-1$ が入れかわってVC-1が一番目に来るほかは低下率の傾向と全く変らない。

つぎに一部組成を変えたV, a, b, cについて比較する。

VC-1は紫外線吸収剤を 5α から 0 まで変えたものであるが, 3α を含む V は約 7% の強度上昇を示した。 5α 含む α は約 α 20% の強度低下を示した。一方 α 含む α 50% 前後の大きな強度低下率を示した。結局 α 3 α 4 程度の配合が最良であるといえる。

VC-2は組成を変えず厚さだけを $1\sim3\,\mathrm{mm}$ と変えたものであるが厚さによる顕著な差は認められなかった。 VC-3はa, b, cに滑剤が加わり、さらに aには耐衝撃剤も加えられている。しかし全て強度が上昇しており特性値にも大きな差は認められなかった。

VC-4, VC-5, VC-6もV, a, b, c間に差 は認められなかった。

V C-7 は全て耐候性が良くなかったが、そのなかでも可塑剤を5%含むaは特に悪かった。

V C-8 は厚さを変えてあるが、 1 mm 厚の b は 2 ~ 3 mm のものにくらべて耐候性が悪かった。

(3) A 板

経年変化測定用試験体,ならびに組成の一部を変えたa,b,cともに透明なものは強度低下が少なかっ

た。しかし、着色したA-3のa,b,cは耐候性が良くなかった。そのなかでも黄色のaの強度低下率は74%にも及んだ。

(4) S 板

経年変化測定用試験体においては、GPタイプのS-1の強度低下が最も激しく初期強度の17%(1kg/mm²)しか保持し得なかった。ハイインパクトタイプのS-2は初期強度が三種のスチロール樹脂中では最も低かったが、暴露後の強度保持率は40数%で劣化後の強度もGPタイプ(S-1)の2倍以上の2.2kg/mm²を示した。アクリルとのコポリマーであると考えられるS-3は初期強度は10kg/mm²とアクリル並みであったが、わずか1年後には40%程度の強度保持率しか示さず、5年後は初期強度のわずか18%程度(2kg/mm²)であった。組成の一部を変えたa、b、cのうち白色のaと黒色のbが良い結果を示した。特にハイインパクトタイプのS-2のbは全く強度低下を示さなかった。

9, 変退色・強度・組成の相関関係

今まで述べた結果をもとに、変退色や強度と組成と の相関を論ずることは難かしい。何故なら変退色と強 さは全く基盤を異にする尺度で測定しており、また組 成についても細部にまで明らかにされている訳ではな い。

しかしこれらの相関についての関心は非常に強いものがあり、素通りする訳にはいかない。そこで、定性的な評価しかできないという前提に立って以下いくつかの比較を試みてみることにする。

(1) PE板

前述したように成形硬化条件に起因すると考えられる強度のバラッキが大きく、また組成の大部分も明らかにされていないので相関を論ずることはほとんどできない。PE板の経年変化測定用試験体の劣化の序列を表9・1に示す。

難燃タイプのPE-4とPE-5が著るしい着色を示したのに対し強度はあまり変らなかった。注型板のPE-1はほとんど変色しなかったが強度は約25%低下した。PE-2は紫外線吸収剤を含むが,ほとんど同一組成で紫外線吸収剤を含まぬ PE-3とは黄変度,強度保持率の両面で差が認められなかった。PE-6は耐候性が最良であると表示した耐薬品性タイプの樹脂であるが黄変度,強度保持率ともに最低に近い特性を示した。

(2) VC板

VC板の経年変化測定用試験体の劣化の序列を表9・2に示す。

表 9·1 PE板の劣化の序列

変退色	(色差)	PE-1 > PE-2 = PE-3 > PE-6 > PE-5 = PE-4
強度保持率	(曲げ強さ)	PE-4>PE-2=PE-3>PE-5>PE-1>PE-6

表 9·2 V C 板 の 劣 化 の 序 列

変 退 色	(色差)	V C - 3 = V C - 1 > V C - 4 = V C - 5 > V C - 7 > V C - 8 > V C - 6 = V C - 2
強度保持率	(曲げ強さ)	V C - 3 ≒ V C - 1 > V C - 4 > V C - 5 ≒ V C - 6 ≒ V C - 8 > V C - 2 ≒ V C - 7

耐候性が良いと表示した乳白色のコポリマーのVC-7の序列が変退色と強度保持率とでは異なっている点を除けば、他は非常に良い一致を示した。すなわち変退色の大きかったものは強度も大きく低下した。

VC-7 の強度保持率は最低であったが、紫外線吸収剤を α だけ含んでいた効果のせいか、変退色の程度は中位であった。

鉛系安定剤を5部だけ含む(紫外線吸収剤は入っていない)ストレートの V C-3 が変退色,強度保持率の両面で最高の特性を示した。やはりストレートで錫(maleate)系安定剤と紫外線吸収剤を含む V C-1が変退色,強度保持率で V C-3 とほとんど変らない良い耐候性を示した。一方ストレートでありながら錫(laurate)系安定剤しか含まぬ V C-2 は濃褐色に着色し,強度保持率も最低を示した。

コポリマーである VC-4, VC-5, VC-6, VC-8 は組成面で比較的大きな差があるにも拘らず強度保持率ではあまり差がなかった。ただ変退色の面では大きな差があり鉛系安定剤だけを含む VC-4 と、紫外線吸収剤を含む VC-5 は変退色の程度は小さかった。錫系の安定剤しか含まぬ VC-6 は黒褐色にまで着色した。

以上の結果、次のように推論ができると考える。

- ストレートは酢ビコポリマーよりは強度保持率,変退色の点で勝る。
- 。 鉛系安定剤を含むものは初期強度において若干 劣るが、単独で優れた耐候性(強度保持率、変退 色の両面で)を示す。
- 。 錫系安定剤を含むものは紫外線吸収剤を併用することによって変退色の点で鉛系安定剤に匹敵する耐候性を示すが、強度保持率の点では鉛系安定剤よりは幾分劣る。
- 。 錫系安定剤しか含まぬものは強度保持率,変退 色の両面で耐候性は非常に悪い。

(3) A 板

A板においては前述したように組成による色差,強

度低下率ともにほとんど差はなく,色差においても1 ~ 4 N B S 単位の変化に止まり,また強度低下率も10 %前後に止まった。

(4) S 板

S板は何れも表面が黄変化したが,組成による差は比較的少なくハイインパクトタイプの S-2 がわずかに濃い程度であった。一方,強度は初期値に $5\sim11$ kg/mm² と組成によって大きな相違があったに も 拘らず,暴露後は $1 \text{ kg/mm²} (S-1) \sim 2 \text{ kg/mm²} (S-2, S-3)$ とあまり差は示さなかった。

10. 観察期間に関する検討

観察期間は始めにも述べた通り初年度6回,次年度 以降は3カ月毎に年4回ずつ,5カ年間に30回にわた り暴露台から試験体を取り外し観察,測定が行なわれ た。

一般に天然暴露をすると強さ、伸び、弾性率、変退 色などの特性値が変化するが、劣化の傾向は図10・1 に示すような6つのパターンにわけられるのではない かと考える。¹⁸⁾

①のカーブは耐候性の良い不飽和ポリエステル樹脂 PE-4, PE-5 の曲げ強さ,破断時の変形量などに みられる形でこれは紫外線などによりアフターキュー アーが進んだためと考えられる。またアクリル樹脂 A-2 の引張強さにおいてもこのような傾向が見出 だされた。

②のカーブは特性値が一旦向上したあとでほぼ直線的に劣化するタイプで塩化ビニル樹脂 VC-2 の引張強さ,VC-7 の曲げ破断時の変形量,アクリル樹脂 A-3 の引張強さなどこのような傾向を示した。 カーブ(1)カーブ(2)ともに 1年目付近に最大値ができることが多い。

③のカーブは塩化ビニル樹脂 VC-3, 4, 5, 6 の 引張強さやアクリル樹脂の変退色などにみられる形で、いわゆる耐候性の良いものの典形的なパターンである。

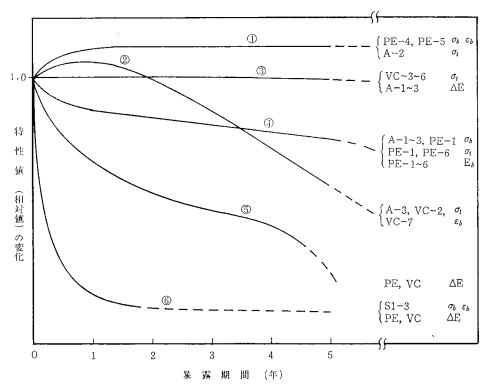


図 10・1 劣化のパターン

④のカーブは不飽和ポリエステル樹脂 $PE-1 \sim 6$ の曲げ弾性率や PE-1 の引張強さ、曲げ強さ、アクリル樹脂 A-3 の曲げ強さなどにみられるもので初年度の変化は比較的大きいが次年度以降はあまり大きな変化は示さない。

⑤のカーブはプラスチックの変退色にみられる典形的なパターンで最初大きな変化を示すが中間に安定期があり $4\sim5$ 年の末期に再び変化の度合いが増す傾向を示す。

⑥のカーブは耐候性の悪いものの特性変化にみられる形でスチロール樹脂の曲げ強さ,曲げ破断時の変形量およびFRPのガラス繊維の浮き出しはこのような傾向を示す。

これら天然暴露の劣化のパターンの何れをみても, 初年度を除いては2~3ヵ月の短期間では殆んど有意 な変化をみることはない。この点から考えて初年度 7回,次年度以降毎年4回という観察期間は必要以上 に短かすぎた。すなわち明らかに過剰のデータをとっ てしまったということができる。

特に劣化が激しいことが予想される短期間の暴露を 除くと初年度は6ヵ月と12ヵ月の2回,次年度以降は 12ヵ月毎の観察測定で充分であると考えられる。

11. ま と め

昭和36年より9ヵ年間にわたり、天然暴露試験方法

に検討を加え、あわせてプラスチックの天然暴露による劣化(耐候性)を把握するという二つの目的をもって、5ヵ年間の天然暴露試験を含む試験研究を行なった。

その結果次の諸点が明らかになった。

(1) 変退色の測定方法とその評価

グレースケールは視感と良く一致する結果を与えた。特に退色と樹脂の劣化に基づく着色とを良く判別し表示し得る利点がある。しかしFRPのようにガラス繊維の露出するものや、濃く着色された試験体の判定は困難で誤差が多く問題が残った。

分光測色法では透過法と反射法では大きく隔った傾向を与えた。正確な測色法としてこれに勝る方法はないが単に色差のみを表示したのでは、染料・顔料の退色と、樹脂の劣化による着色とを一つのものとして表示してしまうために問題がある。ハンター(Hunter)の表色法における明度(L)は退色と着色の傾向をある程度見分けるのに有効であり、かつその傾向は視感とも一致する。したがって色差は明度と併記するのが良い。

黄色度, 黄変度はともに視感, 分光測色結果と一致 しないことが多かった。

(2) 試験体の変退色

PEのFRPにおいては、PE-6 のcが最も良い 耐候性を示した。PE-2とPE-3が比較的変色が少 なかった。 PE-4 と PE-5 , PE-6 は変色が激しかったが,そのうちでも難燃タイプの PE-4 と PE-5 の表面層の劣化が激しかった。

V CにおいてはV C-1, V C-3, V C-4, V C-5が比較的変退色が少なかった。しかし V C-2, V C-6, V C-7, V C-8 は著しく着色した。この結果

- ストレートは酢ビのコポリマーより変色は少なかった。
- 。 紫外線吸収剤の適量を含むものは明らかに耐候性が向上した。
- 。 鉛系の安定剤は単独でも耐候性の向上に大きく 寄与した。しかし錫系の安定剤しか含まぬものは 耐候性が悪かった。錫系安定剤のなかでは mercaptol 系のものが耐候性が良かった。

Aにおいては、着色した試験体の A-3 とストレートの A-1 が変退色が特に少なかった。コポリマーで紫外線吸収剤を含む A-2 は僅かに黄変し、VC とは全く逆の傾向を示した。

Sにおいては耐衝撃タイプの S-2 が最大の黄変度を示し、ストレートである S-1 と耐光性コポリマーである S-3 がこれに次いだ。 A と同じように紫外紫吸収剤を含むと表示された試験体の黄変度が大きかった。

(3) 試験体の寸法変化

長さについては、PEの注型板は長さに経時変化が認められたが、FRP化することによって改善された。VCでは押出し品などの成形方法に起因する寸法変化が認められた。Aは極く僅かであるが年々長さが減少する傾向を示した。それに対しSは長さの増加が認められた。薄い試験体は一般に長さの変化が大きかった。

厚さについては、PEでは難燃化処理をした PE-4、PE-5 に顕著な厚さの減少が認められた。VCでは長さの場合と同じように、押出し品(VC-7のc)など成形法に起因する寸法変化が認められた。Sの厚さの変化が大きかったが、耐光性コポリマーのS-3 は改善された特性を示した。

ソリ,ネジレについては、PEは注型板、FRPと もに変化が認められた。この傾向は難燃タイプと薄い 試験体に顕著にあらわれた。VC,A,Sともにソリ, ネジレはほとんど認められなかった。

(4) 紫外線照射量測定装置とその測定結果

紫外線量測定装置として積算照度計を使用したが、 感度較正に問題があり、暴露期間中の大部分のデータ に信頼性という面で大きな問題が残った。しかし昭和 42年の春以降は測定器の性能も向上し、相対強度も日射量などから考えてほぼ納得できる値が得られるようになった。

ただ、分光分布エネルギーを考慮すると絶対測定という点で現在の測定器には問題が残る。しかし昭和45年7月から照明学会の内部に"紫外線測定方法専門委員会"ができこの点の検討を始めたので近い将来、この面からの成果が期待できると考える。

現在の測定装置の感度が正しいものであるとの仮定に立って、札幌の南面 45° の紫外線 ($300\sim400~\text{m}\mu$) の年間積算値として $507.9\text{W/cm}^2/\text{年}$ という値が得られた。

この紫外線量を足がかりに天然暴露と促進試験の相関を求める一つの道がひらかれたと考えられる。

(5) 強度持性の低下

PEについては、成形・硬化条件の相違に起因すると考えられるバラッキが大きく、組成と強度変化の相関を見出すことは困難であった。概ね15~35%程度の強度低下を示したが、難燃タイプのものはあまり強度が変らず、逆に強度上昇を示したものさえあった。

V C においては、ストレートでは V C -2 が、コポリマーでは V C -7 の耐候性が悪く 40% 近い強度低下を示した。ストレートの V C -1 と V C -3 は良い耐候性を示し、暴露によって僅かではあるが強度は向上した。コポリマーである V C -4 、V C -5 、V C -6 、V C -8 は $10\sim15\%$ 程度の強度低下を示した。経年変化測定用試験体とその組成の一部を変えた a 、b、c との間にはあまり大きな差は認められなかった。

Aについては、透明品は全て良好な強度保持率を示したが、黄、赤、青などに着色した試験体は大きな強度低下を示した。

Sについては一般用の S-1 の強度低下が最も大きく,初期強度の17%($1 \, \mathrm{kg/mm^2}$)を保持するにとどまった。 $H \, \mathrm{I} \, \mathrm{y}$ イプの S-2 の強度の低下はS-1 に比べると少なく初期強度の46%($2.2 \, \mathrm{kg/mm^2}$)を保持した。耐光性のコポリマーの S-3 の強度低下も非常に大きく,初期強度の18%($2 \, \mathrm{kg/mm^2}$)を保持するにすぎなかった。しかし白あるいは黒に着色したものは,強度低下率が大きく改善され,特に $H \, \mathrm{I} \, \mathrm{y}$ イプの黒は全く強度低下を示さず,酸化チタンやカーボンブラックの耐候性に関する有効性を実証した。

(6) 変退色,強度特性,組成の相関関係

PEについて, 難燃タイプのものは著しい着色を示したが, 強度はほとんど変らなかった。紫外線吸収剤は黄変度, 強度の両面で顕著な効果は示さなかった。最も耐候性が良いと表示されていた PE-6 が色, 強

度の両面で最低に近い特性を示した。

VCについて、VC-7を除いた全てが、変退色と 強度低下において同じような傾向を示した。したがっ て組成と変退色と強度低下については(2)の変退色のと ころで述べた結論が、そのままここで当てはまる。

Aについては、従来から知られているように耐候性が良く、変退色、強度低下率ともに小さい。ただ着色 試験体は大きな強度低下を示すことがあるので耐候性 を過信してはならない。

Sについて、全般に変退色、強度低下率ともに大きい。特に耐光タイプは初期強度こそアクリルに近い値を示すが、暴露後1年たつと他の一般タイプとほとんど変らぬ程の低い強度しか示さなくなるから使用上は注意が必要である。

(7) 観察期間について

耐候性があまり良くないものについて短期間(1年位)の天然暴露をする場合を除いて、2~3ヵ月毎という短期の観察試験期間を設定してこまかなデータをとってもあまり意味はない。何故ならその間の測定値に有意差を生ずることはまずないから。1年おきで充分と考える。

5カ年計画の暴露なら

(6ヵ月), 1年, 2年, (3年), 5年 で充分であり、暴露台に余裕があるならば試験体の数 (種類ではない)を増やし試料標準偏差をすこしでも 小さくするよう計画を組むべきである。

最後に、この試験に使用した試験体は全て、第一分 科会、のちの耐候性委員会の主査であられた早稲田大 学の田村恭教授を通じて関係業界の各社から提供され たものである。また本報に使用した分光測色結果は製 品科学研究所の村山技官らが測定したものである。強 度試験結果は大阪工業技術試験所の黒田部長らが測定 したものである。本報はこれら関係者の暖かな援助と ご理解によってまとめることができた。厚く御礼申し あげる。

[本報の一部は、昭和44年5月21日・日本材料学会第18期学術講演会(京都)、昭和45年12月・プラスチック試験方法シンポジウム(東京)などにおいて報告した。]

参考文献

- 1)十代田,田村,小松;日本建築学会 37年9月大会学術講演要旨集,8頁(1962)
- 2) 鈴木, 窪田, 西村; プラスチック建築材料の耐候 性試験に関する研究報告(第一報)(Eeb. 1965)
- 3) 鈴木,窪田,西村;同上(第二報)(Feb. 1965)
- 4) 日本電色工業(株); カタログ (色に関する事柄), 5 頁
- 5) JIS L-1045, 「染色物および染料の洗濯堅ろ う度試験方法」
- 6) 鈴木,窪田, 饒江, 西村;日本材料学会,第18期 学術講演会前刷,151頁,(1969,京都)
- 7) 村山三樹男; 製品科学研究所報告 (印刷中)
- 8) JIS K-7103 (1970) 「プラスチックの黄色度 と黄変度の試験方法」
- 9) 仏性尚道; プラスチック, 22 [2] 43 (1971)
- 10) 鈴木, 窪田; 第12回材料研究連合講演会前刷, 103頁(1968, 京都)
- 11) 東京天文台編; 理科年表(1968) 丸善
- 12) 気家庁月報
- 13) 東京芝浦電気㈱; 東芝真空管ハンドブックNo.1, 491頁
- 14) 東京芝浦電気(株); カタログ(色ガラスフィルター)4頁
- 15) 黑田, 近藤, 小牧, 田中; 大阪工業技術試験所報告, 335号 (March, 1970)
- 16) 電気学会編; 高分子材料の劣化, 79頁 (1960) コロナ社
- 17) 黑田,近藤,小牧,田中;日本材料学会,第18期 学術講演会前刷,145頁(1969,京都)
- 18) 滝山栄一郎; ポリエステル樹脂, 143頁 (1970) 日刊工業新聞社
- 19) 鈴木智; プラスチック試験方法シンポジウム,87頁(1970, 東京)

資料 編

		資	料	編	目	次		
1.	変退色測定用試験体の変	延退色(カラ	ラー写真)…		•••••	•••••••••••••••••••••••••••••••••••••••		59
2.	経年変化測定用試験体の	変退色(カ	カラー写真)		•••••			59
3.	変退色測定用試験体の変	E退色(X.	Y. Z. L. a	.b.4E)	•••••	• • • • • • • • • • • • • • • • • • • •		65
4.	経年変化測定用試験体の)変退色(Y	K.Y.Z.L.	a, b. 4 E)	************		68
5.	変退色測定用試験体の責	責色度(X.	Y. Z. Y I))	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		70
6.	経年変化測定用試験体の)黄色度(X	X. Y. Z. Y	I)	• • • • • • • •	•••••••	************	72
7.	グレースケールによる測]色結果	•••••				********	73
8.	長さの経年変化	·	•••••		• • • • • • •	• • • • • • • • • • • • • • • • • • • •	*****************	75
9.	厚さの経年変化		***************	*************		• • • • • • • • • • • • • • • • • • • •		87
10.	ソリ・ネジレの経年変化	<u></u>				••••••		99

写真1 変退色測定用試験体の変退色

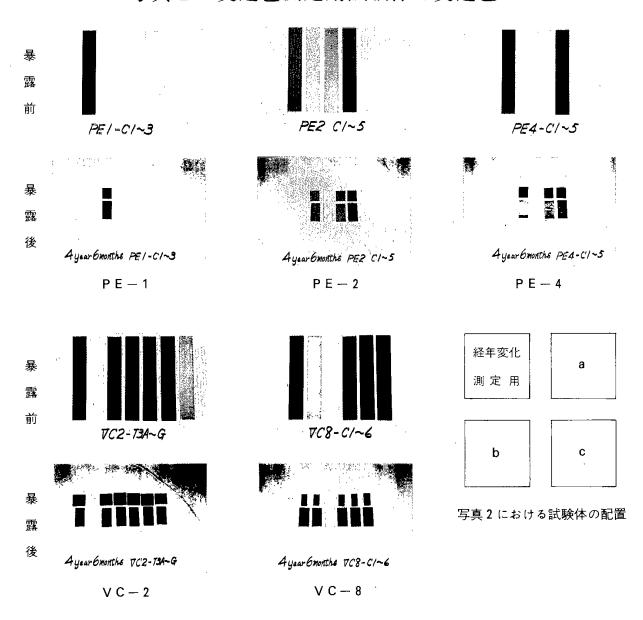
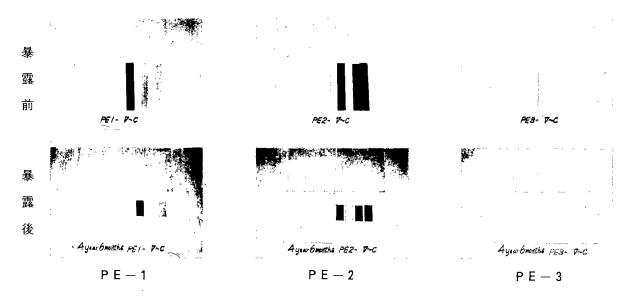
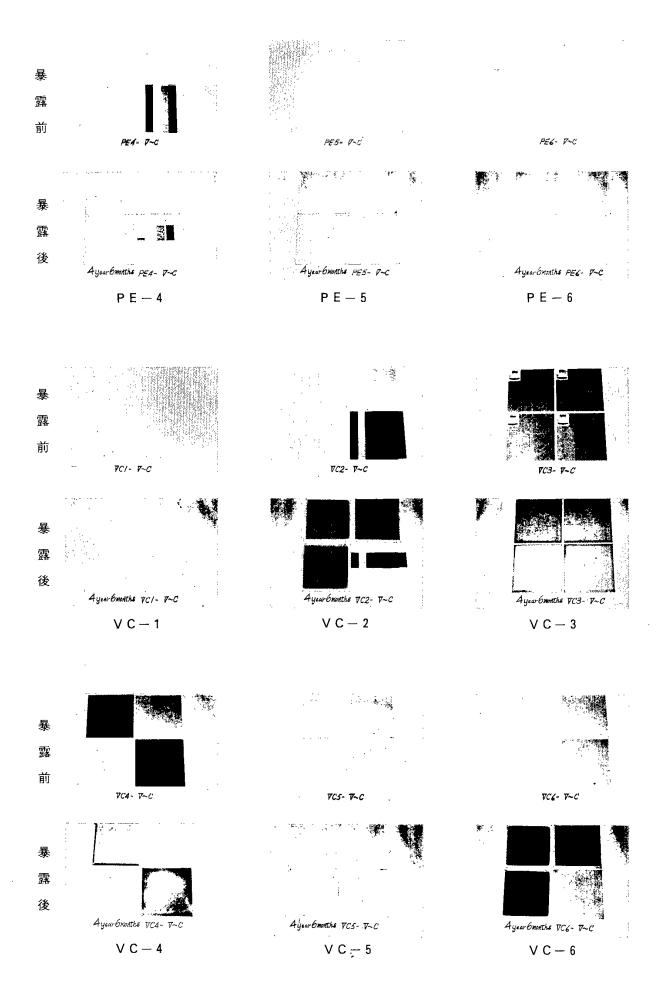
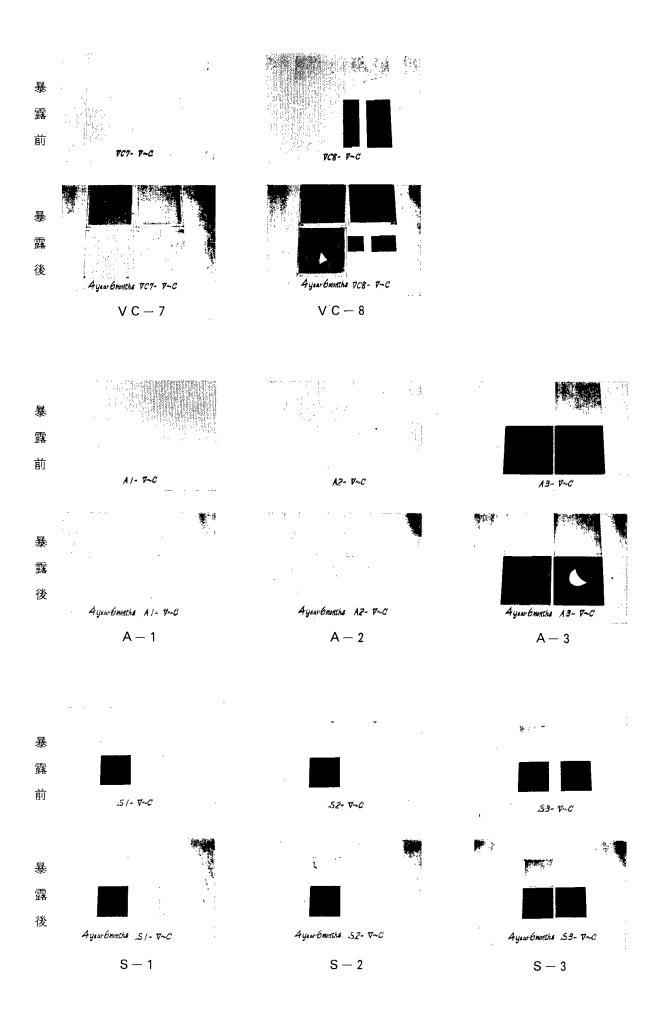





写真 2 経年変化測定用試験体の変退色

3 変退色測定用試験体の変退色 (分光光度計による)

R:反射測定

							16 .	XXII MILL
記号	η:	X	Y	Z	I.	a	b	ΔE
PE-1C-1	2 3 4 5	+.2047 +.2209 +.2095 +.2155 +.2115	+.9670E-1 +.1064 +.9550E-1 +.1011 +.1006	+.1020E-1 +.1050E-1 +.6000E-3 +.3500E-2 +.5900E-2	+.31096E2 +.32619E2 +.30903E2 +.31796E2 +.31717E2	+.63082E2 +.63799E2 +.66929E2 +.65335E2 +.63522E2	+.19822E2 +.20924E2 +.21517E2 +.21604E2 +.21099E2	+.15207E1 +.22016E1 +.28013E1 +.19695E1 +.16003E1
PE-1C-2	1	+.6800	+.7645	+ .7200E-1	+.87435E2	14190E2	+.56322E2	+.30053E1
	2	+.6435	+.7290	+ .8880E-1	+.85381E2	14886E2	+.53600E2	+.56538E1
	3	+.6288	+.7155	+ .8050E-1	+.84587E2	15335E2	+.53568E2	+.61951E1
	4	+.6123	+.6929	+ .8060E-1	+.83240E2	14370E2	+.52527E2	+.80453E1
	5	+.5326	+.6007	+ .7660E-1	+.77504E2	12971E2	+.48393E2	+.15249E2
PE-10-3	1	+.7127	+.7651	+.9098	+.87469E2	76318E1	44019	+.46929E1
	2	+.6842	+.7340	+.8481	+.85673E2	73771E1	+.12794E1	+.67516E1
	3	+.6481	+.6946	+.8017	+.83342E2	70421E1	+.13069E1	+.81276E1
	4	+.6343	+.6778	+.7688	+.82328E2	65499E1	+.22639E1	+.94088E1
	5	+.5377	+.5774	+.6288	+.75986E2	66663E1	+.41276E1	+.15571E2
PE-2C-1	1	+.1065	+.1130	+.1090	+.33615E2	22749E1	+.43057E1	+.53331E1
	2	+.9340E-1	+.9940E-1	+.9440E-1	+.31527E2	22935E1	+.43169E1	+.73105E1
	3	+.8110E-1	+.8670E-1	+.8330E-1	+.29444E2	23642E1	+.38381E1	+.94399E1
	4	+.5970E-1	+.6270E-1	+.5400E-1	+.25039E2	12621E1	+.47417E1	+.13696E2
	5	+.5580E-1	+.5810E-1	+.5070E-1	+.24103E2	85961	+.44017E1	+.14706E2
PE-2C-1R	1	+.9700E-1	+.5820E-1	+.2750E-1	+.24124E2	+.29552E2	+.10128E2	+.11196E1
	2	+.1230	+.7660E-1	+.3750E-1	+.27676E2	+.30894E2	+.11340E2	+.47649E1
	3	+.1133	+.6780E-1	+.2740E-1	+.26037E2	+.32102E2	+.11987E2	+.41989E1
	4	+.1411	+.1000	+.6260E-1	+.31622E2	+.24306E2	+.10398E2	+.97011E1
	5	+.1386	+.1021	+.6890E-1	+.31953E2	+.21508E2	+.95825E1	+.11672E2
PE-2C-2	1	+.1031	+.9320E-1	+.3860E-1	+.30528E2	+.68569E1	+.13873E2	+.12702E1
	2	+.1164	+.7500E-2	+.4700E-1	+.86602E1	+.22476E3	26115E2	+.22315E3
	3	+.1073	+.9900E-1	+.3620E-1	+.31464E2	+.58099E1	+.15203E2	+.21990E1
	4	+.8690E-1	+.8130E-1	+.2840E-1	+.28513E2	+.45037E1	+.14053E2	+.20668E1
	5	+.7300E-1	+.6820E-1	+.2700E-1	+.26115E2	+.41948E1	+.12150E2	+.45500E1
PE-2C-2R	1	+.2278	+.2459	+.3500E-1	+.49588E2	47797E1	+.30527E2	+.34255E1
	2	+.2560	+.2769	+.4130E-1	+.52621E2	52478E1	+.32181E2	+.36059E1
	3	+.2498	+.2612	+.2910E-1	+.51107E2	21928E1	+.32399E2	+.57372E1
	4	+.2531	+.2711	+.6290E-1	+.52067E2	43495E1	+.29284E2	+.49288E1
	5	+.2465	+.2614	+.1090	+.51127E2	34125E1	+.23148E2	+.99437E1
PE-2C-3	1	+.4945	+.6025	+.4692	+.77620E2	22119E2	+.18495E2	+.30922E1
	2	+.4325	+.5235	+.4161	+.72353E2	19917E2	+.16549E2	+.30463E1
	3	+.3683	+.4462	+.3458	+.66798E2	18478E2	+.16065E2	+.85898E1
	4	+.3413	+.4136	+.3273	+.64311E2	17816E2	+.14843E2	+.11386E2
	5	+.2500	+.3008	+.2151	+.54345E2	14613E2	+.15138E2	+.21123E2
PE-2C-3R	1	+.4290E-1	+.5190E-1	+.6340E-1	+.22781E2	62543E1	55301	+.64330E1
	2	+.1033	+.1362	+.1524	+.36905E2	14621E2	+.13499E1	+.22778E2
	3	+.7900E-1	+.1090	+.1168	+.33015E2	15064E2	+.21351E1	+.19913E2
	4	+.9140E-1	+.1196	+.1244	+.34583E2	13344E2	+.28809E1	+.20539E2
	5	+.7620E-1	+.9460E-1	+.9840E-1	+.30757E2	96020E1	+.25615E1	+.15624E2
PE-2C-4	1	+.1752	+.2397	+.4346	+.48959E2	21802E2	18359E2	+.18378E2
	2	+.1193	+.1605	+.2733	+.40062E2	16954E2	12403E2	+.16435E2
	3	+.6270E-1	+.8690E-1	+.1424	+.29478E2	13621E2	80053E1	+.23143E2
	4	+.3080E-1	+.4120E-1	+.6110E-1	+.20297E2	84354E1	36389E1	+.32436E2
	5	+.2110E-1	+.2820E-1	+.4350E-1	+.16792E2	69592E1	36034E1	+.36209E2
PE-2C-4R	1	+.2740E-1	+.2980E-1	+.5600E-1	+.17262E2	18774E1	71497E1	+.36806E1
	2	+.5110E-1	+.6440E-1	+.1314	+.25377E2	84668E1	12935E2	+.14902E2
	3	+.6970E-1	+.6610E-1	+.1249	+.25709E2	+.33992E1	10906E2	+.12958E2
	4	+.9770E-1	+.1061	+.1527	+.32572E2	34631E1	49936E1	+.19144E2
	5	+.1083	+.1155	+.1456	+.33985E2	25921E1	16113E1	+.21139E2
PE-2C-5	1	+.1330E-1	+.1380E-1	+.1130E-1	+.11747E2	34858	+.25199E1	+.19771E1
	2	+.1220E-1	+.1240E-1	+.1070E-1	+.11135E2	+.69148E-1	+.20977E1	+.12898E1
	3	+.2300E-2	+.2000E-2	+.1000E-4	+.44721E1	+.13539E1	+.31172E1	+.56453E1
	4	+.6100E-2	+.6100E-2	+.2700E-2	+.78102E1	+.27335	+.34175E1	+.24564E1
	5	+.8000E-2	+.8300E-2	+.4500E-2	+.91104E1	26892	+.34487E1	+.15769E1

記号	年	X	Y	Z	L	. a	ь	ΔΕ
PE-2C-5R	1	+.5288	+.5616	+.4996	+.74939E2	51897E1	+.12931E2	+.11149E2
	2	+.4584	+.4851	+.3273	+.69649E2	44050E1	+.20892E2	+.19839E2
	3	+.4110	+.4832	+.3297	+.69512E2	16107E2	+.20537E2	+.23919E2
	4	+.4821	+.5076	+.3781	+.71246E2	38951E1	+.18407E2	+.16944E2
	5	+.3970	+.4108	+.2683	+.64093E2	16000E1	+.20046E2	+.21461E2
PE-4C-1	1	+.1017	+.1017	+.1148	+.31890E2	+.11161E1	+.97994	+.33972E1
	2	+.2690E-1	+.2720E-1	+.2340E-1	+.16492E2	+.25254	+.31324E1	+.15199E2
	3	+.2320E-1	+.2350E-1	+.1710E-1	+.15329E2	+.18721	+.41171E1	+.16500E2
	4	+.2140E-1	+.2130E-1	+.1530E-1	+.14594E2	+.63311	+.40005E1	+.17257E2
	5	+.2560E-1	+.2570E-1	+.1850E-1	+.16031E2	+.44974	+.43797E1	+.15923E2
PE-4C-1R	1	+.1156	+.8130E-1	+.5490E-1	+.28513E2	+.22470E2	+.85433E1	+.12552E2
	2	+.2138	+.1911	+.1541	+.43714E2	+.10799E2	+.97001E1	+.30441E2
	3	+.2199	+.1839	+.1453	+.42883E2	+.16485E2	+.99295E1	+.25822E2
	4	+.2236	+.2007	+.1656	+.44799E2	+.10692E2	+.94433E1	+.31266E2
	5	+.1992	+.1798	+.1438	+.42402E2	+.96507E1	+.95750E1	+.30490E2
PE-4C-2	1	+.9020E-1	+.8310E-1	+.4240E-1	+.28827E2	+.54053E1	+.11458E2	+.23461E1
	2	+.4090E-1	+.4090E-1	+.2020E-1	+.20223E2	+.70783	+.82345E1	+.12435E2
	3	+.4100E-1	+.4020E-1	+.1570E-1	+.20049E2	+.14139E1	+.93922E1	+.11909E2
	4	+.5230E-1	+.5160E-1	+.2630E-1	+.22715E2	+.13451E1	+.90363E1	+.98190E1
	5	+.5090E-1	+.5150E-1	+.2970E-1	+.22693E2	+.32233	+.81260E1	+.10720E2
PE-4C-2R	1	+.2445	+ . 2615	+.5930E-1	+.51137E2	41442E1	+.28920E2	+.42174E1
	2	+.2789	+ . 2938	+.1448	+.54203E2	30096E1	+.22103E2	+.11084E2
	3	+.3062	+ . 3793	+.1691	+.61587E2	19031E2	+.26831E2	+.16882E2
	4	+.2859	+ . 2994	+.1547	+.54717E2	24888E1	+.21539E2	+.11951E2
	5	+.2497	+ . 2595	+.1491	+.50941E2	16510E1	+.18305E2	+.14427E2
PE-4C-3	1	+.4214	+.5079	+.4637	+.71267E2	19170E2	+.11309E2	+.10309E2
	2	+.1098	+.1307	+.1095	+.36152E2	90538E1	+.73487E1	+.46750E2
	3	+.6000E-1	+.5120E-1	+.5120E-1	+.2627E2	+.77339E1	+.24233E1	+.66449E2
	4	+.7500E-1	+.9110E-1	+.6790E-1	+.30182E2	84650E1	+.77899E1	+.52556E2
	5	+.5290E-1	+.6300E-1	+.4760E-1	+.25099E2	63042E1	+.63259E1	+.58148E2
PE-4C-3R	1	+.6450E-1	+.8000E-1	+.9380E-1	+.28284E2	87919E1	+.13646	+.13524E2
	2	+.1892	+.2158	+.2024	+.46454E2	85951E1	+.66855E1	+.31995E2
	3	+.1854	+.2211	+.1914	+.47021E2	11906E2	+.87809E1	+.33917E2
	4	+.1830	+.2249	+.1951	+.47423E2	14111E2	+.88047E1	+.34925E2
	5	+.1811	+.2085	+.1775	+.45661E2	91129E1	+.89156E1	+.32098E2
PE-4C-4	1	+.9700E-1	+.1314	+ 2733	+.36249E2	15670E2	19327E2	+.21556E2
	2	+.2043	+.2153	+ 2297	+.46400E2	26076E1	+.31294E1	+.43384E2
	3	+.1742	+.1868	+ 2048	+.43220E2	36910E1	+.21596E1	+.42322E2
	4	+.1724	+.1837	+ 2052	+.42860E2	32060E1	+.16161E1	+.42027E2
	5	+.1549	+.1658	+ 1795	+.40718E2	33531E1	+.23661E1	+.42973E2
PE-4C-4R	1	+.1127	+.1214	+.1417	+.34842E2	32375E1	+.27726	+.21929E2
	2	+.1950E-1	+.2560E-1	+.4370E-1	+.16000E2	62453E1	49935E1	+.58864E1
	3	+.1610E-1	+.2450E-1	+.4140E-1	+.15652E2	90314E1	47251E1	+.83514E1
	4	+.1470E-1	+.2120E-1	+.3210E-1	+.14560E2	74590E1	28791E1	+.66913E1
	5	+.1630E-1	+.2370E-1	+.3570E-1	+.145394E2	80413E1	29727E1	+.74096E1
PE-4C-5	1	+.1490E-1	+.1550E-1	+.1270E-1	+.12449E2	42450	+ .26668E1	+.17147E1
	2	+.7500E-2	+.7500E-2	+.8000E-2	+.86602E1	+.30310	+ .58520	+.27001E1
	3	+.3200E-2	+.2700E-2	+.1000E-4	+.51961E1	+.18994E1	+ .36258E1	+.62741E1
	4	+.6200E-2	+.5900E-2	+.2400E-2	+.76811E1	+.96600	+ .35242E1	+.37250E1
	5	+.8000E-2	+.8200E-2	+.4500E-2	+.90553E1	77302E-1	+ .33924E1	+.22675E1
PE-4C-5R	1	+.5136	+.5447	+.4872	+.73803E2	49386E1	+.12523E2	+.10714E2
	2	+.4548	+.4800	+.3400	+.69282E2	40677E1	+.19400E2	+.18068E2
	3	+.4485	+.4686	+.3247	+.68454E2	28453E1	+.19794E2	+.18602E2
	4	+.4669	+.4891	+.3530	+.69935E2	32184E1	+.19028E2	+.17451E2
	5	+.4015	+.4181	+.2700	+.64660E2	23194E1	+.20505E2	+.20775E2
V C—A	1	+.5490E-1	+.2660E-1	+.7400E-2	+.16309E2	+.31543E2	+.87265E1	+.10953E2
	2	+.5200E-1	+.2610E-1	+.9200E-2	+.16155E2	+.29182E2	+.79324E1	+.13448E2
	3	+.3510E-1	+.1310E-1	+.1000E-4	+.11445E2	+.34710E2	+.80066E1	+.10059E2
	4	+.3800E-1	+.1590E-1	+.9400E-2	+.12609E2	+.31726E2	+.44067E1	+.13502E2
	5	+.3020E-1	+.1320E-1	+.1700E-2	+.11489E2	+.26814E2	+.71650E1	+.16892E2
VC-B	1	+.5558	+.6246	+.5470E-1	+.79031E2	12772E2	+.51218E2	+.86677E1
	2	+.5061	+.5658	+.5780E-1	+.75219E2	11534E2	+.48097E2	+.13675E2
	3	+.4642	+.5188	+.4620E-1	+.72027E2	11010E2	+.46616E2	+.17134E2
	4	+.3749	+.4149	+.4000E-1	+.64412E2	88303E1	+.41407E2	+.26592E2
	5	+.3164	+.3490	+.3620E-1	+.59076E2	77824E1	+.37720E2	+.33120E2

記号	华	X	Y	Z	L	a	b	ΔΕ
VC-C	1	+.7650E-1	+.2255	+.1257	+.47486E2	54346E2	+.17546E2	+.43059E1
	2	+.5720E-1	+.1690	+.1105	+.41109E2	47105E2	+.12839E2	+.99424E1
	3	+.3600E-1	+.1215	+.7060E-1	+.34856E2	42564E2	+.12391E2	+.17307E2
	4	+.3590E-1	+.1173	+.7050E-1	+.34249E2	41225E2	+.11769E2	+.18774E2
	5	+.3080E-1	+.9930E-1	+.6100E-1	+.31511E2	37699E2	+.10581E2	+.23346E2
VC-D	1	+.8270E-1	+.4510E-1	+.3704	+.21236E2	+.32346E2	88544E2	+.20578E2
	2	+.7100E-1	+.3680E-1	+.3004	+.19183E2	+.32494E2	79416E2	+.28110E2
	3	+.5050E-1	+.2350E-1	+.2371	+.15329E2	+.31975E2	80971E2	+.27071E2
	4	+.4650E-1	+.2330E-1	+.2080	+.15264E2	+.27664E2	70106E2	+.38673E2
	5	+.3920E-1	+.1950E-1	+.1712	+.13964E2	+.25670E2	62913E2	+.46111E2
VC-E	1	+.5360E-1	+.7550E-1	+.2900	+.27477E2	13265E2	43341E2	+.20238E2
	2	+.5000E-1	+.6150E-1	+.2707	+.24799E2	74095E1	47359E2	+.14606E2
	3	+.3530E-1	+.4590E-1	+.2218	+.21424E2	80817E1	46384E2	+.16251E2
	4	+.3090E-1	+.4180E-1	+.1846	+.20445E2	88009E1	39221E2	+.23445E2
	5	+.3260E-1	+.4200E-1	+.1887	+.20493E2	74700E1	40246E2	+.22264E2
VC-F	1	+.1560E-1	+.8100E-2	+ .5420E-1	+.90000E1	+.15190E2	29405E2	+.42949E2
	2	+.1330E-1	+.7400E-2	+ .4070E-1	+.86023E1	+.12543E2	22030E2	+.50628E2
	3	+.3300E-2	+.1000E-4	+ .2540E-1	+.31622	+.18572E3	47600E3	+.43583E3
	4	+.5100E-2	+.1100E-2	+ .2430E-1	+.33166E1	+.21643E2	41118E2	+.29516E2
	5	+.6200E-2	+.2800E-2	+ .2360E-1	+.52915E1	+.11654E2	22739E2	+.50346E2
VC-G	1	+.4836	+.4400	+.9700E-2	+.66332E2	+.14054E2	+.45565E2	+.81785E1
	2	+.4137	+.3795	+.1140E-1	+.61603E2	+.12065E2	+.42025E2	+.13412E2
	3	+.3766	+.3462	+.1000E-5	+.58838E2	+.11281E2	+.41187E2	+.16091E2
	4	+.3502	+.3208	+.3000E-2	+.56639E2	+.11247E2	+.39333E2	+.18948E2
	5	+.3039	+.2794	+.3200E-2	+.52858E2	+.10123E2	+.36641E2	+.23584E2
VC-8 -1	1	+.1073	+.5580E-1	+.1890E-1	+.23622E2	+.39742E2	+.11791E2	+.73020E1
	2	+.1107	+.6140E-1	+.2550E-1	+.24779E2	+.36381E2	+.11243E2	+.10538E2
	3	+.8240E-1	+.4660E-1	+.2180E-1	+.21587E2	+.30358E2	+.91234E1	+.17254E2
	4	+.7740E-1	+.5070E-1	+.3690E-1	+.22516E2	+.21954E2	+.60452E1	+.25979E2
	5	+.5840E-1	+.4520E-1	+.4070E-1	+.21260E2	+.11826E2	+.35319E1	+.36463E2
VC-8 -2	1	+.3625	+.2970	+.3420E-1	+.54497E2	+.23361E2	+.34427E2	+.46583E1
	2	+.3630	+.3046	+.4600E-1	+.55190E2	+.20819E2	+.33691E2	+.45267E1
	3	+.2980	+.2517	+.3300E-1	+.50169E2	+.18229E2	+.31218E2	+.10438E2
	4	+.2231	+.1933	+.4400E-1	+.43965E2	+.13637E2	+.24842E2	+.20357E2
	5	+.1178	+.1050	+.4990E-1	+.32403E2	+.81851E1	+.13552E2	+.37362E2
VC-8 -3	1	+.4920	+.5662	+.7700E-1	+.75246E2	14968E2	+.46605E2	+.41995E1
	2	+.4921	+.5668	+.8540E-1	+.75286E2	15076E2	+.45974E2	+.44139E1
	3	+.4437	+.5061	+.7330E-1	+.71140E2	13166E2	+.43689E2	+.94828E1
	4	+.4142	+.4681	+.6820E-1	+.68417E2	11667E2	+.41982E2	+.13004E2
	5	+.2464	+.2684	+.5560E-1	+.51807E2	57667E1	+.29902E2	+.34322E2
VC-8 -4	1 2 3 4 5	+.4550E-1	+.1900 +.1834 +.1317 +.6720E-1 +.4360E-1	+.1270 +.1426 +.9520E-1 +.4760E-1 +.4230E-1	+.43588E2 +.42825E2 +.36290E2 +.25922E2 +.20880E2	34142E2 33096E2 25929E2 14034E2 31160E1	+.13237E2 +.10235E2 +.98499E1 +.72591E1 +.26054E1	+.26181E1 +.40162E1 +.12430E2 +.28297E2 +.40875E2
VC-8 -5	1 2 3 4 5	+.2990E-1 +.4430E-1	+.5620E-1 +.5330E-1 +.3220E-1 +.4730E-1 +.5280E-1	+.2230 +.1658 +.5320E-1 +.5970E-1 +.6190E-1	+.23706E2 +.23086E2 +.17944E2 +.21748E2 +.22978E2	+.70039E1 +.38233E1 16598E1 17010E1 43867	39177E2 26418E2 50167E1 10511E1 +.11292	+.92787E1 +.22113E2 +.44236E2 +.47953E2 +.48813E2
VC-8 -6	1 2 3 4 5	+.1600E-1 +.2740E-1	+.1980E-1 +.2030E-1 +.1670E-1 +.2810E-1 +.2480E-1	+.2400E-1 +.2570E-1 +.2120E-1 +.3510E-1 +.3150E-1	+.14071E2 +.14247E2 +.12922E2 +.16763E2 +.15748E2	+.11193 12773 51459 15868 35560	26266 72118 68056 68053 83588	+.28940E1 +.30613E1 +.17383E1 +.55555E1 +.45524E1

(注) 小数点の位置は下記のように表示されている。

```
+.2047....+0.2047
```

 $^{+.1020\,}E - 1 \cdot \cdot \cdot \cdot + 0.01020$

 $^{+.3500} E - 2 \cdots + 0.003500$

^{-.1419} E 1 ·····--1.419

^{+.3109} E 2 ······+31.09

4 経年変化測定用試験体の変退色 (分光光度計による)

記号	年 X,	Y	Z	L	a	b	ΔΕ
PE-1	1 +.8441	+.8671	+.9778	+.93118E2	1,1497E1	+ .29244E1	+.28014E1
	2 +.8386	+.8607	+.9695	+.92773E2	10050E1	+ .29828E1	+.30669E1
	3 +.8363	+.8620	+.9701	+.92843E2	16914E1	+ .30403E1	+.31990E1
	4 +.8190	+.8409	+.9407	+.91700E2	10534E1	+ .33684E1	+.41425E1
	5 +.7744	+.7981	+.8737	+.89336E2	16086E1	+ .45505E1	+.68086E1
PE-2	1 +.5543	+.5798	+.3786	+.76144E2	33127E1	+.23821E2	+.78342E1
	2 +.5352	+.5472	+.3659	+.73972E2	30659	+.22453E2	+.59447E1
	3 +.3402	+.3407	+.2114	+.58369E2	+.18900E1	+.19385E2	+.14067E2
	4 +.4232	+.4341	+.3072	+.65886E2	64702	+.18475E2	+.60864E1
	5 +.3727	+.3843	+.2792	+.61991E2	11703E1	+.16691E2	+.97232E1
PE-3	1 +.5827	+.6148	+.5230	+.78409E2	45633E1	+.15339E2	+.14457E2
	2 +.5549	+.5805	+.4888	+.76190E2	33309E1	+.15295E2	+.15270E2
	3 +.4805	+.5045	+.4284	+.71028E2	35454E1	+.13959E2	+.17009E2
	4 +.3488	+.3660	+.3029	+.60497E2	29574E1	+.12663E2	+.24763E2
	5 +.4204	+.4425	+.3800	+.66520E2	36020E1	+.12695E2	+.19571E2
PE-4	1 +.3260	+.3394	+.2849	+.58258E2	20666E1	+.11785E2	+.23473E2
	2 +.1210	+.1257	+.9140E-1	+.35454E2	11253E1	+.95331E1	+.46296E2
	3 +.1041	+.1088	+.7640E-1	+.32984E2	13889E1	+.93565E1	+.48748E2
	4 +.4730E-1	+.4920E-1	+.3740E-1	+.22181E2	75266	+.55297E1	+.59800E2
	5 +.8810E-1	+.8990E-1	+.6240E-1	+.29983E2	22178E-1	+.86491E1	+.51867E2
PE-5	1 +.1490	+.1512	+.9730E-1	+.38884E2	+.35104	+.12383E2	+.27947E2
	2 +.8550E-1	+.8740E-1	+.5190E-1	+.29563E2	11246	+.10285E2	+.37489E2
	3 +.1132	+.1155	+.6270E-1	+.33985E2	18537E-1	+.12851E2	+.32552E2
	4 +.1022	+.1031	+.5860E-1	+.32109E2	+.62349	+.11655E2	+.34645E2
	5 +.7340E-1	+.7300E-1	+.4110E-1	+.27018E2	+.12099E1	+.98938E1	+.40011E2
PE-6	1 +.3063	+.3158	+.4077	+.56196E2	10506E1	36773E1	+.60397E1
	2 +.2599	+.2700	+.3196	+.51961E2	16509E1	94462E-1	+.10881E2
	3 +.1520	+.1592	+.1790	+.39899E2	18245E1	+.13310E1	+.22892E2
	4 +.1905	+.1992	+.2225	+.44631E2	19173E1	+.16848E1	+.18408E2
	5 +.1790	+.1871	+.1937	+.43255E2	18286E1	+.37279E1	+.20374E2
VC-1	1 +.8033	+.8274	+.8958	+.90961E2	15456E1	+.52835E1	+.11375E1
	2 +.8750	+.9150	+.1056	+.95655E2	41163E1	+.60413E2	+.56317E2
	3 +.7815	+.8083	+.8563	+.89905E2	21742E1	+.64634E1	+.27785E1
	4 +.6822	+.6979	+.7764	+.83540E2	43068	+.33759E1	+.81333E1
	5 +.7380	+.7592	+.7974	+.87132E2	12934E1	+.67324E1	+.50404E1
VC-2	1 +.4532 2 +.1510 3 +.7600E-1 4 +.4980E-1 5 +.3490E-1	+.4637 +.1452 +.6990E-1 +.4240E-1 +.2890E-1	+.3294 +.5610E-1 +.1170E-1 +.5800E-2 +.3400E-2	+.68095E2 +.38105E2 +.26438E2 +.20591E2 +.17000E2	36904 +.40506E1 +.50437E1 +.71355E1 +.68950E1	+.18986E2 +.17944E2 +.15883E2 +.12743E2 +.10714E2	+.28001E2 +.54330E2 +.65047E2 +.70332E2 +.73531E2
VC-3	1 +.3924	+.4042	+.4490	+.63576E2	10878E1	+.26311E1	+.24921E1
	2 +.3525	+.3618	+.3888	+.60149E2	65461	+.37806E1	+.30212E1
	3 +.3602	+.3716	+.3995	+.60959E2	12045E1	+.38150E1	+.25884E1
	4 +.3896	+.4005	+.4282	+.63285E2	85944	+.41826E1	+.34375E1
	5 +.4054	+.4174	+.4434	+.64606E2	10542E1	+.45333E1	+.44605E1
VC-4	1 +.4487	+.4605	+.5405	+.67860E2	72877	+.27815	+.20699E2
	2 +.3864	+.3948	+.4581	+.62833E2	18716	+.75637	+.15989E2
	3 +.5045	+.5192	+.6194	+.72055E2	11196E1	52768	+.24673E2
	4 +.4899	+.5007	+.5856	+.70760E2	24780	+.46463	+.23569E2
	5 +.5185	+.5306	+.6304	+.72842E2	41562	32181	+.25473E2
VC-5	1 +.7308	+.7485	+.8040	+.86515E2	62381	+.54623E1	+.23692E2
	2 +.6397	+.6543	+.6540	+.80888E2	39072	+.86851E1	+.21948E2
	3 +.5329	+.5452	+.4951	+.73837E2	38916	+.11930E2	+.22956E2
	4 +.5129	+.5222	+.4620	+.72263E2	+.23199	+.12678E2	+.23529E2
	5 +.4066	+.4121	+.3224	+.64195E2	+.71750	+.15159E2	+.28601E2
VC-6	1 +.6322	+.6535	+.6072	+.80839E2	18738E1	+.12053E2	+.11621E2
	2 +.1373	+.1252	+.2800E-1	+.35383E2	+.73425E1	+.20076E2	+.54751E2
	3 +.4690E-1	+.3860E-1	+.1000E-3	+.19646E2	+.82285E1	+.13722E2	+.68386E2
	4 +.4580E-1	+.3780E-1	+.4300E-2	+.19442E2	+.80253E1	+.12298E2	+.68330E2
	5 +.3840E-1	+.2900E-1	+.1800E-2	+.17029E2	+.10448E2	+.11293E2	+.70894E2

記号	年	X	Y	Z	L	a	ь	ΔΕ
VC-7	1	+.4640	+.4892	+.5452	+.69942E2	39832E1	+.27438E1	+.76596E1
	2	+.4365	+.4641	+.4405	+.68124E2	48473E1	+.93501E1	+.14382E2
	3	+.2547	+.2660	+.1789	+.51575E2	21057E1	+.15536E2	+.27149E2
	4	+.1096	+.1089	+.5640E-1	+.33000E2	+.15336E1	+.12966E2	+.40872E2
	5	+.7210E-1	+.6910E-1	+.4260E-1	+.26286E2	+.29571E1	+.87923E1	+.45718E2
VC-8	1	+.2964	+.3061	+.2101	+.55326E2	11931E1	+.16213E2	+.27378E2
	2	+.1555	+.1552	+.8560E-1	+.39395E2	+.15147E1	+.14694E2	+.37823E2
	3	+.7190E-1	+.6750E-1	+.4050E-1	+.25980E2	+.39323E1	+.89441E1	+.47492E2
	4	+.6370E-1	+.5860E-1	+.4330E-1	+.24207E2	+.46078E1	+.63399E1	+.48484E2
	5	+.6890E-1	+.6260E-1	+.4780E-1	+.25019E2	+.53703E1	+.61868E1	+.47777E2
A - 1	1	+.8760	+.8963	+.1024E1	+.94673E2	51387	+.21421E1	+.11194E1
	2	+.8710	+.8884	+.1035E1	+.94254E2	+.37133E-2	+.84155	+.87871
	3	+.8877	+.9092	+.1061E1	+.95351E2	68750	+.76081	+.59773
	4	+.8005	+.8272	+.9612	+.90950E2	20568E1	+.10054E1	+.41285E1
	5	+.8300	+.8473	+.9796	+.92048E2	13308	+.13368E1	+.28375E1
A - 2	1	+.8520	+.8735	+.9905	+.93461E2	83510	+.25874E1	+.19470E1
	2	+.8690	+.8888	+.1016E1	+.94276E2	44921	+.20722E1	+.17826E1
	3	+.8705	+.8908	+.1019E1	+.94382E2	53585	+.20549E1	+.17424E1
	4	+.8227	+.8419	+.9564	+.91755E2	52373	+.24282E1	+.35551E1
	5	+.8258	+.8450	+.9624	+.91923E2	51096	+.22728E1	+.34561E1
	1	+.3735	+.3830	+ .4855	+.61886E2	57403	31917E1	+.19780E1
	2	+.3917	+.4021	+ .5034	+.63411E2	70815	26802E1	+.92276
	3	+.4062	+.4175	+ .5255	+.64614E2	86018	29898E1	+.17825E1
	4	+.4138	+.4260	+ .5200	+.65268E2	10521E1	15486E1	+.20417E1
	5	+.3890	+.4002	+ .4924	+.63261E2	94607	18659E1	+.17014

(注) 小数点の位置については、前表の注を参照のこと

5 変退色測定用試験体の黄色度

R:反射測定

記 号	年 X	Y	Z	YI	記号:	华 X	Y	Z	ΥI
PE - 1C-1	S +.2018 1 +.2047 2 +.2209 3 +.2095 4 +.2155 5 +.2115	+.9340E-1 +.9670E-1 +.1064 +.9550E-1 +.1011 +.1006	+.5100E-2 +.1020E-1 +.1050E-1 +.6000E-3 +.3500E-2 +.5900E-2	+.27076E3 +.25977E3 +.25528E3 +.28012E3 +.26916E3 +.26288E3	PE-4C-1R	S +.9880E-1 1 +.1156 2 +.2138 3 +.2139 4 +.2236 5 F.1992	+.5560E-1 +.8130E-1 +.1911 +.1839 +.2007 +.1798	+.1850E-1 +.5490E-1 +.1541 +.1453 +.1656 +.1458	+.19218E3 +.11042E3 +.57727E2 +.69306E2 +.55142E2 +.57034E2
PE- 1 C-2	S +.7038 1 +.6800 2 +.6435 3 +.6288 4 +.6123 5 +.5326	+.8006 +.7645 +.7290 +.7155 +.6929 +.6007	+.8080E-1 +.7200E-1 +.8880E-1 +.8050E-1 +.8060E-1 +.7660E-1	+.10182E3 +.10386E3 +.10007E3 +.10056E3 +.10078E3 +.99972E2	PE-4C-2	S +.1012 1 +.9020E-1 2 +.4090E-1 3 +.4100E-1 4 +.5230E-1 5 +.5090E-1	+.9320E-1 +.8310E-1 +.4090E-1 +.4020E-1 +.5160E-1 +.5150E-1	+.4290E-1 +.4240E-1 +.2020E-1 +.1570E-1 +.2630E-1 +.2970E-1	+.90195E2 +.84851E2 +.75647E2 +.89149E2 +.75709E2 +.65378E2
PE-1C-3	S +.7527 1 +.7127 2 +.6842 3 +.6481 4 +.6343 5 +.5377	+.7943 +.7651 +.7340 +.6946 +.6778 +.5774	+ 9995 + 9098 + 8481 + 8017 + 7688 + 6288	12087E2 68137E1 31621E1 29130E1 44614 +.37630E1	PE-4C-2R	S +.2278 1 +.2445 2 +.2789 3 +.3062 4 +.2859 5 +.2497	+.2535 +.2615 +.2938 +.3793 +.2994 +.2595	+.3140E-1 +.5930E-1 +.1448 +.1691 +.1547 +.1491	+.10189E3 +.95641E2 +.69266E2 +.66074E2 +.67458E2 +.62262E2
PE-2C-1	S +.1399 1 +.1065 2 +.9340E-1 3 +.8110E-1 4 +.5970E-1 5 +.5580E-1	+.1488 +.1130 +.9940E-1 +.8670E-1 +.6270E-1 +.5810E-1	+.1353 +.1090 +.9440E-1 +.8330E-1 +.5400E-1 +.5070E-1	+,23961E2 +,18389E2 +,19605E2 +,17889E2 +,30583E2 +,30433E2	P R-4 C-3	S +.5208 1 +.4214 2 +.1098 3 +.6000E-1 4 +.7500E-1 5 +.5290E-1	+.6428 +.5079 +.1307 +.5120E-1 +.9110E-1 +.6300E-1	+.6096 +.4637 +.1095 +.5120E-1 +.6790E-1 +.4760E-1	+.31810E1 +.94250E1 +.18725E2 +.44000E2 +.26373E2 +.27390E2
PE-2C-1R	S +.9110E-1 1 +.9700E-1 2 +.1230 3 +.1133 4 +.1411 5 +.1386	+.5410E-1 +.5820E-1 +.7660E-1 +.6780E-1 +.1000 +.1021	+.2170E-1 +.2750E-1 +.3750E-1 +.3750E-1 +.2740E-1 +.6260E-1 +.6890E-1	+.17302E3 +.16324E3 +.15364E3 +.17106E3 +.11425E3 +.10222E3	PE-4C-3R	S +.2370E-1 1 +.6450E-1 2 +.1892 3 +.1854 4 +.1830 5 +.1811	+.2700E-1 +.8000E-1 +.2158 +.2211 +.2249 +.2085	+.3980E-1 +.9380E-1 +.2024 +.1914 +.1951 +.1775	43896E2 21085E2 +.12804E2 +.15571E2 +.12198E2 +.20939E2
PE-2C-2	S +.9570E-1 1 +.1031 2 +.1164 3 +.1073 4 +.8690E-1 5 +.7300E-1	+.8700E-1 +.9320E-1 +.7500E-2 +.9900E-1 +.8130E-1 +.6820E-1	+.3130E-1 +.3860E-1 +.4700E-1 +.3620E-1 +.2840E-1 +.2700E-1	+.10266E3 +.97695E2 +.13222E4 +.99971E2 +.99788E2 +.95043E2	PE-4C-4	S + .1755 1 + .9700E-1 2 + .2043 3 + .1742 4 + .1724 5 + .1549	+.2286 +.1314 +.2153 +.1868 +.1837 +.1658	+.5711 +.2733 +.2297 +.2048 +.2052 +.1795	16654E3 12598E3 +.83706E1 +.31520E1 +.17201E1 +.48262E1
PE-2C-2R	S +.2242 1 +.2278 2 +.2560 3 +.2498 4 +.2531 5 +.2465	+.2511 +.2459 +.2769 +.2612 +.2711 +.2614	+.2600E-1 +.3500E-1 +.4130E-1 +.2910E-1 +.6290E-1 +.1090	+.10331E3 +.10349E3 +.10252E3 +.11060E3 +.94907E2 +.76503E2	PE-4C-4R	S +.1710E-1 1 +.1127 2 +.1950E-1 3 +.1610E-1 4 +.1470E-1 5 +.1630E-1	+ .1820E-1 + .1214 + .2560E-1 + .2450E-1 + .2120E-1 + .2370E-1	+.3100E-1 +.1417 +.4370E-1 +.4140E-1 +.3210E-1 +.3570E-1	60285E2 48978E1 83445E2 95004E2 71745E2 71637E2
PE-2C-3	S + .4593 1 + .4945 2 + .4325 3 + .3683 4 + .3413 5 + .2500	+.5586 +.6025 +.5235 +.4462 +.4136 +.3008	+.4322 +.4692 +.4161 +.3458 +.3273 +.2151	+.23231E2 +.22507E2 +.21496E2 +.23504E2 +.21742E2 +.30583E2	PE-4C-5	S + 1140E-1 1 + 1490E-1 2 + 7500E-2 3 + 3200E-2 4 + 6200E-2 5 + 8000E-2	+.1180E-1 +.1550E-1 +.7500E-2 +.2700E-2 +.5900E-2 +.8200E-2	+.1020E-1 +.1270E-1 +.8000E-2 +.1000E-4 +.2400E-2 +.4500E-2	+.32033E2 +.36193E2 +.14933E2 +.15131E3 +.91389E2 +.66707E2
PE-2C-3R	S +.2480E-1 1 +.4290E-1 2 +.1033 3 +.7900E-1 4 +.9140E-1 5 +.7620E-1	+.2930E-1 +.5190E-1 +.1362 +.1090 +.1196 +.9460E-1	+.4240E-1 +.6340E-1 +.1524 +.1168 +.1244 +.9840E-1	45051E2 23684E2 21527E2 20814E2 12434E2 71543E1	P E-4C- 5R	S + .5367 1 + .5136 2 + .4548 3 + .4485 4 + .4669 5 + .4015	+.5560 +.5447 +.4800 +.4686 +.4891 +.4181	+.6282 +.4872 +.3400 +.3247 +.3530 +.2700	+.37920E1 +.25881E2 +.46196E2 +.49060E2 +.45686E2 +.54465E2
PE-2C-4	\$ +.1755 1 +.1752 2 +.1193 3 +.6270E-1 4 +.3000E-1 5 +.2110E-1	+.2426 +.2397 +.1605 +.8690E-1 +.4120E-1 +.2820E-1	+.4339 +.4346 +.2733 +.1424 +.6110E-1 +.4350E-1	96988E2 98631E2 85354E2 81344E2 61509E2 67737E2	(注)	小数点の含	位置につい と	ては前表の	の注を
PE-2C-4R	S +.1820E-1 1 +.2740E-1 2 +.5110E-1 3 +.6970E-1 4 +.9770E-1 5 +.1083	+.1910E-1 +.2980E-1 +.6440E-1 +.6610E-1 +.1061 +.1155	+ .4040E-1 + .5600E-1 + .1314 + .1249 + .1527 + .1456	10224E3 81503E2 11471E3 65322E2 34689E2 13603E2				ę	
PE-2C-5	S +.9500E-2 1 +.1330E-1 2 +.1220E-1 3 +.2300E-2 4 +.6100E-2 5 +.8000E-2	+.9700E-2 +.1380E-1 +.1240E-1 +.2000E-2 +.6100E-2 +.8300E-2	+.8000E-2 +.1130E-1 +.1070E-1 +.1000E-4 +.2700E-2 +.4500E-2	+.37938E2 +.36565E2 +.34467E2 +.14667E3 +.81081E2 +.65903E2					
PE-2C - 5R	S + 5587 1 + 5288 2 + 4584 3 + 4110 4 + 4821 5 + 3970	+.5792 +.5616 +.4851 +.4832 +.5076 +.4108	+.6547 +.4996 +.3273 +.3297 +.3781 +.2683	+.36522E1 +.26226E2 +.49435E2 +.36547E2 +.42612E2 +.54469E2					
PE-4C-1	S + 9210E-1 1 + 1017 2 + 2690E-1 3 + 2320E-1 4 + 2140E-1 5 + 2560E-1	+.9790E-1 +.1017 +.2720E-1 +.2350E-1 +.2130E-1 +.2570E-1	+.1120 +.1148 +.2340E-1 +.1710E-1 +.1530E-1 +.1850E-1	84984 +.83461E1 +.35397E2 +.49234E2 +.52460E2 +.51198E2					

記号	年 X	Y	Z	ΥI	記 号	年 X	Y	Z	J. I
VC-A	S +.6950E-1 1 +.5490E-1 2 +.5200E-1 3 +.3510E-1 4 +.3800E-1 5 +.3020E-1	+.2960E-1 +.2660E-1 +.2610E-1 +.1310E-1 +.1590E-1 +.1320E-1	+ .5000E-3 + .7400E-2 + .9200E-2 + .1000E-4 + .9400E-2 + .1700E-2	+.29875E3 +.23469E3 +.21765E3 +.34288E3 +.24324E3 +.27919E3	VC-8-1	S +.1262 1 +.1073 2 +.1107 3 +.8240E-1 4 +.7740E-1 5 +.5840E-1	+.6240E-1 +.5580E-1 +.6140E-1 +.4660E-1 +.5070E-1 +.4520E-1	+.1340E-1 +.1890E-1 +.2550E-1 +.2180E-1 +.3690E-1 +.4070E-1	+.23610E3 +.21023E3 +.18675E3 +.17674E3 +.11826E3 +.69933E2
VC-B	5 + 6430 1 + 5558 2 + 5061 3 - 4642 4 + 3749 5 + 3164	+.7357 +.6246 +.5658 +.5188 +.4149 +.3490	+.6740E-1 +.5470E-1 +.5780E-1 +.4620E-1 +.4000E-1 +.3620E-1	+.10216E3 +.10461E3 +.10366E3 +.10508E3 +.10544E3 +.10504E3	VC-3-2	S +.4010 1 +.3625 2 +.3630 3 +.2980 4 +.2231 5 +.1178	+.3366 +.2970 +.3046 +.2517 +.1933 +.1050	+.3460E-1 +.3420E-1 +.4600E-1 +.3300E-1 +.4400E-1 +.4990E-1	+.14159E3 +.14402E3 +.13653E3 +.13764E3 +.12360E3 +.93228E2
vc-c	5 +.6450E-1 1 +.7650E-1 2 +.5720E-1 3 +.3600E-1 4 +.3590E-1 5 +.3080E-1	+.2124 +.2255 +.1690 +.1215 +.1173 +.9930E-1	+.1443 +.1257 +.1105 +.7060E-1 +.7050E-1 +.6100E-1	33144E2 15663E2 25984E2 23667E2 24533E2 25413E2	VC-8-3	S + .5411 1 + .4920 2 + .4921 3 + .4437 4 + .4142 5 + .2464	+.6242 +.5662 +.5668 +.5061 +.4681 +.2684	+.9520E-1 +.7700E-1 +.8540E-1 +.7330E-1 +.6820E-1 +.5560E-1	+.94792E2 +.96810E2 +.95159E2 +.96865E2 +.97817E2 +.95549E2
VC-D	S +.7710E-1 1 +.8270E-1 2 +.7100E-1 3 +.5050E-1 4 +.4650E-1 5 +.3920E-1	+.3260E-1 +.4510E-1 +.3680E-1 +.2350E-1 +.2330E-1 +.1950E-1	+.3575 +.3704 +.3004 +.2371 +.2080 +.1712	85969E3 63584E3 61832E3 79440E3 69081E3 67331E3	VC -8 -4	5 +.9020E-1 1 +.1029 2 ÷.1004 3 +.7640E-1 4 +.4550E-1 5 +.3910E-1	+.1803 +.1900 +.1834 +.1317 +.6720E-1 +.4360E-1	+.1233 +.1270 +.1426 +.9520E-1 +.4760E-1 +.4230E-1	84536E1 15305E1 12346E2 23690E1 +.11583E2 +.11949E2
VC-E	S +.5800E-1 1 +.5360E-1 2 +.5000E-1 3 +.3530E-1 4 +.3090E-1 5 +.3260E-1	+.6650E-1 +.7550E-1 +.6150E-1 +.4590E-1 +.4180E-1 +.4200E-1	+.3470 +.2900 +.2707 +.2218 +.1846 +.1887	44147E3 31628E3 36250E3 41377E3 37350E3 37689E3	VC -8- 5	S +.5660E-1 1 +.6440E-1 2 +.5720E-1 3 +.2990E-1 4 +.4430E-1 5 +.5120E-1	+.4510E-1 +.5620E-1 +.5330E-1 +.3220E-1 +.4730E-1 +.5280E-1	+.2232 +.2230 +.1658 +.5320E-1 +.5970E-1 +.6190E-1	36395E3 27392E3 19236E3 56273E2 13906E2 14772
VC-F	S +.1420E-1 1 +.1560E-1 2 +.1330E-1 3 +.3300E-2 4 +.5100E-2 5 +.6200E-2	+.3000E-2 +.8100E-2 +.7400E-2 +.1000E-4 +.1100E-2 +.2800E-2	+.6490E-1 +.5420E-1 +.4070E-1 +.2540E-1 +.2430E-1 +.2360E-1	16872E4 46276E3 35294E3 22700E6 17481E4 61000E3	VC -8 -6	S +.1210E-1 1 +.1950E-1 2 +.1980E-1 3 +.1600E-1 4 +.2740E-1 5 +.2400E-1	+ 1260E-1 + 1980E-1 + 2030E-1 + 1670E-1 + 2810E-1 + 2480E-1	+.1550E-1 +.2400E-1 +.2570E-1 +.2120E-1 +.3510E-1 +.3150E-1	74761E1 24242E1 93497E1 11928E2 75943E1 10766E2
VC-G	S +.5548 1 +.4836 2 +.4137 3 +.3766 4 +.3502 5 +.3039	+.5220 +.4400 +.3795 +.3462 +.3208 F.2794	+.6300E-2 +.9700E-2 +.1140E-1 +.1000E-5 +.3000E-2 +.3200E-2	+.13476E3 +.13834E3 +.13635E3 +.13923E3 +.13873E3 +.13801E3					

6 経年変化測定用試験体の黄色度

紀 号	华 X	Y	Z	ΥĮ	記号	行, X	Y	Z	YI
PE-1	S+.8816 1+.8441 2+.8386 3+.8363 4+.8190 5+.7744	+.9030 +.8671 +.8607 +.8620 +.8409 +.7981	+.1051E1 +.9778 +.9695 +.9701 +.9407 +.8737	+.15581E1 +.50720E1 +.53140E1 +.48907E1 +.60860E1 +.81581E1	VC-7	S+.4662 1+.4660 2+.4365 3+.2547 4+.1096 5+.7210E-1	+ 4849 + 4892 + 4641 + 2660 + 1089 + 6910E-1	+.6281 +.5452 +.4405 +.1789 +.5640E-1 +.4260E-1	14240E2 +.37955E1 +.19778E2 +.51271E2 +.73924E2 +.68208E2
PE-2	\$+.4921 1+.5543 2+.5352 3+.3402 4+.4232 5+.3727	+.5124 +.5798 +.5472 +.3407 +.4341 +.3843	+.3937 +.3786 +.3659 +.2114 +.3072 +.2792	+.41484E2 +.53154E2 +.54313E2 +.62040E2 +.49772E2 +.47125E2	VC - 8	S+.4798 1+.2964 2+.1555 3+.7190E-1 4+.6370E-1 5+.6890E-1	+.4969 +.3061 +.1552 +.6750E-1 +.5860E-1 +.6260E-1	+.6648 +.2101 +.8560E-1 +.4050E-1 +.4330E-1 +.4780E-1	18221E2 +.51187E2 +.69783E2 +.72743E2 +.60815E2 +.59942E2
PE-3	S+.6450 1+.5827 2+.5549 3+.4805 4+.3488 5+.4204	+.6808 +.6148 +.5805 +.5045 +.3660 +.4425	+.7832 +.5230 +.4888 +.4284 +.3029 +.3800	67450 +.31144E2 +.33099E2 +.31900E2 +.34259E2 +.30578E2	A-1	S+.8782 1+.8760 2+.8710 3+.8877 4+.8005 5+.8300	+.8992 +.8963 +.8884 +.9092 +.8272 +.8473	+.1045E1 +.1024E1 +.1035E1 +.1061E1 +.9612 +.9796	+.18233E1 +.39986E1 +.19416E1 +.12520E1 +.69729 +.28353E1
PE <i>t</i> ;	S+.6333 1+.3260 2+.1210 3+.1041 4+.4730E-1 5+.8810E-1	+.6661 +.3394 +.1257 +.1088 +.4920E-1 +.8990E-1	+.6335 +.2849 +.9140E-1 +.7640E-1 +.3740E-1 +.6240E-1	+.20884E2 +.33967E2 +.46138E2 +.48036E2 +.42479E2 +.51862E2	A- 2	S+.8829 1+.8520 2+.8690 3+.8705 4+.8227 5+.8258	+.9043 +.8735 +.8888 +.8908 +.8419 +.8450	+.1009E1 +.9905 +.1016E1 +.1019E1 +.9564 +.9624	+.66630E1 +.46514E1 +.39306E1 +.38280E1 +.46646E1 +.43644E1
PE-5	S+.4266 1+.1490 2+.8550E-1 3+.1132 4+.1022 5+.7340E-1	+.4296 +.1512 +.8740E-1 +.1155 +.1031 +.7300E-1	+.2784 +.9730E-1 +.5190E-1 +.6270E-1 +.5860E-1 +.4110E-1	+.58413E2 +.57924E2 +.62272E2 +.67908E2 +.66634E2 +.69021E2	(注)	小数点の位	置については	前表の注を	参照のこと。
PE - -6	S+.3754 1+.3063 2+.2599 3+.1520 4+.1905 5+.1790	+.3873 +.3158 +.2700 +.1592 +.1992 +.1871	+.4957 +.4077 +.3196 +.1790 +.2225 +.1937	11600E2 12697E2 22607E1 +.30276E1 +.40110E1 +.12719E2					
VC-1	S+.8136 1+.8033 2+.8750 3+.7815 4+.6822 5+.7380	+.8380 +.8274 +.9150 +.8083 +.6979 +.7592	+.9229 +.8958 +.1056 +.8563 +.7764 +.7974	+.75338E1 +.95088E1 +.11017E3 +.11461E2 +.71975E1 +.13092E2					
VC-2	\$+.7823 1+.4532 2+.1510 3+.7600E-1 4+.4980E-1 5+.3490E-1	+.8009 +.4637 +.1452 +.6990E-1 +.4240E-1 +.2890E-1	+.9316 +.3294 +.5610E-1 +.1170E-1 +.5800E-2 +.3400E-2	+.17290E1 +.49802E2 +.92158E2 +.12142E3 +.13583E3 +.14210E3					
VC-3	\$\;\\$3652 1\;\\$3924 2\;\\$3525 3\;\\$3602 4\;\\$3896 5\;\\$4054	+.3789 +.4042 +.3618 +.3716 +.4005 +.4174	+.4331 +.4490 +.3888 +.3995 +.4282 +.4434	+.22090E1 +.65145E1 +.10799E2 +.10114E2 +.11185E2 +.11717E2					
VC-4	S+.2219 1+.4487 2+.3864 3+.5045 4+.4899 5+.5185	+.2275 +.4605 +.3948 +.5192 +.5007 +.5306	+.3039 +.5405 +.4581 +.6194 +.5856 +.6304	16748E2 +.30532 +.22811E1 20808E1 +.12654E1 85638					
V C5	S+.7759 1+.7308 2+.6397 3+.5329 4+.5129 5+.4066	+ .7953 + .7485 + .6543 + .5452 + .5222 + .4121	+.5027 +.8040 +.6540 +.4951 +.4620 +.3224	+.57876E2 +.11113E2 +.19192E2 +.28852E2 +.31940E2 +.43364E2					
VC-6	S+.7294 1+.6322 2+.1373 3+.4690E-1 4+.4580E-1 5+.3840E-1	+.7470 +.6535 +.1252 +.3860E-1 +.3780E-1 +.2900E-1	+.8536 +.6072 +.2800E-1 +.1000E-3 +.4300E-2 +.1800E-2	+.38575E1 +.25338E2 +.11666E3 +.15524E3 +.14303E3 +.16291E3					

7. グレースケールによる測色結果(目視)

		1 7	月	引 2カ月		3 カ月		4カ月		6カ月		9カ月		1	1 年		3ヵ月	月 1年6ヵ月		2	年	_
		表	裏	表	裏	表	裏	表	裏	表	裏	表	裏	表	裹	表	裹	表	裏	表	裏	
P E-1,	C-1	5	5	5	5	5	5	4	4	4	4		4	4	4	1 4	4 4	4	1	4	4	4
	2	5	5	5	5	4	4	4	4	4	4	(O)	4 🔘	40	40	4 🔘 🤃	3 0 3	30:	30	3	3 🔘	3
	3	4	4	4	4	4	4	4	4	◎ 3	© 3	0	3 🔘	3 🔘	3 🔘 :	3 (3)	3 ⊚ 3	30:	30	3 🔘	20	2
РЕ-2,	C-1	4	4	4	4	4	4	4	4	◎ 4	O 4	0	4 🔘	4 🔘	4 0	40 4	4 0 4	L ()	10	4	3 🔘	3
	2	5	5	5	5	5	5	5	5	5	5	,	5	5	4	4 4	4 4		1	4	4	4
	3	5	5	4	4	4	4	4	4	4	4		4	4	4	4	4		4	4	4	4
	4	5	5	4	4	4	4	4	4	4	4		4	4	4	4 4	4 4	1 .	4	4	4	4
	5	,5	5	4	4	4	4	4	· 4	4	4		3 🔘	4 🔘	3 🔘	4 🔘 🖯	3 0 4		30	4 🔘	20	4
P E-4,	C-1	4	4	4	4	4	4	4	4	3	4		3	4	3	4 :	2 4	1 :	2	4	1	4
	2	5	5	5	5	5	5	5	5	4				5	Ĩ.		3 4		ļ	4	2	3
	3	4	4	3	3	3	3	3	3	3	3		3 🔘	3 🔘	3 🔘	3 🔘	3 (3)	30	3 0	3 🔘	20	3
	4	4	4	4	4	4	4	4	4	4			4 🔘		2 0		2 3		2 0	1	1	4
	5	4	4	4	4	4	4	4	4	4	4	0	3 🔘	4 🔘	3 🔘	4 🔘	3 0 4		3 🔘	4 🔘	20	4
V C−2,	C-A	5	5	5	5	5	5	5	5	5	5		5	5	5	5	4 5	5	4	4	4	4
(T-2)	В	5	5	4	4	4	4	4	4	4	ļ			4	1	1				4	4	4
	. C	4	5	4	4	4	4	4	4	4	4		4 🔘	4	4 🔘	4 🔘	40 4	10	4 🔘	4	40	4
	D	4	5	4	4	4	4	4	4	4			4	4	4	4	4 4	1	4	4	4	4
	E	5					4	4		l .	0 4	1		4		4	4 4	1	4	4	4	4
	F	5					5		5				1	4		4	4	1	4	4	4	4
	G	5		İ			4		4		İ				40	40	40	.[40	40	40	
V C-8,	C-1	5				5		5	5				4	4	4	4		1	4	4	4	4
	2	4			_					ĺ							40					
	3	4					5						- 1				4 () 4 4 () 4			1	1	
	4 5	5					4		4	Ì					4		3 4	1	3	4	3	4
	6	5		j				_				5	1	4 5	4		Ì	4		4	4	4
A-3	a					5			Ü	4			- 1				30				4 0	
	b					5				4				4			3		3	4	3	4
	c					5				4			4	4					3	4	3	4
S-1	b	1		Ì		4	5			4			4	5	İ				3	4	3	4
S-2	b					4	5			4		5	4	5				õ	3	4	3	4
S-3	ь					5	5		ø	5	5 5	5	5	5	5	5	4	5	3	4	3	4
	С	!				5	5			5	5 - 5	5	5	5	4	4	4	4	4	4	3	3

注 ◎印を付したものは樹脂が着色し未暴露試験体より色が濃くなったことを示す。

2年3	カ月	2年6	カ月	2年9	カ月	3	年	3年3	3カ月	3年(6カ月	3年	59カ,	月 4	4 年	E 44	下3カ	月 4年	手6カ月	4年9	9カ月	5	年
表	裹	表	裏	表	裹	表	裏	表	裏	表	裏	表	多	1 2	長		長	夏	長 裏	表	裏	表	裏
4	4	4	4	4	4	4	4	4	4	. 4	4	4	4	4	4	4	4	4	4	4 :	3 3	3	3
© 3	3 🔘 3	⊚ 3	⊚ 3	© 3	3⊚ 3	◎ 3	◎ 3	O 3	3 (© 3	30	3 🔘	3	3 🔘	3 🔘	3◎	3 🔘	3 🔘	3 🔘	3 2	2 2	3	3
© 2	© 2	◎ 2	◎ 2	O 2	O 2	◎ 2	◎ 2	© 2	© 2	© 2	20	2	20	2	20	20	20	2	2 0	2 0 2	2 0 2	© 2	2
© 3	3 ◎ 3	◎ 3	◎ 3	© 3	3 🔘	◎ 3	◎ 3	⊚ 3	3 ⊚	0 3	30	3 🔘	3 🔘	3	3 🔘	3	3	3 🔘	3	3⊚ 3	3 4	© 3	4
4	4	◎ 4	◎ 4	© 3	◎ 3	◎ 3	◎ 3	⊚ 3	⊚ 3	O 3	30	3 🔘	3	3	3 🔘	3 🔘	3	3 🔘	3	3 0 2	2 3	O 2	3
4	4	◎ 4	◎ 4	⊚ 3	◎ 3	◎ 3	◎ 3	◎ 3	◎ 3	O 3	30	3 🔘	3 🔘	3 🔘	3 🔘	3 🔘	3	3 🔘	3	3 0 2	2	◎ 2	2
4	1			ļ	© 3					l	1		i i	_		- 1		2 🔘	2	20 1	4	◎ 1	3
© 2	◎ 4	O 2	◎ 4	◎ 2	◎ 3	◎ 2	◎ 3	◎ 2	◎ 3	O 2	20	3 🔘	20	3	2 🔘	3 🔘	2	3 🔘	2	3 0 1	3	O 1	3
1	4	1	4	1	4	1	4	1	4]]		4	1	4	1	4	1	4	1 4	1 1	3	1	3
2	3	2	3	2	3				◎ 3		2	3	2	3	1	3	1	3	1 :	3 1	. 3	1	3
© 2	◎ 3	◎ 2	◎ 3	© 2	© 3	◎ 1						3	1	3	1	3	1	3	1 3	3 1	. 4	1	3
1	4		4	1	4	1	4		◎ 4		. 4				10				1 0 4	1	◎ 4		◎ 3
© 2	O 4	© 2	∅ 4	© 2	O 4	. 2	3	© 2	© 3	◎ 2	2 ◎ ; 	3 0	20	30		30		3		3 1	© 3	◎ 2	◎ 3
4	4	4	4	4	4	4	4	4	4	4		4	4	4	4	4	4	4	4 4	1 3	3	3	3
4		4					- 1									- 1			4 0 4				
O 4	0 4	() 4 	() 4 	(O) 4	(O) 4	O 4	O 4	O 4	(C) 4	© 4	. (() 4	10	40	40	40	40	40	40	4 0 4		© 3	© 4	© 3
4	4	4	4	4	4	4	4	4	4.	4		1	4	4	3	4	3	4	3 4	3	3	3	3
4	4	4	4	4	4	4	4	4	4:	— 4		1	4	4	4	4	3.	4	4 0 4	. J	S 2	್ ೨	3 @ a
	-4 ○ 4			-∓ ∩ 1.		○ 4		. ⁴ .				1	-	ĺ			İ		4 0 4				
4			- 1									1				- 1		1	2 3				
© 4							- 1							- 1			- 1			1			© 3
		- 1					- 1								1				4 0 4				
			ì													1			4 0 4				
3	4	3	4	3	4	3	4	3	4	3	4	Į	3	4	3	4	3	4	3 4	1	3	1	3
4	4	4	4	4	4	4	4	4	4	4	4	Į	4	4	4	4	4	4	4 4	3	3	3	3
◎ 4	© 4	4	4	4	4	4	4	4	4	4	4	l .	4	4	4	4	4	4	4 4	3	3	3	3
3	4	3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	3	3	3	3
3	4	3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	2	3	2	3
3	4	3	4	3	4	3	4	3	4	3	4	Į.	3	4	3	4	3	4	3 4	3	4	3	4
3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	3	3	3	3
3	4	3	4	3	4	3	4	3	4	3	4		3	4	3	4	3	4	3 4	3	4	3	4
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 .	3 3	3	4	3	4

8. 長さの経年変化

暴	露	前					測定	年月日	昭	和38年	平5.	月27	'日~!	5 月31	日温	温度 23	3° 湿度	65%
試	験	体		長			さ	(mm)			変		化	率	(%))		
記	••	号	長	-	方	向	幅	 方	向		さ	方	向	幅	方	向	備	考
•	1				00/				36.0								14 能調	周節10日
P E	1 —				284 284				35.0								以上	- -
"		a 1-			286				34.0								以下同	1 I*
// D.E.	2-	b v			288				38.0									
P E	2-				287				37.0									
<i>!!</i>		a b			287				37.0									
PE	3 —				286				36.0									
//	3 –	a a			285				36.0									
"		b			285				36.0									
"		c			287				37.0									
PΕ	4 —				287				38.0	i								
"	-	a			287				37.0								·	
"		b				6.5			38.0									
РЕ	5 —				288				37.0									
		a				7.0			37.0									
//		b				5.5			37.5									
//		С				7.5			37.5									
РЕ	6 -	- V				7.0		28	36.0									
//		a			287	7.0		28	36.0									
11		b			286	6.0		28	36.0									
//		С			286	3.0		28	36.0									
V C	1 -	-V			285	5.0		28	36.0									
"		a			285	5.0		28	85.0									
//		b			289	5.0		28	85.0									
11		c			286	6.0		28	85.5	ļ								
V C	2-	$-\mathbf{v}$			289	5.0		28	85.0									
//		a			284	4.0		28	35.0									
//		Ъ			285	5.0		28	85.0									
V C	3 –	-V				5.5			85.0									
//		a				5.0			84.5									
//		b				5.5			84.5									
//		c				5.0			85.0									
V C	4 –					5.0			86.0									
//		a				5.0			85.0									
11		b				5.0			85.0									
	- 1 -					5.0			85.0 85.5									
	5 - - 2 -					5.0												
(V(5	a)			28	5.0		28	85.0									
T - (V (- 2 - - 5 -	p) - R			28	5.5		28	85.0									

試 験 体	長	č (mm)	変 化	率 (%)	Me to
記号	長さ方向	幅 方 向	長さ方向	幅方向	
	長さ方向 285.0 286.0 285.0 285.5 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 284.5 284.5 284.0 284.0 284.0 284.0 284.0 284.0 284.0 284.0 284.0 284.0	幅 方 向 285.0 285.5 285.0 285.5 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 284.5 284.0 284.0 284.0 284.0 284.0 284.0 284.0 284.0 284.0 284.0		1	備 考 状態調節10日 以上 以下同じ
	284.5 284.0 177.0 177.0 176.5 177.0 176.0 177.0 177.0 177.0 177.0 177.0	1			

1	年	目		測定	年月日	昭	39年	Ĕ6,	月15	日~	月	日	温度	23	。 湿度	65%
試	験	体	長	25	(mm)	,		変	•	化	率	()	%)			
記		号	長さ方向	幅	——— 方	向	長	2	方	向	幅		i li	 ij	備	考
PE	1 —	- V	285.0		28	5.8			+0.	18		_	-0.0	7	上記条	件にて
"		a	284.2			5.8			+0.				+0.2		状態調	
//		b	286.0			4.2				0			+0.0		24時間	
РЕ	2		288.0			8.2				0			+0.0		以下同	
//		a	286.9			7.0			-0.	03				0	.,,,,,	
//		b	287.8			7.3			+0.			_	+0.1	1		
РЕ	3	·V	286.0		28	6.3				0			+0.1			
//		a	285.8		28	6.4			+0.	28		_	+0.1	4		
"		Ь	285.5		28	6.0			÷0.	18				0		
//		С	287.4		28'	7.3			+0.	14		-	+0.1	1		*
PΕ	4 —	·V	287.0		28	8.4				0		-	+0.1	4		
//		a ·	286.8		28'	7.4			-0.	07		-	+0.1	4		
11		р	286.6		28'	7.8			+0.	03		-	-0.0	7		
PΕ	5 —	V	287.6		28′	7.0			-0.	14				0		
"		a	287.0		28'	7.2				0		-	⊢0.0	7		
//		Ь	286.8		28'	7.8			+0.	11		-	⊢0. 1	1		
//		С	288.0		288	8.0			+0.	18		-	⊦0.1	8		
PΕ	6 —	V	286.9		286	6.3			-0.	03		-	⊢0.1	1		
"		а	287.0		286	6.0				0			1	0		
"		b	286.3		287	7.1			+0.	11		-	⊦0.3	8		
//		С	286.0		286	6.6	İ			0			(0		
VC	1 —	V	285.4		285	5.7			+0.	14		-	-0.1	1		
//		a	285.3		285	5.2	'		+0.	11		+	H0.0	7		
//		b	285.4			5.3			+0.	14		-	-0.1	1		
//		С	285.6		285	5.5		-	-0.	14			(О		
VС	2 —	V	285.0		285	5.0	į			0				0		
//		a	284.7		285				+0.			4	-0.1	1		
//		b	285.4		285				+0.				(0		
V C	3—		285.3		285				-0.	ļ			-0.2	- 1		
"		a	285.2		285				+0.				-0.18			
11		b	285.2		285				+0.				-0.2	- 1		
<i>"</i>		C	285.3		285				+0.	- 1			-0.07	- 1		
V C	4		285.5		285				+0.	Į			-0.28			
"		a	285.6		285				+0.:				-0.1	- 1		
"		b	285.1		285				+0.,	- 1			-0.14	!		
,	1 —		282.8 285.5		286				-0.'				-0.49			
<u> </u>	5-V	\mathbf{v}			285				+0.	i			-0.04			
(V C T —	5 – a 2 —]	B	285.4 285.7		285 285				+0.: +0.:				-0.14 -0.07			
() (5 – b)								- '		,	0.01			

武 験 体	長	ප (mm)	変 化	率 (%)	/H: -t/
記 号	長さ方向	幅 方 向	長さ方向	幅 方 向	備考
$\begin{array}{c} T-2-C \\ (VC 5-c) \end{array}$	285.4	285.5	+0.14	+0.18	上記条件にて
VC 6-V	285.7	285.4	-0.11	-0.04	状態調節
″ a	285.4	285.5	+0.14	+0.18	24時間以上
// b	285.7	285.4	+0.07	+0.04	以下同じ
// c	284.9	285.2	-0.04	+0.07	
VC 7-V	285.1	285.4	+0.04	+0.14	
″ a	285.2	285.7	+0.07	+0.11	
// b	285.6	285.3	+0.21	+0.11	
// c	285.4	285.3	+0.14	+0.11	
VC 8-V	285.3	285.3	+0.11	+0.11	
″ a	285.1	285.6	+0.04	+0.22	
// b	285.3	285.3	+0.22	+0.11	
A1 — V	284.6	284.8	+0.22	+0.11	
″ a	285.9	284.7	+0.14	-0.11	
// b	284.5	284.3	+0.18	+0.11	
// C	284.3	284.5	+0.11	+0.18	
A 2 — V	284.6	284.5	+0.22	+0.18	
″ a	284.6	284.8	+0.22	+0.11	
// b	284.8	284.6	+0.28	+0.22	
// c	284.8	284.9	+0.28	+0.14	
A3 — V	284.5	284.4	+0.18	+0.14	
" a	284.2	284.5	+0.07	+0.18	
// b	284.5	284.3	0	+0.11	
// C	284.4	284.2	+0.14	+0.07	
s 1 - v	177.0	177.0	0	+1.28	:
// a	177.0	177.1	0	+0.06	
// b	177.0	177.0	+0.28	+0.28	
// C	177.3	176.9	+0.17	-0.06	
$s_2 - v$	177.2	176.8	+0.11	+0.17	
″ a	176.7	176.9	+0.40	+0.23	
// b	177.2	176.6	+0.11	-0.23	
· // C	177.0	177.2	0	+0.11	
s 3 - V	177.3	177.4	+0.17	+0.23	
η a	177.1	177.3	+0.06	+0.17	
″ b	177.3	177.0	+0.17	0	
// c	177.3	177.2	+0.17	+0.11	
			:		
			<u> </u>	<u> </u>	<u></u>

2 年 目 测定年月日 昭和40年6月1日~ 月 日 温度 23℃ 湿度 65% 長 (%) か 変 化 試 験 休 (nm) 率 備 考 記 뭉 長さ方向 幅 方 向 長 さ 方 向 幅 方 向 1 - VPE284.8 285.6+0.11-0.14上記条件にて 284.0285.5 0 +0.18状態調節 11 а 285.8 - 283.8 -0.07-0.0724時間以上 11 b PΕ +0.032 - V287.9 288.1 -0.03以下同じ 286.8 286.9 -0.07-0.03// a +0.28 ± 0.07 // b 287.8 287.2 PE3 - V285.6 286.3 -0.14+0.11+0.07// а 285.6 286.2+0.21// b 285.4286.0 +0.140 C 287.4287.2 +0.14+0.07PΕ 4 - V286.9288.4-0.03+0.14286.7 287.3 -0.10+0.10286.6 287.8 +0.04-0.07// b PE5 - V287.6 287.0 -0.140 -0.07// а 287.2 286.8 +0.07286.7 287.7+0.0711 b +0.07// c 288.0 287.8 +0.10+0.17PΕ 6 - V -0.07+0.07286.8 286.2 // 287.0 286.1+0.04試験片紛失のた // Ъ め測定出来ず С 286.0 +0.040 11 286.1V C 1 - V285.7 -0.11285.4 +0.14285.2 285.211 a +0.07+0.07b 285.5 285.5 +0.18+0.18// c 285.6 285.6 -0.14+0.04V C 2 - V285.0 285.0 0 0 284.8 285.3 +0.11а +0.2811 b 285.4 285.1 ± 0.14 +0.04V C 3 - V285.4 285.4 -0.04+0.14285.2 285.0 a +0.07+0.18// b 285.1 284.9 +0.04+0.14// С 285.4 285.1 +0.14+0.04V C 4 - V285.5 285.8 +0.18+0.28// 285.5285.2a +0.18+0.07285.2 285.4 +0.07+0.14282.7 -0.11286.3 +0.46285.5 285.5 +0.180 285.4285.5 +0.14+0.18

285.6

(VC

285.0

+0.04

0

試 験	体	長	خ (mm)	変 化	率 (%)	港 来
記	号	長さ方向	幅方向	長さ方向	幅 方 向	備考
T-2		285,5	285.5	+0.18	+0.18	上記条件にて
VC S	5-0) 5-V	285.7	285.5	-0.11	0	状態調節
"	a	285.4	285.6	+0.14	+0.21	24時間以上
//	b	285.7	285,4	+0.07	-0.04	以下同じ
"	\mathbf{c}^{+}	285.0	285.0	0	0	
V C	7 — V	285.1	285.2	+0.04	+0.07	
//	a	285.2	285.7	+0.07	-0.11	
"	b	285.4	285.3	+0.14	+0.11	
//	c.	285.2	285.2	+0.07	+0.07	
VC 8	$-\mathbf{v}$	285.4	285.3	+0.14	+0.11	
"	a	285.1	285.5	+0.04	+0.18	
"	b	285.3	285.3	+0.28	+0.11	
A 1	V	284.5	284.7	+0.18	+0.07	
//	a ˈ	285.8	284.6	+0.11	-0.14	
//	b	284.3	284.0	+0.11	0	
//	c	284.6	284.6	+0.21	+0.21	
A 2 -	- v	284.3	284.3	+0.11	+0.11	
//	а	284.5	284.7	+0.18	+0.07	
"	b	284.7	284.4	+0.25	+0.14	
//	С	285.2	284.8	+0.42	+0.11	
A 3 -	- V ·	284.3	284.3	+0.11	+0.11	
//	a	284.0	284.4	0	+0.14	
//	b	284.4	284.2	-0.04	+0.04	
//	c	284.5	284.2	+0.18	+0.07	
S 1 -	- V	177.0	177.0	0	+0.28	
"	a	176.9	177.0	-0.06	0	
"	$\mathbf{b}_{ !}$	177.2	177.1	+0.40	+0.34	
"	С	177.3	177.2	+0.17	+0.11	
S 2 -	– V	177.0	176.8	0	+0.17	
//	а	176.6	176.7	+0.34	+0.11	
//	b	177.1	176.9	+0.06	-0.06	
//	С	177.2	177.4	+0.11	+0.23	
S 3 -	- V	177.3	177.4	+0.17	+0.23	
//	a	177.1	177.2	+0.06	+0.11	
//	b	177.2	177.2	+0.11	+0.11	
//	С	177.5	177.4	+0.28	+0.23	
				,		
						<u> </u> ,

3 年 目 測定年月日 昭和41年6月3日~6月7日 温度 23℃ 湿度 65%

試 験 体	長	(mm) خ	変 化	率 (%)	/#: - * /
記号	長さ方向	幅方向	長さ方向	幅 方 向	備考
P E 1-V	284.8	285,6	+0.11	-0.14	上記条件にて
// a	284.1	285.4	+0.04	+0.14	状態調節
" b	285.7	284.0	-0.11	0	24時間以上
PE 2-V	288.0	288.3	0	+0.10	以下同じ
″ a	286.9	287.0	-0.03	0	,,,
// b	287.8	287.3	+0.28	+0.10	-
P E 3-V	285.8	286.4	-0.07	± 0.14	
″ a	285.8	286.4	+0.28	+0.14	
″ b	285.4	286.0	+0.14	0	
// c	287.3	287.2	+0.10	+0.07	
P E 4 — V	286.9	288.5	-0.03	+0.17	
″ a	286,7	287.3	-0.10	+0.10	
// b	286.6	287.8	+0.04	-0.07	
PE 5-V	287.7	287.0	-0.10	0	
″ a	287.1	286.9	+0.03	-0.03	
// b	286.8	287.7	+0.11	+0.07	
// C	288.1	287.8	+0.21	+0.10	
P E 6 - V	286.8	286.2	-0.07	+0.07	
" a	287.0	286.0	0	0	試験片紛失のた
" b	990 0	007.0			め測定出来ず
// C	286.0	285.9	0	-0.04	
V C 1-V	285.4 285.2	285.7	+0.14	-0.11	
" a " b	285.5	285.2	+0.07	+0.07	
" c	285.6	285.5	+0.18	+0.18	
V C 2-V	285.0	285.7 285.1	-0.14	+0.07	
// a	284.8	285.2	0	+0.04	
" b	285.4	285.0	+0.28 +0.14	+0.07	,
V C 3-V	285.4	285.5	-0.04	+0.18	
" a	285.3	285.1	+0.11	+0.21	
// b	285.3	284.9	+0.11	+0.14	
" · c	285.5	285.2	+0.18	+0.07	
V C 4-V	285.5	286.0	+0.18	+0.35	
" a	285.5	285.2	+0.18	+0.07	
// b	285.0	285.3	0	+0.11	
// c	282.5	286.3	-0.18	+0.46	
$ \begin{array}{c c} T - 1 - V \\ (V C 5 - V) \end{array} $	285.5	285.6	+0.18	+0.04	
$ \begin{array}{c c} T-2-V \\ (VC5-a) \\ T-2-B \end{array} $	285.4	285.5	+0.14	+0.18	
$ \begin{array}{c c} T-2-B \\ (VC 5-b) \end{array} $	285.6	285.1	+0.04	+0.04	

試	 験	体		長		さ	(mm)			変	化	率	(%))		
記		号	長	さ ナ	· 向	幅	—— 方	卢	長	さ ナ	方向	幅	方	向	備	考
	- 2	Ç	,-	2	85.5		28	85.6		+	0.18		+(0.21	上記	条件にて
V C	C 5-0				85.9			85.5			0.04			0		調節
"	J	a			85.5			85.6			0.18		+0	0.21	1	間以上
"		b			85.7			85.4			0.07			0.04		同じ
"		c			85.0			85.2			0		- - (0.07		
VС	7-	\mathbf{v}			84.9			85.2		_	0.04		+(0.07		
"		a		2	85.2		2	85.6		+	0.07			0.14		
"		b		2	85.3		2	85.3		+	0.11		+(0.11		
"		С		2	85.2		2	85.2		+	0.07		+1	0.07		
V C	8—	\mathbf{v}		2	85.3		2	85,3		+	0.11		+1	0.11		
"		a		2	85.2		2	85.5		+	0.07		+	0.18		•
//		ь		2	85.4		2	85.3		+	0.32		+	0.11		
A 1		\mathbf{v}	,	2	84.5		2	84.7		+	0.18		+	0.07		
"		a		2	85.8		2	84.6	i	+	0.11		-	0.14		
"		ь		2	84.4		2	84.0		+	0.14			0		
"		С		2	84.2		2	84.4		+	0.07		+	0.14		
A 2	. —	v		2	284.5		2	84.4		+	0.18		+	0.14		
"		a		2	284.7		2	84.7		+	0.25		+	0.07		
"		b		2	284.7		2	84.5		+	0.25		+	0.18		
//		с		2	284.6		2	84.8		+	-0.21		+	0.11		
A 3	: —	V		2	284.3		2	84.3		+	-0 11		+	0.11		*
"		a		<i>t</i>	284.1		2	84.3		+	0.04		+	0.11		
"		b		4	284.4		2	284.2			-0.04	:	+	0.07		
//		c		2	284.3		2	84.0		-1	-0.11			0		
S 1	_	\mathbf{v}			176.9		1	77.1		-	-0.06		+	0.34		
"		a		-	176.9		1	77.1		-	-0.06			0.06		
"		b			177.2		1	.77.2		4	-0.40			0.40		
"		c	Ì		177.3		1	77.1			-0.17			0.06		
S 2	2 —	V			177.1			176.8			-0.06			0.17		
"		a			176.8			177.0			-0.45			0.28		
"		b			177.2			176.9			-0.11			0.06		
"		c			177.2			177.4			⊦0.11			0.23		•
S S	3 —	V			177.3			177.4			⊢0.17			0.23		
"		a			177.2			177.3			+0.11			0.17		
"		b			177.3			177.3			+0.17			0.17		
"		c			177.4			177.2		-	+0.23		+	0.11		
			[1			1			1,	

4 年 目 測定年月日 昭和42年6月12日~6月15日 温度 22℃ 湿度 70%

試	験 体	長	で (mm) さ (mm)	変化	率 (%)	
記	号	長 さ 方 向	幅方向	長さ方向	幅 方 向	備考
-				 	1	
PE	1 — V	284.8	285.6	+0.11	-0.14	上記条件にて
//	a	284.0	285.4	0	+0.14	状態調節
// D.E.	b V	285.5	283.9	-0.17	-0.04	24時間以上
PΕ	2 V	288.0	288.2	0	+0.07	以下同じ
"	a	286.9	287.0	-0.03	0	
// D.F.	b	287.9	287.2	+0.31	+0.07	
PΕ	3 — V	285.7	286.3	-0.10	+0.10	
"	a	285.5	286.3	+0.18	+0.10	
"	Ъ	285,4	286.0	+0.14	0	
	c	287.4	287.2	+0.14	+0.07	
РЕ	4 — V	286.9	288.4	-0.03	+0.14	
//	a	286.8	287.3	-0.07	+0.10	
<i>"</i>	b	286.6	287.7	+0.03	-0.10	
PΕ	5 — V	287.6	287.0	-0.14	0	
//	a	287.0	286.8	0	-0.07	
//	b	286.7	287.7	+0.07	+0.07	
//	С	288.0	287.7	+0.17	+0.07	
PΕ	6 — V	286.8	286.2	-0.07	+0.07	
//	а	287.0	286.0	0	0	試験片紛失のた
//	Ъ					め測定出来ず
//	С	286.0	286.0	0	0	
V C	1 V	285.3	285.6	+0.11	-0.14	
//	a	285.1	285.2	+0.04	+0.07	
//	b	285.5	285.4	+0.18	+0.14	
//	С	285.6	285.6	-0.14	+0.04	
V C	2 — V	284.9	285.0	-0.04	0	
//	a	284.7	285.2	+0.25	+0.07	
//	b	285.4	285.0	+0.14	0	
V C	3 — V	285.3	285.4	-0.07	+0.14	
//	a	285.1	285.0	+0.04	+0.18	
"	b	285.3	284.9	+0.11	+0.14	
"	c	285.4	285.1	+0.14	+0.04	
V C	4 — V	285,5	285.8	+0.18	+0.28	
//	a	285.5	285.1	+0.18	+0.04	
//	b	285.0	285.3	0	+0.11	
// /D	c	281.9	286.0	-0.39	+0.35	
	1 — V 2 5 – V)	285.5	285.5	+0.18	. 0	
Ţ —	$2 - \hat{V}$	285.3	285.5	+0.11	+0.18	
Ţ —	5 - a) - 2 — B 5 - b)	285.6	285.0	+0.04	0	l

試験体	, 長	(mn) ž	変化	率(%)	
記号	長さ方向	幅 方: 向	長さ方向	幅 方 向	備考
T-2-C	285.5	285.7	+0.18	+0.25	上記条件にて
(VC 5-c) VC 6-V	285.8	285.4	-0.07	-0.04	大態調節 状態調節
// a	285.3	285.5	+0.11	+0.18	24時間以上
// b _i	285.6	285.4	+0.04	-0.04	以下同じ
// c	284.9	285.0	-0.04	0	,,,,,,
v c 7-v	285.0	285.1	0	+0.04	
// a	285.1	285.5	+0.04	-0.18	
// b	285.3	285.3	+0.11	+0.11	
// c	285.2	285.2	+0.07	+0.07	
v c 8-v	285.3	285,3	+0.11	+0.11	
" a	285.1	285.5	+0.04	+0.18	
" b	285.3	285,3	+0.28	+0.11	
A1 - V	284.4	284.5	+0.14	0	
∥ a·	285.6	284.4	+0.04	-0.21	
// b	284.2	283.8	+0.07	-0.07	
// c.	284.1	284.4	+0.04	+0.14	
A 2 — V	284.2	284.2	+0.07	+0.07	
″ a	284.3	284.5	+0.11	0	
// b	284.5	284.3	+0.18	+0.11	
//	284.3	284.6	+0.11	+0.04	
A 3 - V	284.2	284.0	+0.07	0	
<i>, </i>	283.9	284.2	-0.04	+0.07	
// b	284.1	284.2	-0.14	+0.07	
// C	284.1	284.0	+0.04	0	
s 1 - v	176, 8	176.9	-0.11	+0.23	
″ a	176.8	177,.0	-0.11	. 0	
<i>"</i> Ъ	177.0	177.1	+0.28	+0.34	
// C	177.3	177.1	+0.17	+0.06	
s 2 - V	177.0	176.7	0	+0.11	
″ a	176.6	176.7	+0.34	+0.11	
// b	177.0	176.8	Ó	-0.11	
// C,	177.1	177.3	+0.06	+0.17	
s 3 - v	177.2	177.3	+0.11	+0.17	1
″ a	177.0	177.2	0	+0.11	
// b	177.2	177.1	+0.11	+0.06	
// C	177.5	177.3	+0.28	+0.17	
		ı			
	<u> </u>	<u> </u>	1	<u> </u>	1

5	年	目		测定年	下月 日	昭和	和3年	6 月] 3	∃~	月日	日温	度 23°	C 湿度 60%
試	験	———— 体	長	さ	(nm)			変		化	率	(%)	
記		号	長さ方向	幅	方	向	長	Z	方	向	幅	方	向	備考
PE	1	-V .	284.8		28	5.5			+0.	. 11			0.17	上記条件にて
//		a	283.8			5.3			-0.				0.11	状態調節
//		b	285.5			3.6			-0.				0.14	24時間以上
РЕ	2-	-V	287.9		28	8.1			-0.	. 03			0.03	以下同じ
//		a	286.8		28	7.0			-0.	. 07			0	
//		b	287.8		28	7.1			+0.	.28		+	0.03	
РЕ	3 —	-V	285.6		28	6.3			-0.	. 14		+	0.10	
//		a	285.4		28	6.2			+0.	. 14		+	0.07	
//		b	285.3		28	5.9			+0.	. 11			0.03	
//		c	287.3		28	7.1			+0.	. 10		+	0.03	
PΕ	4 —	-V	286.8		28	8.4			-0.	.07	}	+	0.14	
//		a	286.7		28	7.1			-0.	. 10		+	0.03	
//		b	286.5		28	7.6				0		_	0.14	
PΕ	5 —	-V	287.6		28	6.9			-0.	. 14		_	0.03	
//		a	286.9		28	6.8			− 0.	.03			0.07	
//		b	286.6		28	7.6			± 0 .	.03		+	0.03	
//		c	288.0		28	7.6			÷0.	. 17		+	0.03	
PΕ	6 —	-V	286.7		28	6.2			-0.	. 10		+	0.07	
//		a	287.0		28	6.0				0			0	試験片紛失のた
//		b												め測定出来ず
//		С	285.9		28	5.9			-0.	.03			0,03	
VС	1 —		285.4		28	5.7			+0.	. 14		-	0.10	
11		a [']	285.0		28	5.0				0			0	
//		b	285.4			5.4			+0.	. 14		+	0.14	
//		С	285.6			5.7			-0.	. 14		+	0.07	
V C	2 —	-V	284.9			4.8			+0.			_	0.07	
"		a	284.6			5.0			+0.				0	
// ***		b	285.2			4.9			+0.				0.04	
V C	3 —		285.4			5.4			-0.				0.14	
//		a	285.1			5.0			+0.				0.18	
//		b	285.2			5.0			+0.				0.18	
// XI.O		C	285.4			5.1			+0.				0.04	
V C	4 —		285.4			5.8			+0.				0.28	
"		a _.	285.4			5.2			+0.				0.07	
"		b	285.0			5.2			^	0			0.07	
т́—	1 —	с · V	281.9			5.7			-0.				0.25	
(V C	5 - 2	V) · V	285.4			5.6			+0.				0.04	
	5 - 2 -		285.3			5.4	_		+0.			+(0.14	
	5 -		285,6		28	5.0			+0.	U4	-		0	

武 験 体	長	ප (mm)	変 化	率 (%)	/H: -tv		
記号	長さ方向	幅 方 向	長さ方向	幅 方 向	備考		
$\begin{array}{c} T-2-C \\ (VC 5-C) \end{array}$	285.5	285.6	+0.18	+0.21	上記条件にて		
V C 6-V	285.7	285.4	-0.10	-0.04	状態調節		
″ a	285.2	285.4	+0.07	+0.14	24時間以上		
// b	285.5	285.3	0	-0.07	以下同じ		
// c	284.9	285.0	-0.04	0			
V C 7−V	285.0	285.0	0	0			
η a	285.0	285.5	0	-0.18			
// b	285.2	285.2	+0.07	+0.07			
// C	285.1	285.1	+0.04	+0.04			
V C 8-V	285.2	285.2	+0.07	+0.07			
″ a	285.0	285.4	0	+0.14			
″ b	285.2	285.2	+0.25	+0.07			
A 1 — V	284.4	284.5	+0.14	0			
″ a	285.7	284.5	+0.07	-0.18			
// b	284.3	283.9	+0.11	-0.04			
// C	284.2	284.4	+0.07	+0.14			
A 2 — V	284.3	284.3	+0.11	+0.11			
″ a	284.4	284.7	+0.14	+0.07			
// b	284.6	284.4	+0.21	+0.14			
// C	284.5	284.6	+0.18	+0.04			
A3 — V	284.3	284.3	+0.11	+0.11			
η a	284.0	284.3	0	+0.11			
// b	284.2	284.1	-0.11	-0.04			
// C	284.1	284.0	+0.04	0			
s 1 - V	176.9	177.0	+0.06	+0.28			
″ a	176.8	177.0	-0.11	0			
// b	177.0	177.1	0	+0.34			
// C	177.3	177.1	+0.17	+0.06			
S 2 - V	177.0	176.7	0	+0.11			
// a	176.6	176.7	+0.34	+0.11			
// b	177.0	176.8	0	-0.11			
// c	177.1	177.3	+0.06	+0.17			
s 3 — v	177.2	177.3	+0.11	+0.17			
″ a	177.0	177.2	0	+0.11			
// b	177.2	177.1	+0.11	+0.06			
// c	177.5	177.3	+0.28	+0.17			
				1			
	<u> </u>	<u> </u>		L	<u> </u>		

9. 厚さの経年変化

暴	露露	前	マンー心	± [-		年月日	昭和	38年 5)	月27日~ ———	~5 月3 ——	1日 温	温度 23%		65%
試懸	6 体		厚	. 2	(mm)	測 :	定 .	点 耆	号 号		'	平	変化率 (%)	/#±
記	号	1	2	3	4	5	6	7	8	9	10	均	膨脹+ 収縮-	備考
PΕ	1 V	2.18	2.20	2.24	2.23	2.27	2.21	2.09	2.12			2.19		状態調
//	a	2.06	2.01	2.05	2.16	2.51	2.53	2.32	2.18			2.23		節10日
//	b	1.64	1.58	1.71	1.78	2.03	2.05	1.99	1.94			1.83		以上
РЕ	2-V	2.32	2.27	2.12	2.01	2.29	2.36	2.44	2.40			2.28		以下同じ
//	a	1.46	1.42	1.12	1.31	1.32	1.28	1.40	1.46			1.35		
//	b	1.58	1.55	1.35	1.39	1.31	1.06	1.46	1.58	İ		1.41		ļ
PΕ	3 — V	1.80	1.81	1.61	1.76	1.73	1.75	1.93	1.95			1.79		
//	a	1.04	0.95	1.13	1.22	1.06	1.10	0.94	1.00			1.06		
11	Ъ	1.06	1.15	1.07	1.10	1.21	1.12	1.01	1.03			1.09		
11	С	1.40	1.43	1.35	1.32	1.08	1.06	1.13	1.10			1.23		
PΕ	4-V	2.10	2.15	2.06	1.94	1.95	2.06	2.07	2.16			2.06		
//	a	1.15	1.23	1.20	1.10	1.23	1.15	1.13	1.24			1.18		
//	b	1.23	1.16	1.02	1.11	1.28	1.24	1.38	1.37			1.22		
PΕ	5 — V	2.13	2.11	2.07	2.02	2.06	2.02	2.23	2.13			2.10		
11	a	1.20	1.15	1.21	1.17	1.21	1.28	1.29	1.33			1.23		
//	Ъ	1.15	1.16	1.21	1.29	1.43	1.39	1.38	1.31			1.29		
//	С	1.29	1.33	1.55	1.41	1.35	1.47	1.41	1.39			1.40	ı	
PΕ	6 — V	2.09	2.03	2.10	2.05	2.23	2.16	2.14	2.06			2.11		
//	a	1.34	1.17	1.07	1.27	1.23	1.31	1.31	1.20			1.24		
//	b	1.14	1.08	1.02	1.14	0.72	0.79	0.87	0.76			0.94		
//	c	1.36	1.37	1.31	1.37	1.40	1.44	1.42	1.35			1.38		
V C	1-V	2.13	2.09	2.09	2.09	2.12	2.17	2,20	2.20			2.14		
//	a	2.03	2.09	2.17	2.21	2.17	2.03	1.98	2.17			2.11		
//	Ъ	2.08	2.16	2.16	2.23	2.18	2.14	2.00	2.01			2.12		
//	c	2.08	2.11	2.13	2.22	2.09	2.09	2.04	2.05			2.10		
V C	2 — V	2.11	2.13	2.13	2.12	2.12	2.13	2.12	2.11			2.12	:	
11	a	2.87	2.93	2.97	2.97	3.03	3.00	2.95	2.85			2.95		
"	b	1.06	1.05	1.05	i					ļ		1.05		
V C	3 V	2.01	2.03	2.08	2.07	2.02						2.01		
//	a	2.03	2.03	1.98		1	1					1.97		
11	b	1.61										1.58		
//	С	2.05		1			1			ļ		2.05	i	
V C	4 V	3.13			3.09							3.04		
"	a	1.59	İ			1				i		1.56		
"	b	1.75					!			!		1.75	1	
″ T.—	1 - V	1.85				1						1.94		
(VC	5-V)	1.78	1.88	1.91	1.92	1.92	1.92	1.88	1.82			1.88	3	
(VC	2 - A 5-a)	1.97	1.96	1.90	1,89	1.93	1.95	1.96	2.03			1.95	5	
т —	2 - B 5-b)	1.91	1.88	1.88	1.92	1.90	1.88	1.88	1.92			1.90		

試験体		ļ.	第 2	(mm)	測		点 者	番 号	1. 7		平	変化率 (%)	
記号	1	2	3	4	5	6	7	8	9	10	均	膨脹+	備考
$\begin{array}{cc} T-2-C \\ (VC & 5-c) \end{array}$	1.78		1.79	1.81	1.78	1.78	1.78	1.75			1.78	2 7 7 114	状態調
V C 6-V	2.12	2.12	2.10	2.10	2.05	2.03	2.04	2.06			2.08		節10日
// a	2.26	2.26	2.21	2.16	2.19	2.19	2.23	2.25			2.22		以上
// b	2.06	2.01	2.05	2.02	1.98	1.99	1.99	1.99			2.01		以下同じ
// c	2.05	2.06	2.03	2.03	2.03	2.04	2.07	2.07			2.04		
v c 7-v	2.04	2.06	2.01	1.99	2.02	2.03	2.03	2.04			2.03		
// a	1.94	1.98	1.97	1.93	1.94	1.95	1.96	1.94			1.95		
// b	1.97	1.96	1.99	2.00	2.03	2.05	2.00	1.99			1.99		
// C	2.08	2.08	2.15	2.16	2.25	2.27	2.20	2.18			2.17		
V C 8—V	1.92	1.92	1.93	1.92	1.93	1.93	1.92	1.90			1.92		
″ a	2.86	2.87	2.82	2.82	2.82	2.81	2.86	2.86			2.84		
// b	0.91	0.91	0.95	0.96	0.98	0.97	0.92	0.89			0.94		
A1 — V	2.05	2.11	2.09	2.05	1.93	1.91	1.91	1.98			2.00		
// a	2.36	2.33	2.24	2.23	2.20	2.22	2.32	2.32			2.28		
// b	2.69	2.66	2.63	2.62	2.64	2.67	2.80	2.79		'	2.69		
// C	5.80	5.85	5.81	5.79	5.72	5.70	5.70	5.71			5.76		
A 2 — V	1.97	1.94	2.11	2.18	2.30	2.36	2.35	2.26			2.18		
// a	1.60	1.52	1.45	1.53	2.04	2.13	2.14	2.02			1.80		
// b	2.56	2.58	2.93	3.10	3.24	3.17	2.84	2.74		i	2.90		
// C	6.45	6.42	6.29	6.29	6.27	6.26	6.38	6.42			6.35		
A3 — V	2.05	2.07	2.14	2.15	2.16	2.16	2.10	2.09		ļ	2.12		
″ a	2.30	2.30	2.41	2.45	2.63	2.65	2.43	2.41			2.45		
// b	2.10	2.16	2.03	2.00	2.12	2.15	2.18	2.19			2.12		
<i>и</i> с	1.78	1.76	1.79	1.79	1.81	1.81	1.86	1.85		İ	1.81		
s1 — v	3.03	3.05	3.08	3.06	2.94	2.93	2.89	2.91			2.99		
″ a	2.99	3.01	2.99	2.95	2.89	2.86	2.88	2.90			2.93		
″ b	2.88	2.88	2.94	2.98	3.08	3.08	3.00	2.98			2.98		
″ с	2.91	2.92	3.09	3.15	3.20	3.12	2.98	2.94			3.02		
s 2 - v	2.88	2.92	3.03	3.06	3.11	3.06	2.95	2.92	i		2.99		
// a	2.87	2.88	2.89	2.91	2.97	2.96	2.93	2.92			2.92		
// b	2.99	2.95	2.92	2.87	2.87	2.88	2.95	2.97			2.93		
// c	2.90	2.94	2.99	2.96	2.97	2.95	2.90	2.85			2.93		
s 3 - v	2.97	2.99	3.00	2.95	2.85	2.83	2.81	2.86			2.91		
″ a	2.90	2.91	2,96	2.94	2.89	2.87	2.86	2.85			2.90		
// b	2.91	2.89	2.87	2.89	2.88	2.90	2.89	2.89			2.89		
″ · с	2.88	2.91	2.91	2.88	2.83	2.83	2.82	2.88			2.87		

1	年	目	測気	年月日	昭和39年6月17日~6月18日	温度 23℃	湿度 65%
							ಆ / ಸಿಕ್ಟರ್ಡಿ

1	牛				例化-	午月 口	中国小日	.03-4- 0 /	1111	0 /11	он р	正/支 25 (1
弒	験 体		厚	<u>ځ</u> :	(mm)	測	定 	点 耆	等 气	<u>-</u>		平	変化率 (%)	備考
記	号	1	2	3	4	5	6	7	8	9	10	均	膨脹+ 収縮-	
РЕ	1-V	2.17	2.20	2.24	2.23	2.27	2.21	2.08	2.12			2.19	C	上記条件にて状態
//	a	2.05	2.06	2.04	2.17	2.51	2.53	2.31	2.17			2.23	C	調節24時間以上
//	b	1.63	1.57	1.70	1.77	2.02	2.05	2.00	1.94		,	1.83		以下同じ
PΕ	2 V	2.09	2.13	2.27	2.29	2.40	2.44	2.36	2,27			2.29	+0.44	1
//	a	1.28	1.12	1.39	1.44	1.45	1.38	1.24	1.31			1.33	-1.48	3
//	b	1.57	1.54	1.35	1.38	1.30	1.06	1.44	1.56			1.40	-0.71	_
РЕ	3-V	1.80	1.82	1.61	1.74	1.69	1.73	1.92	1.95			1.78	-0.56	;
"	a	1.05	0.93	1.12	1.19	1.04	1.11	0.90	1.01			1.04	-1.92	4
//	b	1.06	1.16	1.08	1.08	1.21	1.11	1.00	1.01		 	1.09	()
//	, c	1.39	1.42	1.35	1.30	1.08	1.05	1.15	1.10			1.23	C)
PΕ	4 — V	2.09	2.11	2.02	1.92	1.95	2.03	2.03	2.15			2.04	-0.98	3
//	a	1.15	1.35	1.22	1.09	1.24	1.15	1.12	1.24			1.19	+0.85	3
//	Ъ	1.22	1.15	1.01	1.13	1.30	1.23	1.33	1.36		:	1.22	C)
PΕ	5 — V	2.11	2.08	2.03	2.01	2.06	2.04	2.24	2.08			2.08	-0.95	;
"	a	1.23	1.10	1.21	1.15	1.20	1.27	1.27	1.32			1.22	-0.83	Τ
//	b	1.14	1.17	1.20	1.29	1.41	1.36	1.36	1.31			1.28	-0.78	3
//	С	1.41	1.57	1.32	1.28	1.38	1.41	1.45	1.34			1.40	(
PΕ	6-V	2.03	2.04	2.11	2.08	2.23	2.22	2.17	2.01		i	2.11	()
//	, a	1.33	1.14	1.04	1.27	1.22	1.29	1.31	1.20			1.22	-1.61	1
//	b	1.12	1.05	0.99	1.16	0.71	0.82	0.91	0.75			0.94	()
//	c	1.35	1.36	1.29	1.34	1.38	1.43	1.41	1.34			1.36	-1.45	5
V C	1-V	2.12	2.07	2.07	2.07	2.10	2.17	2.20	2.19			2.12	-0.93	3
//	a	2.03	2.09	2.18	2.18	2.16	2.01	1.97	2.17			2.10	-0.48	3
//	Ъ	2.08	2.16	2.16	2.23	2.18	2.13	2.01	1.99			2.12	()
//	С	2.07	2.11	2.13	2.22	2.18	2.08	2.02	2.03			2.11	+0.47	7
V C	2 – V	2.10	2.13	2.12	2.12	2.12	2.12	2.12	2.10			2.12	(O
//	a	2.84	2.92	2.97	2.96	3.02	2.99	2.94	2.83			2.93		1
"	b	1.08	1.04	1.04	1.04	1.04	1.04	1.04	1.03			1.04		
V C	3-V	2.00	2.03	2.09	2.07	2.02	1	1	1.93			2.01	(
//	a	2.04	2.03	1.97	1.98	1.96			1.98			1.98		
//	b	1.61	1.58	1.52	1.50			1	1.68			1.58		0
//	c	2.05	2.04	2.07	2.02			1	2.08			2.05		0
V C	4 — V	3.08	3.05	3.09	3.12	3.02	3.00	2.96	2.95			3.03	-0.33	3
//	a	1.60	1.58	1.54	1.51	1.52	1.55	1.59	1.59	ı		1.56	(
"	b	1.75	1.78	1.77	1.66		1		1.78			1.75		
// T	C 1 37	1.86	1.88	2.05	1.97				1.91			1.96		
	- 1 - V C 5-V)	1.73	1.87	1.89	1.91	1.91	1.92	1.88	1.78			1.86	-1.06	ò
T -	-2 - A $C 5 - A$	1.97	1.95	1.89	1.87	1.91	1.95	1.95	2.02			1.94	-0.51	1
T -	$ \begin{array}{ccc} & 2 & - & B \\ & 2 & - & B \end{array} $ $ \begin{array}{cccc} & 5 & - & b & D \end{array} $	1.91	1.88	1.87	1.91	1.88	1.87	1.88	1.91			1.89	-0.53	3

武 靨		;	<u> </u>	夏 3	(mm)		 定	点	番 号			亚	変化率 (%)	
記	号	1	2	3	4	5	6	7	8	9	10	- 均	(%) 膨脹+ 収縮-	備考
T — :	2 — c	2 1.78	3 1.77	1.77	1.80	1.77	1.77	1.77	1.74			1.77	-0.56	上記条件にて状態
VС	6—		2.08	2.07	2.06	2.01	1.99	2.00	2.02			2.04	-1.96	調節24時 間以上
//		a 2.25	2,27	2.22	2.15	2.19	2.17	2.22	2.25			2,21	-0.45	以下同じ
//	ì	2.06	2.00	2.04	2.00	1.96	1.98	1.98	1.98			2.00	+0.50	JA FIRIC
//		2.05	2.05	2.02	2.02	2.03	2.03	2.07	2.07		}	2.04	0	
V C	7—r	V 2.04	2.04	2.01	1.98	2.01	2.03	2.03	2.03			2.02	-0.49	1
"	;	1.95	1.98	1.94	1.92	1.92	1.94	1.97	1.93			1.94	-0.51	
//	1	1.97	1.96	1.97	2.00	2.03	2.04	2.00	1.99			1.99	0	
//	(2.06	2.05	2.11	2.14	2.21	2.24	2.18	2.15			2.14	-1.39	
V C	7—8	1.92	1.91	1.92	1.92	1.92	1.91	1.91	1.89			1.91	-0.52	
//	á	2.85	2.86	2.83	2.80	2.82	2.80	2.85	2.85			2.83	-0.35	
11	ŀ	0.90	0.90	0.95	0.95	0.96	0.96	0.91	0.88			0.93	-1.06	
A 1	<i>- 1</i>	2.05	2.11	2.10	2.05	1.93	1.91	1.91	1.98			2.00	0	
"	a	2.34	2.32	2.23	2.22	2.19	2.21	2.30	2,33			2.27	-0.44	
//	t	2.68	2.66	2.63	2.62	2.64	2.67	2.80	2.79			2.69	0	
//	C	5.81	5.86	5.87	5.84	5.73	5.70	5.70	5.71			5.77	+0.17	
A 2	- v	1.96	1.93	2.10	2.18	2.30	2.36	2.36	2.30			2.18	0	
//	а	1,60	1.51	1.45	1.52	2.01	2.15	2.16	2.02			1.80	0	
//	Ъ	2.54	2.58	2.92	3.10	3.25	3.14	3.84	2.72			2.89	-0.34	
"	c	6.46	6.42	6.30	6.29	6.27	6.26	6.38	6.41			6.35	О	
A 3 -	— v	2.04	2.07	2.14	2.14	2.16	2.16	2.09	2.08			2.11	-0.47	
"	a	2.28	2.29	2.39	2.44	2.62	2.65	2.48	2.40			2.44	-0.41	
//	b	2.10	2.17	2.03	2.00	2.12	2.14	2.17	2.19			2.11	-0.47	
//	С	1.77	1.75	1.78	1.79	1.81	1.81	1.86	1.85			1.80	-0.55	
S 1 -	– v	3.03	3.06	3.07	3.05	2.93	2.91	2.87	2.90			2.98	-0.33	
//	a	2.98	3.02	2.99	2.94	2.88	2.86	2.87	2.90			2,93	О	
//	b	2.87	2.88	2.93	2.97	3.08	3.08	2.99	2.97			2,97	-0.34	
11	С	2.89	2.91	3.08	3.15	3.21	3.12	2.97	2.92			3.03	+0.33	
S 2 -	v	2.85	2.91	3.03	3.05	3.11	3.05	2.94	2.89			2.98	-0.33	
"	a	2.86	2.87	2.88	2.91	2.97	2.94	2.91	2.91			2.91	-0.34	
"	b	3.00	2.95	2.91	2.86	2.85	2.88	2.93	2.96			2.92	-0.34	
"	С	2.87	2.93	2.98	2.97	2.96	2.93	2.91	2.84			2.92	0	
S 3 -	- V	2.97	2.99	3.00	2.94	2.84	2.83	2.81	2.86			2.91	0	
<i>"</i>	a	2.91	2.92	2.97	2.95	2.89	2.86	2.86	2.86			2.90	0	
"	Ъ	2.91	2.88	2.86	2.89	2.87	2.88	2.87	2.88			2.88	-0.35	
//	c	2.89	2.91	2.92	2.87	2.83	2.83	2.81	2.84		,	2.86	-0.35	
			,											
	<u></u>													

2	年	目			測定金	丰月 日 	昭和4	10年6月	日~	/ 月	日初	温度 23℃	湿度	65 <i>%</i>
試	途 体		厚	さ	(mm)	測 5	岜 点	点 番	号			平	変化率 (%)	備考
記	号	$-{1}$	2	3	4	5	6	7	8	9	10	均	膨脹+ 収縮-	
PΕ	1-V	2.17	2.20	2.24	2.23	2.27	2.20	2.07	2.12			2.19	0	上記条件にて状態
"	a	2.05	2.06	2.04	2.17	2.52	2.53	2.31	2.16			2.23	0	調節24時 間以上
"	ь	1.63	1.57	1.70	1.77	2.02	2.05	2.00	1.94			1.84	+0.55	以下同じ
PΕ	2 — V	2.09	2.13	2.27	2.30	2.40	2.44	2.36	2.27			2.28	0	
//	a	1.28	1.12	1.39	1.45	1.45	1.38	1.25	1.31			1.33	-1.48	
//	Ъ	1.57	1.55	1.35	1.38	1.29	1.06	1.43	1.56			1.40	-0.71	
ΡF	3 V	1.80	1.82	1.62	1.74	1.69	1.73	1.91	1.95			1.78	-0.56	
"	a	1.05	0.93	1.12	1.19	1.03	1.11	0.90	1.01			1.04	-1.89	
"	b	1.06	1.16	1.07	1.08	1.21	1.12	0.98	1.02			1.09	0	
//	c	1.39	1.43	1.35	1.31	1.08	1.05	1.15	1.09			1.23	0	
PΕ	4 V	2.09	2.10	2.01	1.92	1.94	2.02	2.03	2.15			2.03	-1.46	
"	a	1.16	1.23	1.22	1.09	1.23	1.15	1.13	1.23			1.18	0	
//	b	1.23	1.14	1.01	1.13	1.30	1.23	1.32	1.36			1.22	0	
PΕ	5 — V	2.10	2.07	2.02	2.01	2.05	2.03	2.23	2.07			2.07	-1.43	
"	a	1.22	1.10	1.20	1.14	1.14	1.26	1.26	1.32			1.21	-1.63	
//	b	1.13	1.16	1.19	1.28	1.41	1.37	1.35	1.29			1.27	0	
//	С	1.41	1.56	1.33	1.28	1.38	1.41	1.46	1.34			1.40	0	
PΕ	6 — V	2.02	2.04	2,11	2.08	2.23	2.22	2.17	2.00			2.11	0	
//	а	1.32	1.15	1.04	1.27	1.22	1.30	1.30	1.19			1.22	-1.61	=→F A LL 公八
"	b													試験片紛失のため
//	с	1.34	1.35	1.29	1.34	1.38	1.42	1.41	1.34			1.36	-1.45	測定せず
V C	1-V	2.12	2.07	2.07	2.07	2.10	2.17	2.20	2.19			2.12	-0.94	
"	a	2.03	2.09	2.18	2.18	2,16	2.01	1.97	2.17			2.10	-0.47	
"	ъ	2.08	2.16	2.16	2.23	2.18	2.13	2.01	2.00			2.12	0	
11	С	2.07	2.11	2.13	2,22	2.18	2.08	2.01	2.03			2.10	0	
VС	2 V	2.10	2.13	2.12	2.12	2.12	2.12	2.12	2.10			2.12	0	
11	a	2.85	2.93	2.97	2.97	3.02	2.98	2.94	2.82			2.94	-0.34	
//	ъ	1.05	1.04	1.04	1.04	1.04	1.03	1.04	1.03			1.04	-0.95	
V C	3 V	2.00	2.03	2.08	2.07	2.01	2.00	1.95	1.93			2.01	0	
"	a	2.03	2.03	1.97	1.97	1.92	1.92	1.94	1.98			1.97	0	
//	Ъ	1.61	1.58	1.51	1.50	1.54	1.57	1.66	1.68			1.58		
//	c	2.05	2.04	2.01	2.02	2.05			2.08			2.05		
V C	4 — V	3.07	3.05	3.09	3.12	3.01	2.99	2.96	2.94			3.03	-0.33	
//	a	1.58	1.58	1.54	1.50	1.50	1.55	1.58	1.57			1.55	-0.64	
//	b	1.75	1.77	1.76	1.66	1.66	1.78	1.80	1.78			1.75	1	
″ T.—	$1 - \overset{\text{c}}{V}$	1.87	1.88	2.05	1.98	1.99	2.09	1.96	1.91			1.97	+1.55	
	5 - V	1.72	1.87	1.89	1.92	1.91	1.92	1.88	1.78			1.86	-1.06	

 試 験 体		<u>J</u>	建	(mm)	<u>———</u> 加	定	点	<u></u>			512	変化率	Ţ <u> </u>
記号	1	2	3	4	5	6	7	8	, 	10	平	<u>(%)</u> 膨脹+	備考
T-2-A		<u>~</u>						0	 -	10	均	収縮-	上記上件
(VC5-a) $T-2-B$	1.97	1.95	1.89	1.87	1.91	1.95	1.95	2.02			1.94	-0.51	にて状態
(VC5-b) $T-2-C$	1.91	1.87	1.87	1.91	1.88	1.87	1.88	1.91			1.89	-0.53	調節24時間以上
$(VC^{5}-c)$	1.77	1.76	1.77	1.80	1.77	1.77	1.78	1.74			1.77	-0.56	以下同じ
V C 6—V	2.08	2.08	2.06	2.06	2.00	1.98	1.99	2.02			2.03	-2.40	
″ a	2.25	2.27	2,22	2.15	2.19	2.17	2.21	2.25			2.21	-0.45	
" b	2.06	2.00	2.04	1.99	1.95	1.99	1.97	1.98			2.00	-0.50	
// c	2.05	2.05	2.02	2.02	2.03	2.03	2.06	2.07		,	2.04	. 0	
V C 7—V	2.04	2.04	2.01	1.98	2.01	2.03	2.03	2,03			2.02	-0.49	
// a	1.95	1.97	1.94	1.97	1.92	1.95	1.96	1.93			1.95	0	
// b	1.97	1.95	1.97	2.00	2.03	2.04	2,00	1.99			1.99	0	
// c	2.06	2.04	2.10	2.14	2.20	2.23	2, 18	2.15			2.13	-1.84	
V C 8—V	1.92	1.91	1.93	1.92	1.92	1.92	1.91	1.90			1.92	0	
// a	2.85	2.87	2.83	2.81	2,82	2,80	2.85	2.86			2.84	0	
∥ b	0.90	0.91	0.95	0.95	0.97	0.97	0.91	0.88			0.93	-1.06	
A 1 - V	2.05	2.10	2.09	2.04	1.93	1.90	1.91	1.98			2.00	0	
// a	2.34	2.32	2.23	2.22	2.19	2.21	2.30	2.33			2,27	-0.44	
// b	2.68	2.65	2.63	2.62	2.63	2.67	2.80	2.79			2.68	-0.37	
" c A 2 - V	5.81	5.86	5.82	5.79	.5.73	5.70	5.70	5.70			5.76	0	
$\begin{pmatrix} A & Z & - & V \\ & & & a \end{pmatrix}$	1.96 1.59	1.93	2.10	2.18	2.30	2.36	2.36	2.25		İ	2.18	0	
" b	2.54	1.50 2.58	1.44 2.92	1.52 3.10	2.01 3.25	2. 15 3. 15	2.16 2.83	2.01	ļ		1.80	0	
" c	6.44	6.41	6.29	6.29	6.26	6.25	6.38	6.41	Ì		2.89	$\begin{bmatrix} -0.35 \\ -0.16 \end{bmatrix}$	
аз — v	2.04	2,06	2.13	2.14	2.16	2.16	2.09	2.07			2.11	-0.47	
" a	2.28	2.28	2.39	2.38	2.62	2.64	2.47	2.39	İ	i		-0.82	
// b	2.10	2.17	2.03	1.99	2.12	2.13	2.17	2.19			2.11	-0.47	
″ с	1.77	1.75	1.78	1.79	1.81	1.81	1.86	1.84			1.80	-0.55	
s 1 - v	3.02	3.05	3.06	3.04	2.92	2.90	2.87	2.90			2.97	-0.67	
" a	2.97	3.00	2.97	2.93	2.87	2.86	2.86	2.89			2.92	-0.34	
" b	2.86	2.86	2.92	2.96	3.07	3.07	2.98	2.96				-0.67	
// C	2.88	2.90	3.07	3.14	3.20	3.11	2.95	2.91	İ		3,02	0	
S 2 - V	2.84	2.89	3.01	3.04	3.10	3.04	2.92	2.87	}		2.96	-1.00	
// a	2.85	2.85	2.86	2.89	2.95	1	2.90	2.89			1	-1.03	
" b	2.98	2.95	2.90	2.86	2.85	2.87	2.93	2.95				-0.68	
" c S 3 - V	2.86 2.97	2.91	2,97 3,00	2.96 2.94	2.95 2.84	2.91	2.89 2.81	2.83 2.86			2.91	-0.68	
// a	2.90	2.92	2.97	2.95	2.89	2.86	2.85	2.86			2.91	0	
// b	2.90	2.87	2.86	2.89	2.87	2.88	2.86	2,88				-0.35	
// c	2.88	2.90	2.92	2.88	2.82	2.82	2.81	2.84			2.86	-0.35	

3	年	目			測定	年月日	昭和	41年6	月3日~	~6月	7日 沿	温度 235	C 湿度	65%
試	験 体		厚	<u> </u>	(mm)	測	定 ,	点 耆	昏 号	ŀ		平	変化率 (%)	/#: - 1 /.
記	号	1	2	3	4	5	6	7	8	9	10	均	膨脹+収縮-	備考
PΕ	1-V	2.19	2.21	2.24	2.23	2.27	2.21	2.08	2.13			2.20	+0.46	上記条件にて状態
//	a	2.05	2.07	2.04	2.16	2.51	2.54	2.32	2.17			2.23	c	調節24時 間以上
//	Ъ	1.64	1,57	1.70	1.78	2.03	2.05	2.00	1.94			1.84	+0.55	以下同じ
PΕ	2 — V	2.10	2.13	2.27	2.30	2.40	2.44	2.36	2.28			2.29		
//	a	1.29	1.12	1.39	1.45	1.46	1.38	1.25	1.31		,	1.33	-1.48	3
11	b	1.57	1.55	1.35	1.38	1.30	1.07	1.44	1.56			1.40	-0.71	
PΕ	3 V	1.80	1.82	1.60	1.75	1.70	1.73	1.91	1.95			1.78	-0.56	5
11	a	1.05	0.93	1.12	1.20	1.04	1.11	0.91	1.00			1.05	-0.94	<u> </u>
//	b	1.06	1.16	1.09	1.09	1.21	1.12	1.00	1.02			1.09	C	
//	c	1.39	1.43	1,35	1.30	1.12	1.05	1.15	1.10			1.24	+0.81	i.
PΕ	4 — V	2.08	2.11	2.01	1.92	1.92	2.00	2.01	2.14			2.02	-1.94	Į.
//	a	1.14	1.24	1.22	1.13	1.22	1.14	1.11	1.22			1.18	C	
11	b	1.21	1.14	1.01	1.13	1.28	1.22	1.31	1.35			1.21	-0.82	2
PΕ	5 — V	2.09	2.11	2.02	2.00	2.07	2.02	2.22	2.06			2.07	-1.43	3
//	а	1.21	1.10	1.20	1.14	1.19	1.26	1.25	1.31			1.21	-1.63	3
//	b	1.13	1.17	1.20	1.28	1.40	1.36	1.35	1.29			1.27	-1.55	5
//	С	1.41	1.57	1.33	1.27	1.38	1.41	1.46	1.33			1.40	C	
PΕ	6 — V	2.02	2.04	2.10	2.07	2.23	2.19	2.18	2.00		•	2.10	-0.47	7
//	a	1.32	1.14	1.03	1.27	1.22	1.30	1.31	1.19			1.22	-1.61	試料紛失
//	Ъ													のため測定せず
//	С	1.35	1.36	1.29	1.35	1.38	1.43	1.41	1.34			1.36	-1.45	たせり
VС	1 — V	2.12	2.07	2.08	2.07	2.10	2.12	2.20	2.20			2.12	-0.94	
11	а	2.03	2.09	2.19	2.19	2.16	2.02	1.97	2.18			2.10	-0.47	'
//	Ъ	2.08	2.16	2.16	2.23	2.18	2.13	2.01	2.00			2.12	C	
11	V	2.07	2.11	2.14	2.22	2.18	2.10	2.02	2.03			2.11	+0.48	,
V C	2-V	2.11	2.13	2.13	2.13	2.13		2.12	2.11			2.12		1
//	a	2.85	2.93	2.97	2.97	3,02	2.99	2,95	2.83			2.94	-0.34	
//	b	1.05	1.04	1.04	1.04	1.04	1.03	1.04	1.04			1.04	-0.95	
V C	3 — V	2.00	2.03	2.08	2.07	2.02	2.00	1.95	1.93			2.01	0	
//	a	2.03	2.03	1.97	1.97	1.92	1.92	1.94	1.98			1.97	0	
//	b	1.61	1.60	1.53	1.50	1.54	1.57	1,66	1.69			1.59	+0.63	
//	c	2.05	2.04	2.01	2.02	2.05	2.06	2.09	2.08			2.05	0	1
V C	4 — V	3.06	3.05	3.09	3.13	3.00	2,98	2.95	2,93			3.02	-0.66	i
//	a	1.56	1.58	1.54	1.49	1.49	1.54	1.57	1.56			1.54	±1.28	
//	b	1.76	1.78	1.77	1.67	1.66	1.79	1.81	1.78			1.75	0	
″ T —	1 - V	1.88	1.90	2.05	1.98	1.99	2.10	1.97	1.93			1.98	+2.06	
(VC	$\begin{bmatrix} 5 - V \\ 2 - A \end{bmatrix}$	1.74	1.87	1.89	1.92	1.91	1.92	1.88	1.78			1.86	-1.06	
(VC	$ \begin{array}{c c} 2 - A \\ 5 - a) \\ 2 - B \end{array} $	1.97	1.95	1.90	1.87	1.92	1.95	1.95	2.02			1.94	-0.51	
	5-b)	1.91	1.88	1.88	1.91	1.88	1.88	1.88	1.92	j		1.89	-0.53	

記載 操作		1		r 4×	(mm)	SHII E	=	Je a	<u> </u>	 1.			変化率	<u> </u>
The Tender of the Company of the											T		(%) 膨脹+	備考
CYC	記 号	1	$\frac{2}{}$	3	4	5	6	7	- 8	9 	10	均	収縮-	
V C 6 - V	T-2-C	1.78	1.77	1.77	1.80	1.78	1.77	1.78	1.75			1.78	o	にて状態
## 8 2.26 2.27 2.23 2.16 2.19 2.17 2.22 2.26 2.20 0 以下同じ で		2.08	2.08	2.07	2.06	2.01	1.99	2.00	2.03			2.04	-1.92	調節24時間以上
" b 2.06 2.06 2.00 2.05 2.00 1.98 1.98 1.98 2.00 -0.50 " c 2.05 2.05 2.03 2.02 2.03 2.04 2.08 2.05 -0.49 VC 7 - V 2.04 2.05 2.01 1.99 2.01 2.03 2.05 1.99 2.00 4.050 " b 1.92 1.93 1.92 1.93 1.92 1.90 1.92 2.0 4.0 0.0 0.95 0.95 0.97 0.97 0.92 0.88 0.93 -1.06 V c 2.69 2.66 2.63 2.62 2.23 2.21 1.91	// a	2.26	2.27	2.23	2.16	2.19	2.17	2.22	2.26			2.22		[
V C 7 — V 2.04 2.05 2.01 1.99 2.01 2.03 2.03 2.03 2.03 2.02 — 0.49 " a 1.96 1.97 1.95 1.92 1.92 1.95 1.97 1.94 1.95 0 " b 1.97 1.96 1.98 2.00 2.03 2.05 2.00 1.99 2.00 +0.50 " c 2.06 2.04 2.12 2.14 2.22 2.24 2.18 2.15 2.14 -1.38 V C 8 — V 1.92 1.93 1.92 1.92 1.90 1.92 1.92 " a 2.86 2.87 2.83 2.81 2.82 2.81 2.86 2.86 2.84 0 " a 2.95 2.83 2.81 1.92 1.92 1.90 1.99 2.14 -1.38 V a 2.66 2.81 2.85 2.83 2.23	// b	2.06	2.00	2.05	2.00	1.96	1.99	1.98	1.98			2.00		
"" a 1.96 1.97 1.95 1.92 1.92 1.95 1.97 1.94 1.95 0 "" b 1.97 1.96 1.98 2.00 2.03 2.05 2.00 1.99 2.00 +0.50 "" c 2.06 2.04 2.12 2.14 2.22 2.24 2.18 2.15 2.14 -1.38 VC 8—V 1.92 1.92 1.93 1.92 1.93 1.92 1.90 1.92 0 " a 2.86 2.87 2.83 2.81 2.86 2.86 2.84 0 " b 0.90 0.91 0.95 0.95 0.97 0.97 0.92 0.88 0.93 -1.06 A1 — V 2.06 2.11 2.10 2.05 1.94 1.91 1.91 1.91 1.98 2.01 +0.50 " a 2.66 2.63 2.62 2.64 2.67 2.80 2.79 2.69 0 " a 1.60	// c	2.05	2.05	2.03	2.02	2.03	2.04	2.07	2.08			2.05	± 0.49	
" b 1.97 1.96 1.98 2.00 2.03 2.05 2.00 1.99 2.00 +0.50 " c 2.06 2.04 2.12 2.14 2.22 2.24 2.18 2.15 2.14 -1.38 V C 8 - V 1.92 1.92 1.93 1.92 1.92 1.90 1.92 0 " a 2.86 2.87 2.83 2.81 2.82 2.81 2.86 2.86 2.84 0 " b 0.90 0.91 0.95 0.97 0.97 0.92 0.88 0.93 -1.06 A1 - V 2.06 2.11 2.10 2.05 1.94 1.91 1.91 1.98 2.01 +0.50 " a 2.69 2.66 2.63 2.62 2.64 2.67 2.80 2.79 2.269 0 " a 1.60 1.58 <t>5.82 5.79 5.73 <t< td=""><td>VC 7-V</td><td>2.04</td><td>2.05</td><td>2.01</td><td>1.99</td><td>2.01</td><td>2.03</td><td>2.03</td><td>2.03</td><td></td><td></td><td>2.02</td><td>-0.49</td><td></td></t<></t>	VC 7-V	2.04	2.05	2.01	1.99	2.01	2.03	2.03	2.03			2.02	-0.49	
" C 2.06 2.04 2.12 2.14 2.22 2.24 2.18 2.15 2.14 -1.38 V C 8 - V 1.92 1.93 1.92 1.93 1.92 1.92 1.90 1.92 0 " a 2.86 2.87 2.83 2.81 2.82 2.81 2.86 2.86 2.86 2.84 0 " b 0.90 0.91 0.95 0.95 0.97 0.97 0.92 0.88 0.93 -1.06 A 1 - V 2.06 2.11 2.10 2.05 1.94 1.91 1.91 1.98 2.01 +0.50 " a 2.35 2.33 2.24 2.23 2.21 2.22 2.30 2.33 2.28 0 " b 2.69 2.66 2.63 2.62 2.64 2.67 2.80 2.79 2.69 0 " c 5.81 5.86 5	<i>″</i> а	1.96	1.97	1.95	1.92	1.92	1.95	1.97	1.94			1.95	0	
V C 8 — V 1.92 1.93 1.92 1.93 1.92 1.93 1.92 1.92 1.90 1.92 0 " b 0.90 0.91 0.95 0.95 0.97 0.97 0.92 0.88 0.93 -1.06 A1 — V 2.06 2.11 2.10 2.05 1.94 1.91 1.91 1.98 2.01 +0.50 " a 2.35 2.33 2.24 2.23 2.21 2.22 2.30 2.33 2.28 0 " b 2.69 2.66 2.63 2.62 2.64 2.67 2.80 2.79 2.69 0 " c 5.81 5.86 5.82 5.79 5.73 5.70 5.71 5.77 +0.17 A 2 W 1.96 1.94 2.10 2.18 2.30 2.36 2.26 2.26 2.18 0 " a 2.55 2.58	″ b	1.97	1.96	1.98	2.00	2.03	2.05	2.00	1.99			2.00	+0.50	
" a 2.86 2.87 2.83 2.81 2.82 2.81 2.86 2.86 2.86 2.84 0 " b 0.90 0.91 0.95 0.95 0.97 0.97 0.92 0.88 0.93 -1.06 A1 V 2.06 2.11 2.10 2.05 1.94 1.91 1.91 1.98 2.01 +0.50 " a 2.35 2.33 2.24 2.23 2.21 2.22 2.30 2.33 2.28 0 " b 2.69 2.66 2.63 2.62 2.64 2.67 2.80 2.79 2.69 0 " c 5.81 5.86 5.82 5.79 5.73 5.70 5.71 5.77 +0.17 A 2 V 1.96 1.94 2.10 2.18 2.30 2.36 2.36 2.26 2.26 2.18 0 " b 2.55 2.58 2.92 3.11 3.25 3.15 2.84 2.73 2.89 -0.35 <	<i>"</i> с	2.06	2.04	2.12	2.14	2.22	2.24	2.18	2.15			2.14	-1.38	
""" b 0.90 0.91 0.95 0.95 0.97 0.97 0.92 0.88 0.93 -1.06 A 1 "" 2.06 2.11 2.10 2.05 1.94 1.91 1.91 1.98 2.01 +0.50 """ a 2.35 2.33 2.24 2.23 2.21 2.22 2.30 2.33 2.28 0 """ b 2.69 2.66 2.63 2.62 2.64 2.67 2.80 2.79 2.69 0 """ c 5.81 5.86 5.82 5.79 5.73 5.70 5.71 5.77 +0.17 A 2 "" 1.96 1.94 2.10 2.18 2.30 2.36 2.26 2.26 2.18 0 """ a 1.60 1.51 1.44 1.53 2.02 2.15 2.16 2.06 2.36 2.26 2.28 2.29 3.11 3.25 3.15 2.84<	v c 8-v	1.92	1.92	1.93	1.92	1.93	1.92	1.92	1.90			1.92	0	
A 1 — V 2.06 2.11 2.10 2.05 1.94 1.91 1.91 1.98 2.01 +0.50 " a 2.35 2.33 2.24 2.23 2.21 2.22 2.30 2.33 2.28 0 " b 2.69 2.66 2.63 2.62 2.64 2.67 2.80 2.79 2.69 0 " c 5.81 5.86 5.82 5.79 5.73 5.70 5.71 5.77 +0.17 A2 — V 1.96 1.94 2.10 2.18 2.30 2.36 2.26 2.26 2.18 0 " a 1.60 1.51 1.44 1.53 2.02 2.15 2.16 2.02 1.80 0 0 " b 2.55 2.58 2.92 3.11 3.25 3.15 2.84 2.73 2.89 -0.35 A3 — V 2.05 2.06 2.14 2.15 2.16 2.10 2.08 2.11 -0.47 </td <td>// a</td> <td>2.86</td> <td>2.87</td> <td>2.83</td> <td>2.81</td> <td>2.82</td> <td>2.81</td> <td>2.86</td> <td>2.86</td> <td></td> <td></td> <td>2.84</td> <td>0</td> <td></td>	// a	2.86	2.87	2.83	2.81	2.82	2.81	2.86	2.86			2.84	0	
" a 2,35 2,33 2,24 2,23 2,21 2,22 2,30 2,33 2,28 0 " b 2,69 2,66 2,63 2,62 2,64 2,67 2,80 2,79 2,69 0 " c 5,81 5,86 5,82 5,79 5,73 5,70 5,71 5,77 +0.17 A 2 V 1,96 1,94 2,10 2,18 2,30 2,36 2,36 2,26 2,18 0 " a 1,60 1,51 1,44 1,53 2,02 2,15 2,16 2,02 1,80 0 " b 2,55 2,58 2,92 3,11 3,25 3,15 2,84 2,73 2,89 -0.35 " c 6,45 6,42 6,30 6,30 6,27 6,26 6,38 6,41 6,35 0 A 3 V 2,05 2,06 2,14 2,15 2,16 2,16 2,10 2,08 2,11 -0.47 " a<	// b	0.90	0.91	0.95	0.95	0.97	0.97	0.92	0.88			0.93	-1.06	
" b 2.69 2.66 2.63 2.62 2.64 2.67 2.80 2.79 2.69 0 " c 5.81 5.86 5.82 5.79 5.73 5.70 5.70 5.71 5.77 +0.17 A 2 V 1.96 1.94 2.10 2.18 2.30 2.36 2.36 2.26 2.18 0 " a 1.60 1.51 1.44 1.53 2.02 2.15 2.16 2.02 1.80 0 " b 2.55 2.58 2.92 3.11 3.25 3.15 2.84 2.73 2.89 -0.35 " c 6.45 6.42 6.30 6.30 6.27 6.26 6.38 6.41 6.35 0 A 3 V 2.05 2.06 2.14 2.15 2.16 2.16 2.10 2.08 2.11 -0.47 " a2.28 2.29 2.40	A1 - V	2.06	2.11	2.10	2.05	1.94	1.91	1.91	1.98			2.01	+0.50	
" C 5.81 5.86 5.82 5.79 5.73 5.70 5.71 5.71 40.17 A 2 V 1.96 1.94 2.10 2.18 2.30 2.36 2.26 2.26 2.18 0 " a 1.60 1.51 1.44 1.53 2.02 2.15 2.16 2.02 1.80 0 " b 2.55 2.58 2.92 3.11 3.25 3.15 2.84 2.73 2.89 -0.35 " c 6.45 6.42 6.30 6.30 6.27 6.26 6.38 6.41 6.35 0 A3 V 2.05 2.06 2.14 2.15 2.16 2.16 2.10 2.08 2.11 -0.47 " a 2.211 2.17 2.03 2.00 2.13 2.14 2.18 2.19 2.12 0 " b 2.17 1.75 1.79 1.79 <td>″ a</td> <td>2,35</td> <td>2.33</td> <td>2.24</td> <td>2.23</td> <td>2.21</td> <td>2.22</td> <td>2.30</td> <td>2.33</td> <td></td> <td></td> <td>2.28</td> <td>0</td> <td></td>	″ a	2,35	2.33	2.24	2.23	2.21	2.22	2.30	2.33			2.28	0	
A 2 — V 1.96 1.94 2.10 2.18 2.30 2.36 2.26 2.18 0 " a 1.60 1.51 1.44 1.53 2.02 2.15 2.16 2.02 " b 2.55 2.58 2.92 3.11 3.25 3.15 2.84 2.73 2.89 -0.35 A 3 — V 2.05 2.06 2.14 2.15 2.16 2.10 2.08 2.11 -0.47 " a 2.28 2.29 2.40 2.44 2.62 2.65 2.48 2.40 2.45 0 " b 2.11 2.17 2.03 2.00 2.13 2.14 2.18 2.19 2.12 0 " c 1.78 1.75 1.79 1.79 1.81 1.81 1.87 1.85 1.81 0 S 1 — V 3.01 3.04 3.05 3.04 2.92 2.89 2.86 2.88 2.96 -1.00 " a	// b	2.69	2.66	2.63	2,62	2.64	2.67	2.80	2.79			2.69	0	
"" a 1.60 1.51 1.44 1.53 2.02 2.15 2.16 2.02 1.80 0 "" b 2.55 2.58 2.92 3.11 3.25 3.15 2.84 2.73 2.89 -0.35 "" c 6.45 6.42 6.30 6.30 6.27 6.26 6.38 6.41 6.35 0 A3 - V 2.05 2.06 2.14 2.15 2.16 2.10 2.08 2.11 -0.47 " a 2.28 2.29 2.40 2.44 2.62 2.65 2.48 2.40 2.45 0 " b 2.11 2.17 2.03 2.00 2.13 2.14 2.18 2.19 2.12 0 " c 1.78 1.75 1.79 1.79 1.81 1.81 1.87 1.85 1.81 0 S 1 - V 3.01 3.04 3.05 3.04 2.92 2.89 2.86 2.88 2.99 2.96 -1.	// c	5.81	5,86	5.82	5.79	5.73	5.70	5.70	5.71			5.77	+0.17	
" b 2.55 2.58 2.92 3.11 3.25 3.15 2.84 2.73 2.89 -0.35 " c 6.45 6.42 6.30 6.30 6.27 6.26 6.38 6.41 6.35 0 A 3 V 2.05 2.06 2.14 2.15 2.16 2.16 2.10 2.08 2.11 -0.47 " a 2.28 2.29 2.40 2.44 2.62 2.65 2.48 2.40 2.45 0 " b 2.11 2.17 2.03 2.00 2.13 2.14 2.18 2.19 2.45 0 " c 1.78 1.75 1.79 1.81 1.81 1.87 1.85 1.81 0 S 1 V 3.01 3.04 3.05 3.04 2.92 2.89 2.86 2.88 2.91 2.96 " b 2.85 2.85 2.91 2.95 <td>A 2 - V</td> <td>1.96</td> <td>1.94</td> <td>2.10</td> <td>2.18</td> <td>2,30</td> <td>2.36</td> <td>2.36</td> <td>2.26</td> <td></td> <td></td> <td>2.18</td> <td>0</td> <td></td>	A 2 - V	1.96	1.94	2.10	2.18	2,30	2.36	2.36	2.26			2.18	0	
" C 6.45 6.42 6.30 6.30 6.27 6.26 6.38 6.41 6.35 0 A 3 V 2.05 2.06 2.14 2.15 2.16 2.16 2.10 2.08 2.11 -0.47 " a 2.28 2.29 2.40 2.44 2.62 2.65 2.48 2.40 2.45 0 " b 2.11 2.17 2.03 2.00 2.13 2.14 2.18 2.19 2.12 0 " c 1.78 1.75 1.79 1.81 1.81 1.85 1.81 0 S 1 V 3.01 3.04 3.05 3.04 2.92 2.89 2.86 2.88 2.96 2.99 2.96 2.92 2.86 2.88 2.91 -0.68 " b 2.85 2.85 2.91 2.95 3.06 3.05 2.97 2.95 2.90 3.01 -0.33	n a	1.60	1.51	1.44	1.53	2.02	2.15	2.16	2.02	,		1.80	0	
A 3 — V 2.05 2.06 2.14 2.15 2.16 2.16 2.10 2.08 2.11 -0.47	// b	2,55	2.58	2.92	3.11	3.25	3.15	2.84	2.73				-0.35	
"" a 2.28 2.29 2.40 2.44 2.62 2.65 2.48 2.40 "" b 2.11 2.17 2.03 2.00 2.13 2.14 2.18 2.19 2.12 0 "" c 1.78 1.75 1.79 1.81 1.81 1.87 1.85 1.81 0 S 1 V 3.01 3.04 3.05 3.04 2.92 2.89 2.86 2.88 2.96 2.96 -1.00 " a 2.96 2.99 2.96 2.92 2.86 2.85 2.84 2.88 2.96 -1.00 " a 2.96 2.99 2.96 2.92 2.86 2.85 2.84 2.88 2.91 -0.68 " b 2.85 2.89 3.05 3.13 3.19 3.09 2.94 2.90 3.01 -0.33 S 2 V 2.83 2.88 2.80 3.09 3.02 2.91 2.86 2.95 -1.34 " a 2.98	// c	6.45	6.42	6.30	6.30	6.27	6.26	6.38	6.41			·	0	
""" b 2.11 2.17 2.03 2.00 2.13 2.14 2.18 2.19 """ c 1.78 1.75 1.79 1.81 1.81 1.87 1.85 1.81 0 S 1 V 3.01 3.04 3.05 3.04 2.92 2.89 2.86 2.88 2.96 -1.00 """ a 2.96 2.99 2.96 2.92 2.86 2.85 2.84 2.88 2.91 -0.68 """ b 2.85 2.91 2.95 3.06 3.05 2.97 2.95 2.95 -1.01 """ c 2.87 2.89 3.05 3.13 3.19 3.09 2.94 2.90 3.01 -0.33 S 2 - V 2.83 2.88 2.93 2.91 2.86 2.95 -1.34 """ a 2.98 2.95 2.90 2.85 2.84 2.87 2.92 2.95 2.91 -0.68 """ c 2.85 2.90 2.91 <td< td=""><td>A 3 — V</td><td>2.05</td><td>2.06</td><td>2.14</td><td>2.15</td><td>2.16</td><td>2.16</td><td>2.10</td><td>2.08</td><td></td><td></td><td></td><td></td><td></td></td<>	A 3 — V	2.05	2.06	2.14	2.15	2.16	2.16	2.10	2.08					
" c 1.78 1.75 1.79 1.79 1.81 1.81 1.87 1.85 1.81 0 S 1 - V 3.01 3.04 3.05 3.04 2.92 2.89 2.86 2.88 2.96 -1.00 " a 2.96 2.99 2.96 2.92 2.86 2.85 2.84 2.88 2.91 -0.68 " b 2.85 2.85 2.91 2.95 3.06 3.05 2.97 2.95 2.95 -1.01 " c 2.87 2.89 3.05 3.13 3.19 3.09 2.94 2.90 3.01 -0.33 S 2 - V 2.83 2.88 3.00 3.02 3.09 3.02 2.91 2.86 2.95 -1.34 " a 2.83 2.84 2.85 2.88 2.93 2.91 2.89 2.88 2.88 2.88 -1.37 " b 2.98 2.95 2.90 2.85 2.84 2.87 2.92 2.95	<i>"</i> a	2.28	2.29	2.40	2.44	2.62	2,65	2.48						
S 1 — V 3.01 3.04 3.05 3.04 2.92 2.89 2.86 2.88 2.96 -1.00 " a 2.96 2.99 2.96 2.92 2.86 2.85 2.84 2.88 " b 2.85 2.85 2.91 2.95 3.06 3.05 2.97 2.95 " c 2.87 2.89 3.05 3.13 3.19 3.09 2.94 2.90 3.01 -0.33 S 2 — V 2.83 2.88 3.00 3.02 3.09 3.02 2.91 2.86 2.95 -1.34 " a 2.83 2.84 2.85 2.88 2.93 2.91 2.89 2.88 2.88 -1.37 " b 2.98 2.95 2.90 2.85 2.84 2.87 2.92 2.95 2.91 -0.68 " c 2.85 2.90 2.91 2.95 2.94 2.91 2.88 2.81 2.89 -1.37 S 3 —	// b	2.11	2.17	2.03	2.00	2.13	2.14	2.18	2.19					
"" a 2.96 2.99 2.96 2.92 2.86 2.85 2.84 2.88 2.91 -0.68 "" b 2.85 2.85 2.91 2.95 3.06 3.05 2.97 2.95 2.95 -1.01 "" c 2.87 2.89 3.05 3.13 3.19 3.09 2.94 2.90 3.01 -0.33 S 2 V 2.83 2.88 3.00 3.02 3.09 3.02 2.91 2.86 2.95 -1.34 " a 2.83 2.84 2.85 2.88 2.93 2.91 2.89 2.88 2.88 2.91 -1.37 " b 2.98 2.95 2.90 2.85 2.84 2.87 2.92 2.95 2.91 -0.68 " c 2.85 2.90 2.91 2.95 2.94 2.91 2.88 2.81 2.89 -1.37 S 3 - V 2.97 3.00 3.01 2.94 2.84 2.83 2.81 2.86 <td< td=""><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td>i</td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td></td<>		1				1	i							
" b 2.85 2.91 2.95 3.06 3.05 2.97 2.95 2.95 3.01 -1.01 " c 2.87 2.89 3.05 3.13 3.19 3.09 2.94 2.90 3.01 -0.33 S 2 V 2.83 2.88 3.00 3.02 3.09 3.02 2.91 2.86 2.95 -1.34 " a 2.83 2.84 2.85 2.88 2.93 2.91 2.89 2.88 2.88 2.88 -1.37 " b 2.98 2.95 2.90 2.85 2.84 2.87 2.92 2.95 2.91 -0.68 " c 2.85 2.90 2.91 2.95 2.94 2.91 2.88 2.81 2.89 -1.37 S 3 V 2.97 3.00 3.01 2.94 2.84 2.83 2.81 2.86 2.91 0 " a 2.91 2.97 2.95 2.89 2.87 2.85 2.86 2.87 2.86 2.8	s 1 - V	1												
"" c 2.87 2.89 3.05 3.13 3.19 3.09 2.94 2.90 3.01 -0.33 S 2 - V 2.83 2.88 3.00 3.02 3.09 3.02 2.91 2.86 2.95 -1.34 " a 2.83 2.84 2.85 2.88 2.93 2.91 2.89 2.88 2.88 -1.37 " b 2.98 2.95 2.90 2.85 2.84 2.87 2.92 2.95 2.91 -0.68 " c 2.85 2.90 2.91 2.95 2.94 2.91 2.88 2.81 2.89 -1.37 S 3 - V 2.97 3.00 3.01 2.94 2.84 2.83 2.81 2.86 2.91 0 " a 2.91 2.97 2.95 2.89 2.87 2.85 2.86 2.89 2.87 -0.69 " b 2.90 2.87 2.85 2.86 2.87 2.86 2.88 2.87 -0.69 <td>_</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_				1									
S 2 V 2.83 2.88 3.00 3.02 3.09 3.02 2.91 2.86 2.95 -1.34 " a 2.83 2.84 2.85 2.88 2.93 2.91 2.89 2.88 2.88 -1.37 " b 2.98 2.95 2.90 2.85 2.84 2.87 2.92 2.95 2.91 -0.68 " c 2.85 2.90 2.91 2.95 2.94 2.91 2.88 2.81 2.89 -1.37 S 3 - V 2.97 3.00 3.01 2.94 2.84 2.83 2.81 2.86 2.91 0 " a 2.91 2.97 2.95 2.89 2.87 2.85 2.86 2.90 0 " b 2.90 2.87 2.85 2.86 2.87 2.86 2.88 2.87 -0.69														
"" a 2.83 2.84 2.85 2.88 2.93 2.91 2.89 2.88 2.88 -1.37 "" b 2.98 2.95 2.90 2.85 2.84 2.87 2.92 2.95 2.91 -0.68 "" c 2.85 2.90 2.91 2.95 2.94 2.91 2.88 2.81 2.89 -1.37 S 3 - V 2.97 3.00 3.01 2.94 2.84 2.83 2.81 2.86 2.91 0 "" a 2.91 2.97 2.95 2.89 2.87 2.85 2.86 2.90 0 "" b 2.90 2.87 2.85 2.86 2.88 2.86 2.87 -0.69								ļ	1			1		
""" b 2.98 2.95 2.90 2.85 2.84 2.87 2.92 2.95 2.91 -0.68 """ c 2.85 2.90 2.91 2.95 2.94 2.91 2.88 2.81 2.89 -1.37 S 3	i		1						-					
"" c 2.85 2.90 2.91 2.95 2.94 2.91 2.88 2.81 2.89 -1.37 S 3 - V 2.97 3.00 3.01 2.94 2.84 2.83 2.81 2.86 2.91 0 "" a 2.91 2.91 2.95 2.89 2.87 2.85 2.86 2.80 2.90 0 "" b 2.90 2.87 2.85 2.86 2.87 2.86 2.88 2.87 -0.69				ļ				i						ļ
S 3 — V 2.97 3.00 3.01 2.94 2.84 2.83 2.81 2.86 2.91 0 " a 2.91 2.91 2.97 2.95 2.89 2.87 2.85 2.86 2.86 2.90 0 " b 2.90 2.87 2.88 2.86 2.87 2.86 2.88 2.87 -0.69						1			1					ļ
" a 2.91 2.91 2.97 2.95 2.89 2.87 2.85 2.86 " b 2.90 2.87 2.85 2.88 2.86 2.87 2.86 2.88 2.86 2.87 -0.69														Į.
" b 2.90 2.87 2.88 2.88 2.86 2.87 2.88 2.88 2.89 2.89 -0.69					- (i						l i		
				1	ł		1					1		
"				1										
	<i>"</i>	2.88	4.91	2.91	4.01	4,03	4.04	2.01	4.04			2.00	0.00	
											!			

4	年	目			测定	年月日	昭和	42年 6	月15日~	~6月1	17日 }	温度 22	C 湿度	70%
試	験 体		厚	7 2	(mm)	測	定	点 看	番 号	크		立	変化率 (%)	
記	号	1	2	3	4	5	6	7	8	9	10	均	膨脹+ 収縮-	備考
РЕ	1 V	2.17	2.20	2.24	2.22	2.27	2.20	2.08	2.12			2.19	0	上記条件 にて状態 調節24時
//	a	2.05	2.06	2.04	2.16	2.51	2,53	2.31	2.16			2.23	0	調節24時 間以上
11	b	1.63	1.56	1.70	1.77	2.03	2.05	2.00	1.94			1.84		以下同じ
PΕ	2-V	2.09	2.12	2.27	2.29	2.40	2.44	2.36	2.27			2.28	0	
//	a	1.29	1.11	1.39	1.44	1.45	1.37	1.25	1.31			1.33	-1.48	
//	b	1.57	1.55	1.34	1.38	1.30	1.06	1.44	1.56			1.40	-0.71	
PΕ	3-V	1.80	1.82	1.60	1.75	1.70	1.73	1.91	1.95			1.78	-0.56	
//	a	1.05	0.93	1.11	1.20	1.04	1.10	0.90	1.00			1.04	-1.89	
//	Ъ	1.06	1.16	1.08	1.08	1.20	1.12	0.99	1.02			1.09	0	
//	С	1.39	1.42	1.35	1.31	1.09	1.06	1.14	1.10			1.23	0	
PΕ	4 - V	2.07	2.10	2.01	1.89	1.92	1.99	2.00	2.13			2.01	-2.43	
//	a	1.13	1.24	1.22	1.06	1.21	1.13	1.11	1.21			1.16	-1.69	
//	Ъ	1.19	1.13	0.99	1.11	1.27	1.21	1.30	1.33			1.19	-2.46	
PE	5 — V	2.08	2.07	2.00	1.99	2.03	2.01	2.21	2.05			2.06	-1.90	
//	a	1.20	1.10	1.19	1.13	1.18	1.25	1.24	1.30			1.20	-2.44	
//	b	1.11	1.16	1.20	1.27	1.39	1.35	1,33	1.27		İ	1.26	-2.33	
//	c	1.40	1.56	1.32	1.25	1.37	1.40	1.45	1.32			1.38	-1.43	
РЕ	V - V	2.02	2.05	2.10	2.07	2.22	2.22	2.17	2.00			2.11	0	
//	a	1.31	1.13	1.02	1.26	1.22	1.30	1.30	1.18			1.22	-1.61	計略 比処
//	b													試験片紛 失のため 測定せず
//	. с	1.34	1.36	1.28	1.34	1.38	1.43	1.41	1.34			1.36	-1.45	測定せず
VС	1-V	2.12	2.07	2.07	2.07	2.10	2.17	2.20	2.20			2.13	-0.47	
//	a	2.03	2.09	2.18	2.18	2.16	2.01	1.97	2.17			2.10	-0.47	
//	Ъ	2.08	2.16	2.16	2.23	2.18	2.13	2.01	2.00			2.12	0	
//	С	2.07	2.12	2.13	2.22	2.18	2.08	2.01	2.03			2.11	+0.48	
V C	2 — V	2.10	2.13	2.12	2.12	2.12	2.13	2.12	2.12			2.12	o	
//	а	2.85	2.93	2.97	2.97	3.02	2.99	2.94	2.83			2.94	-0.34	
//	b	1.04	1.04	1.04	1.04	1.04	1.03	1.04	1.04			1.04	-0.95	
V C	3 — V	2.00	2.03	2.08	2.07	2.01	2.00	1.94	1.93			2.01	o	
//	a	2.03	2.03	1.97	1.97	1.91	1.91	1.94	1.97			1.97	o	
//	b	1.61	1.58	1.52	1.49	1.54	1.56	1.65	1.67			1.58	0	
//	С	2.05	2.04	2.01	2.02	2.05	2.05	2.08	2.07			2.05	o	
V C	4 — V	3.04	3,05	3.10	3.11	2.99	2.98	2.94	2.92			3.02	-0.66	
//	a	1.54	1.57	1.53	1.48	1.48	1.52	1.56	1.54			1.53	-1.92	
//	b	1.75	1.78	1.76	1.66	1.66	1.78	1.80	1.78			1.75	o	
// T	C 1 V	1.91	1.89	2.05	1.98	1.98	2.10	1.99	1.95			1.98	+2.06	
(VC	1 - V $5 - V$	1.73	1.87	1.89	1.92	1.91	1.92	1.89	1.78			1.86	-1.06	
(VC	2 - A $5 - a$	1.97	1.95	1.90	1.87	1.91	1.94	1.95	2.03			1.94	-0.51	
Т —	$ \begin{array}{c c} 2 - B \\ 5 - b \end{array} $	1.91	1.88	1.87	1.91	1.88	1.88	1.88	1.91			1.89	-0.53	

5	年	目			測定	年月日	昭和	143年 6	月13日	~6月:	19日 沿	温度 23	C 湿度	60%
斌	験体		厚	Į 2	(mm)	測	定	点	番 5	클		平	変化率 (%)	
記	号	1	2	3	4	5	6	7	8	9	10	均	膨脹+収縮-	備考
РΕ	1 - V	2.17	2,20	2.24	2,23	$\begin{bmatrix} 2.27 \end{bmatrix}$	2.20	2.08	2.12			2.19	0	上記条件にて状態
//	а	2.05	2.06	2.04	2.15		2,54					2,23		調節24時 間以上
//	b	1.64	1.56	1.70	1.77	2.02	2.05	2.00				1.84		以下同じ
PΕ	2-V	2.09	2.12	2.27	2.29	2.40	2.43	2.36	2.28			2.28	0	
11	a	1.28	1.11	1.38	1.44	1.45	1.38	1.24	1.31			1.32	-2.22	
//	b	1.57	1.54	1.35	1.38	1.30	1.04	1.43	1.56	1		1.40	-0.71	
PΕ	3 V	1.80	1.82	1.60	1.74	1.69	1.72	1.91	1.95			1.78	-0.56	
//	a	1.05	0.92	1.11	1.19	1.04	1.09	0.91	1.00			1.04	-1.89	
"	b	1.04	1.16	1.07	1.08	1.20	1.11	0.99	1.01			1.08	-0.92	
"	С	1.39	1.42	1.35	1.29	1.08	1.05	1.13	1.09			1.23	0	
PΕ	4 — V	2.05	2.09	2.00	1.89	1.89	1.97	1.99	2.12			2.00	-2.91	
//	a	1.11	1.23	1.20	1,05	1.20	1.11	1.08	1.19			1.15	-2.54	
//	b	1.18	1.13	0.99	1.09	1.25	1.19	1.29	1.31			1.18	-3.28	
PΕ	5 — V	2,06	2.07	2.00	1.97	2.01	1.99	2.20	2.03			2.04	-2.86	
"	a	1.18	1.08	1.19	1.11	1.16	1.24	1.23	1.28			1.18	-4.07	
//	b	1.10	1.15	1.19	1.26	1.38	1.33	1.31	1.26			1.25	-3.10	
"	c	1.39	1.55	1.32	1.25	1.36	1.39	1.44	1.31			1.38	-1.43	
PΕ	6 — V	2.01	2.04	2.10	2.07	2.21	2.14	2.15	2.00			2.09	-0.95	
11	а	1.31	1.13	1.02	1.26	1.20	1.27	1.29	1.18			1.21	-2.42	SALEA II AR
"	b													試験片紛 失のため 測定せず
//	С	1.34	1.35	1.29	1.34	1.38	1.42	1.41	1.34			1.36	-1.45	測定せず
V C	1-V	2.12	2.07	2.07	2.07	2.11	2.17	2.20	2.19			2,13	-0.47	
//	a	2.02	2.08	2.18	2.17	2.16	2.01	1.97	2.17			2.10	-0.47	
//	b	2.08	2.16	2.16	2,23	2.18	2.13	2.01	1.99			2.12	0	
//	С	2.07	2.12	2.13	2.22	2.18	2.08	2.01	2.03			2.11	+0.48	
VС	2 — V	2.10	2.13	2.13	2.12	2.12	2.12	2.11	2.12			2.12	o	
"	a	2.85	2.93	2.97	2.97	. 3.02	2.99	2.95	2.83			2.94	-0.34	
//	b	1.04	1.04	1.04	1.04	1.04	1.04	1.05	1.04			1.04	-0.95	
VС	$3-\Lambda$	1.99	2.03	2.08	2.07	2.01	2.00	1.94	1.93			2,01	0	
11	a	2.02	2.03	1.97	1.96	1.91	1.91	1,93	1.97			1.96	-0.51	
"	b	1.60	1.58	1.51	1.49	1.53	1.55	1.65	1.67			1.57	-0.63	
"	c	2.05	2.04	2.01	2.02	2.05	2.05	2.08	2.07			2,05	О	
V C	4 — V	3.03	3.04	3.08	3.09	2.98	2.97	2.94	2.90			3.00	-1.32	
//	a	1.54	1.57	1.52	1.47	1.47	1.52	1.55	1.53			1.52	-2.56	
//	Ь	1.75	1.78	1.77	1.66	1.66	1.78	1.80	1.78			1.75	0	
// T	C 1 37	1.92	1.89	2.05	1.98	1.98	2.10	2.00	1.95			1.98	+2.06	
(VC	$\begin{pmatrix} 1 - V \\ 5 - V \end{pmatrix}$	1.72	1.87	1.89	1.92	1.91	1.92	1.88	1.78			1.86	-1.06	
T - (VC)	$\begin{array}{c} 2 - A \\ 5 - a \end{array}$	1.97	1.95	1.89	1.87	1.91	1.94	1.95	2.02			1.94	-0.51	
T —	$ \begin{bmatrix} 2 - B \\ 5 - b \end{bmatrix} $	1.91	1.88	1.87	1.91	1.88	1.87	1.88	1.91			1.89	-0.53	

武 験 体			<u> </u>	(mm)	測 5		点 番	新 号	Ļ.	-	平	変化率	All de
記号	1	2	3	4	5	6	7	8	9	10	均	膨脹+ 収縮-	備考
T-2-C $(VC 5-c)$	1.78	1.77	1.77	1.80	1.78	1.77	1.78	1.74			1.77 2.04	-0.56	上記条件 にて状態 調節24時 間以上
V C 6-V	2.08	2.08	2.06	2.06	2.00	1.98	2.00	2.02			!		
// a	2.25	2.27	2.22	2.15	2.19	2.16 1.99	2.22 1.98	2.25 1.98			2.21 2.00	-0.40	以下同じ
// b	2.05	2.00	2.04	1.99 2.02	1.95 2.03	2.03	2.07	2.07			2.00	0.30	
// C	2.05	2,05	2.03	2.00	2.03	2.03	2.00	1.99			2.04	-1.48	
V C 7-V	1.97	1.96	1.97	1.92		1.95	1.97	1.94			1.95	1	
// a	1.95	1.97	1.94	1.92	1.92 2.01	2.03	2.03	2.03			2.02	+1.51	
// b	2.04	2.04	2.01	2.14	2.20	2.23	2.19	2.15			2.02	-1.38	
// C	2.06	2.04	2.11	1	ļ	1.92	1.92	1.90			1.92	1.00	
V C 8-V	1.92	1.92	1.93 2.83	1.92 2.81	1.93 2.82	2.81	2.86	2.86			2.84	C	1
// a	2.86	2.87 0.91	0.95	0.96	0.97	0.97	0.91	0.88			0.93		
// b	0.90			2.04	1.93	1.91	1.91	1.98			2.00		
A1 - V	2.05	2.10	2.10	2.22	2.19	2.21	2.30	2.33			2.27		
// a	2.34	2.32	2.23 2.63	$\frac{2.22}{2.62}$	2.13	2.21 2.67	2.79	2.78			2.68		Ì
// b	2.68	2.66	5.82	5.78	5.73	5.70	5.70	5.70			5,76		
// C	5.81	5.86	.	2.18	2.30	2.36	2.36	2.26			2.18	l	ı
A 2 - V	1.96		2.10	,		2.15	2.16	2.20			1.80		
// a	1.60	1.50 2.58	1.44 2.91	1.52 3.10	2.01 3.25	3, 15	2.10	2.72			2.89	Į.	
// b	2.54		6.29	6.29	6.26	6.26	!	6.41			6.34		1
// C	6.44		2.13	2.14	2.16	2.16	2.10	2.07			2.11		
A3 — V	2.04	'	2.13	$\frac{2.14}{2.44}$	2.62	2.64	2.48	2.39			2.44		
// a // b	2.28		2.02	1.99	2.02	2.13	2,40	2.00			2,09		i
// b	1.77	1.75	1.78	1.79	1.81	1.81	1.87	1.84			1.80	1	
s 1 - v	2.98		3.02	3.01	2.89	2.86	i	2.86			2.93		
// a	2.93		1 1	2.89	2.82			2,85			2.88	ľ	
″ b	2.82	l		2.92				2.92			2,92		
" C	2.84			3.10				2.86		ŀ	2.98		1
s 2 - V	2.79		i i	2.98			l i				2.91		i
<i>y</i> a	2.80			2.84				2,85			2.84		
" b	2.96			2.83			l	2.92			2.89		7
" C	2.82			2.92			1	2.79			2.87	1	5
s 3 - V	2.96		1					2,84			2.87	-1.3	7
<i>"</i> a	2.88			2.92					İ		2.88	-0.69	9
″ b	2.88										2.85	-1.38	3
" c	2,87				Į.				1		2.84	-1.0	5
0	-,51												
•													
]			1		<u> </u>

10. ソリ率ネジレ率の経年変化

暴露前

測定年月日 · 昭和38年5月27日 温度 23℃ 湿度 65%

	政 別		測定年	-月日 · 昭和38年	5月27日 温度 23	℃ 湿度 65%
試	験 体	最大ソリ	ソリ率(%)	最大ネジレ	ネジレ率(%)	/# -t/.
記	号	(mm)	W 1,000	(mm)	W 1,000	備考
PΕ	1-V	1	1.22	1	0.62	状態調節
//	a	0	0	1	0.63	10日以上
"	ь	0	o	0	0	以下同じ
PΕ	2-V	3	3.62	3	1.83	
//	a	6	7,28	2.5	1.55	
//	b	5	6.07	3	1.83	
PΕ	3 — V	1	1.22	1	0.61	
"	a	4	4.92	3	1.84	
//	b	6	7.34	5	3.06	
"	c	0	0	1	0.61	
PΕ	4 — V	0	0	0	0	
//	a	0	0	0	0	
//	Ъ	1	1.21	0	0	
PΕ	5 — V	0	0	1	0.61	
//	a	1	1.21	0	0	
"	b	0	0	0	0	
11	С	2	2.42	5	3.02	
PΕ	6 — V	2	2.45	2	1.23	
//	а	2	2,45	1	0.61	
"	р	2	2.45	1	0.61	
<i>"</i>	c	1	1.22	1	0.61	
V C	1-V	0	0	1	0.62	
//	a	0	0	1	0.62	
"	b	0	0	0	0	
<i>"</i>	C	0	0	0	0	
V C	2-V	0	0	1	0.62	
<i>11</i>	a b	0	0	1	0.62	
V C	3 — V	1	1.23	0	0	
<i>"</i>	3 — v a	1 0	1.23	0	0	
" "	b	12	14.83	1	0.62	
//	c	$\begin{bmatrix} 12 \\ 2 \end{bmatrix}$	2.46	7	4.31	
v c	$_{4}$ – $_{\rm V}$	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	2.46	2	1.23	
"	a	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	2.45	2 1	1.23 0.62	
"	ъ	3	3.69	1		
//	c	1	1.23	0.5	0.62 0.31	
т —	1-v	0.5	0.61	0.5	0.31	
T	2 - A	0				
(V C T —	5-V) 2-A 5-a) 2-B		0	0	0	
(v c	5-b)	0	0	0	0	

試 験 体	最大ソリ	ソリ率(%)	最大ネジレ	ネジレ率(%)	備 考
記 号	(mm)	W 1,000	(mm)	W 1,000	
T-2-C	2	2,46	1	0.62	状態調節
$(VC^{5}-c)$ $VC^{6}-V$	0	0	0,5	0.31	10日以上
// a	0.5	0.61	1	0.62	以下同じ
// b	1	1.23	1	0,62	
// C	1	1.23	1	0.61	
v c 7-v	0.5	0.62	1 -	0.62	
<i>"</i> а	0	0	1	0,62	
// b	1	1.23	0.5	0.31	
// c	0.5	0.62	0	0	
vc 8-v	0	0	0	0	
″ a	0	0	0	0	
// b	0	0	0	0	
A 1 - V	0	0	0	0	
″ a	0	0	0	0	
// b	0	0	0	0	
// c	0	0	1	0.62	
A 2 — V	0	0	0	0	
" a	0	0	1.	0.62	
// b	0	0	1	0.63	
// c	.0	0	1	0.62	
A3 — V	0	0	1	0.62	
// a	0	0	0	0	
// b	0	0	0	0	
// C	1	1.24	1	0.62	
s 1 - V	0	0	0	0	
″ a	0	0	0	0	
// b	0	0	0	0	
// C	0	0	0	0 0	
s 2 - V	0	0	0	0	
<i>n</i> a	0	0	0 0	0	
// b	0	0	0	0	
// C	0	0	0	0	
s 3 - V	0	0	0	0	
<i>"</i> а	0	0	0	0	
// b	0	0	0	0	
// C	0				
					<u> </u>

1 年 目

測定年月日 昭和39年6月15日 温度 23℃ 湿度 65%

1	年	目		測定年	月日 昭和39年6	5月15日 温度 23°	C 湿度 65%
試	験	体	最大ソリ	ソリ率 (%)	最大ネジレ	ネジレ率(%)	/#: -1 /.
記		号	(mm)	W 1,000	(mm)	W 1,000	備考
РЕ	1-	-V	1.0	1.23	1.5	0.93	上記条件にて 状態調節24時
//		a	1.0	1.23	1.0	0.62	間以上
"		b	0.5	0.62	2.0	1.22	以下同じ
РЕ	2	-V	3.5	4.22	5.0	3.01	
//		a	4.0	4.85	6.0	3.64	
//		Ь	5.5	6.65	5.0	3.03	
PΕ	3 —	-V	1.0	1.22	1.5	0.92	
//		a	4.0	4.89	5.0	3.07	
//		b	4.0	4.90	1.5	0.97	
//		c	2.0	2.42	1.0	0.61	
РЕ	4-	-V .	1.0	1.21	0.5	0.30	
//		a	1.5	1.82	0.5	0.30	
"		b	1.0	1.21	0	0	
PΕ	5 —	-V	1.0	1.21	1.0	0.60	
//		a	2.0	2.43	0	0	
//		b	0.5	0.61	0	0	
//		С	5.5	6,63	10.0	6.04	
PΕ	6 —	-V	2.0	2.43	2.5	1.52	
//		a	2.5	3.05	1.5	0.91	
//		b	2.5	3.04	3.0	1.83	
//		С	1.0	1.22	2.0	1.22	
V C	1 —	-V	0.5	0.61	0	0	
//		a	0.5	0.61	0.5	0.31	
//		b	0.5	. 0.61	0	0	
//		c	1.0	1.23	1.0	0.61	
V C	2 —	-V	0.5	0.62	0	0	
//		a	0.5	0.62	0	0	
//		Ъ	1.0	1.23	1.0	0.61	
V C	3 —	-V	1.5	1.84	1.5	0.92	
//		a	1.0	1.23	1.0	0.62	
//		b	8.0	9.80	6.0	3.65	
//		С	2.0	2.46	3.0	1,83	
VС	4		1.0	1.22	0	0	
//		a -	1.0	1,22	1.5	0.92	
"		b	1.0	1.22	1.0	0.61	
″ Т—	· 1 —	c V	3.5	4.32	2.0	1.23	
(VC	5 -7	V)	1.0	1.23	0.5	0.31	
(VC	2 — 5 – 3	a)	0.5	0.61	0.5	0.30	
T — (V C	2 — 5 – 1	B b)	0.5	0.61	0	0	

試	 験	体	最大ソリ	ソリ率 (%)	最大ネジレ	ネジレ率(%)	
記		号	(mm)	W 1,000	(mm)	W 1,000	備 考
記 T- (V V C "" V C	- 2 - C 5-C 6-	号 - C - C - V a b c - V a b c	(mm) 2.0 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.5 1.0	W 1,000 2.45 0.61 0.61 1.23 1.22 1.22 1.22 0.61 0.61 1.23	(mm) 3.0 0 1.0 1.0 2.0 1.0 1.0 0 1.5 1.5	W 1,000 1.83 0 0.62 0.62 1.23 0.62 0.62 0.62 0.62 0.91	備 考 上記条件にて 状態調節24時 間以上 以下同じ
A 1 // // // A 2 // // // // // // // // //		b V a b c V a b	2.0 1.5 0 0.5 0 0 0.5	2.46 1.85 0 0.62 0 0 0.62	4.0 1.5 0 0 0 1.0 0.5	2.41 0.91 0 0 0 0.62 0.31	
" A 3 " " " " " " " " " " " " " " " " "	ı — 2 —	c V a b c V a b c V a b c V a b c	0 0.5 0.5 1.0 0.5 0 0 0.5 0 0 0.5 0 0	0 0.62 0.62 1.24 0.62 0 0 1.60 0 0 0 0 0 0	0 0.5 0 1.5 0 0.5 0.5 0 1.0 0.5 0 1.0 0.5 0	0 0.31 0 0.91 0 0.80 0.80 0 1.60 0.80 0 0.80 0 0.80	
"		C					
							<u> </u>

2 年 目

測定年月日 昭和40年6月1日 温度 23℃ 湿度 65%

2	年 目		測定年	月日 昭和40年6	5月1日 温度 23%	C 湿度 65%
試	験 体	最大ソリ	ソリ率(%)	最大ネジレ	ネジレ率(%)	備考
記	号	(mm)	W 1,000	(mm)	W 1,000	/
PΕ	1 — V	0	0	0.5	0.31	上記条件にて 状態調節24時
11	a	0	0	1.5	0.92	間以上
"	Ъ	1.0	1.23	1,5	0.92	以下同じ
РЕ	2-V	4.0	4.82	6.5	3.92	
//	a	2.0	2.43	7.0	4.25	
//	b	5.0	6.05	5.0	3,02	
PΕ	3 — V	1.0	1,22	1.5	0.92	
//	а	4.0	4.90	4.0	2.44	
//	b	3.5	4.29	4.0	2.45	
//	c	1.5	1.82	1.5	0.91	
PΕ	4-V	0.5	0.60	0.5	0.30	
"	a	1.5	1.82	2.5	1.52	
//	Ъ	2.0	2.42	1.0	0.61	
PΕ	5 — V	1.0	1.21	1.0	0.61	
"	a	2.0	2.43	1.5	0.91	
//	Ъ	0.5	0.61	0.5	0.30	
//	С	4.5	5.43	8.5	5.13	
PΕ	6 — V	1.5	1.83	3.5	2.13	
//	a	2.5	3.04	2.0	1.22	手段は外生のよ
11	b					試験片紛失のた め測定出来ず
//	С	2.0	2.44	3.0	1.83	-2000000000
V C	1 — V	0	0	0	0	
"	a	0.5	0.61	0.5	0.31	
"	Ъ	0.5	0.61	0.5	0.31	
//	c	0	0	0.5	0.31	
V C		0.5	0.62	0	0	
"	a	0	0	0.5	0.31	
// V.C	d v — v	1.0	1.23	0	0	
V C	3 — V	1.5	1.84	2.0	1.23	
"	a L	1.0	1.23	0.5	0.31	
"	b	6.5	8.00	6.0	3.69	
// V/C	c 4 V	2.0	2,46	3.5	2.15	
V C	4 ─ V a	1.0	1.23	1.5	0.92	
"	a b	1.0	1.23	1.0	0.61	
"	c	3.0	1.23 3.71	1.5	0.92	
т —	1 — V	1.0	1.23	4.0 0.5	2.47	
(VC T-	5 -V) - 2 — A				0.31	
(V (2 - A 5 - a 2 - B	0.5	0.61	0	0	
(v c	(2-B)	0	0	0	0	

試 験 体	最大ソリ	ソリ率 (%)	最大ネジレ	ネジレ率(%)	備考
記 号	(min)	W 1,000	(mm)	W 1,000	_ VIII ~77
$\begin{array}{c c} T-2-C \\ (VC 5-c) \end{array}$	1.5	1.84	3.0	1.84	上記条件にて 状態調節24時
VC 6-V	0	0	0.5	0.31	状態調節24時 間以上
и a	0.5	0.61	0.5	0.31	以下同じ
// b	0.5	0.61	0.5	0.31	
// c	1.0	1.23	1.5	0.92	
V C 7V	1.0	1.23	1.5	0.92	
n a	1,5	1.84	2.0	1.23	
// b	1.0	1.23	1.5	0.92	
// c	0	0	0	0	
v c 8-v	0.5	0.61	0.5	0.31	
″ a	0	0	0.5	0.31	
// b	1.0	1.23	1.0	0.61	
A1 — V	1.0	1.23	0	0	
″ a	0	0	0	О	
// b	0,5	0.62	0	0	
// c	0.5	0.62	0	0	
A 2 - V	0.5	0.62	0	0	
∥ a	0	0	0	0	
" b	0.5	0.62	0	0	
<i>и</i> с	0	0	0.5	0.31	
A3 - V	0	0	0	0	
″ a	0.5	0.62	0.5	0.31	
″ b	2.0	2.47	3.0	1.86	
// c	0.5	0.62	0	0	
s 1 - v	0	0	0.5	0.80	
″ a	0.5	1.60	0.5	0.80	
// b	0.5	1.59	0	0	
// C	0	0	1.0	1.59	
s 2 - v	0	0	0	0	
″ a	0	0	0	0	
// b	0.5	1.60	0.5	0.80	
// C	0	. 0	0.5	0.80	
s 3 - v	0.5	1.59	0.5	0.79	
″ a	0	0	0.5	0.80	
<i>"</i> b	0	0	0	0	
// c	0.5	1.59	0.5	0.79	

^	

測定年月日 昭和41年6月7日 温度 23℃ 湿度 65%

3	年 目		測定年	·月日 昭和41年 6	月 (日 - 温度 23 t	。
試	験 体	最大ソリ	ソリ率 (%)	最大ネジレ	ネジレ率(%)	備考
記	号	(mm)	W 1,000	(mm)	W 1,000	WH 5
P E	1-V	1.0	1.23	0.5	0.31	上記条件にて 状態調節24時
//	a	0.5	0.62	1.5	0.92	間以上
"	ь	0.5	0.62	1.0	0.62	以下同条件
PΕ		4.0	4.82	6.0	3,61	
"	a	2.5	3.04	7.0	4.25	
//	Ъ	5.5	6.65	5.0	3.02	
PΕ	3 — V	1.0	1.22	2.0	1.22	
"	a	4.0	4.89	4.0	2.44	
11	b	4.0	4.90	3.5	2.14	
"	c	1.0	1.21	1.5	0.91	
PΕ	4 — V	0.5	0.60	0.5	0.30	
"	a	2.0	2.43	2.5	1.52	
"	b	2.0	2.42	1.5	0.91	
РЕ	5 — V	1.0	1.21	1.0	0.61	
"	a	2.0	2.43	2.0	1.21	
"	b	0.5	0.61	0.5	0.30	
"	С	4.0	4.82	8.0	4.82	
PΕ	6 — V	2.0	2.44	4.0	2.44	
//	a	3.0	3.66	2.5	1.52	= hmh 11 cm 11 - 1
11	b					試験片紛失のため測定出来ず
//	c	2.0	2.45	2.5	1.53	の例だ山木り
V C	1-V	0.5	0.61	0	0	
"	a	1.0	1.23	1.0	0.61	
//	b	0.5	0.61	0.5	0.31	
"	c	0	0	1.0	0.62	
V C	2 — V	0.5	0.62	0.5	0.31	
"	a	0.5	0.62	0.5	0.31	
//	b	1.5	1.84	0.5	0.31	
V C	3-V	1.5	1.84	2.0	1.23	
//	a	1.0	1.23	1.0	0.61	
//	b	6.0	7.38	5.5	3.38	
//	С	2.0	2.46	4.0	2.46	
V C	4 V	1.0	1.22	2.0	1.22	
"	a	1.0	1.23	2.0	1.23	
//	b	2.0	2.46	3.5	2.15	
″ Т-	- 1 — V	3.0	3.71	6.5	4.02	
(V (5-V)	1.0	1.23	1.5	0.92	
(V($\begin{array}{ccc} -2 - A \\ 5 - a \end{array}$	0	0	0	0	
Т —	$\begin{array}{ccc} -2 - B \\ 5 - b \end{array}$	1.0	1.23	0.5	0.31	

試 験 体	最大ソリ	ソリ率 (%)	最大ネジレ	ネジレ率(%)	/#: / /
記号	(mm)	W 1,000	(nm)	W 1,000	備考
T-2-C (VC 5-c) VC 6-V " a	2.0 0.5 1.0 1.0	2.45 0.61 1.23 1.23	3.0 0 1.0 1.5	1.84 0 0.61 0.92	上記条件にて 状態調節24時 間以上 以下同条件
" c VC 7V " a " b	1.0 1.0 2.0 1.0	1.23 1.23 2.46 1.23	2.0 2.0 3.5 3.0	1.23 1.23 2.15 1.84	
" c VC 8V " a " b A1 V	0.5 0.5 0 1.0 2.0	0.61 0.61 0 1.23 2.47	0.5 0 0 1.0 3.5	0.31 0 0 0.61 2.16	
# 1 — V # a # b # c # 2 — V	0.5 0.5 0	0.61 0.62 0	0.5 0 0.5 0.5	0.31 0 0.31 0.31	
" a " b " c A 3 — V	0.5 0 0 0.5	0.62 0 0 0.62	0,5 0 0 1.5	0.31 0 0 0.93	
" a " b " c S1 — V	0.5 2.0 0 0.5	0.62 2.47 0 1.60	0.5 5.0 2.0 0.5	0.31 3.09 1.24 0.80	
" a " b " c S 2 — V " a	0.5 0.5 0 0.5	1.60 1.59 0 1.60	0.5 0.5 1.0 0.5 0.5	0.80 0.80 1.59 0.80	
" b " c S 3 — V " a	1.0 0 0 0	3.19 0 0 0	1.0 0.5 0.5 1.0	1.60 0.80 0.79 1.59	
// b // c	0.5	0 1.59	0,5 1.0	0.80 1.59	

4 年 目

測定年月日 昭和42年6月16日 温度 22℃ 湿度 70%

放験 体	4	+ B		侧足十	·刀口 PD/P42十() 月10日 血皮 22	C 强度 10/0
記 号	試	験 体	最大ソリ	ソリ率 (%)	最大ネジレ	ネジレ率(%)	/#: - I V.
# a 1.0 1.23 1.0 0.62	記	号	, (mm)	W 1,000	(mm)	W 1,000	
# a 1.0 1.23 1.0 0.62	——————————————————————————————————————	1 V	0.5	0.61	1.0	0.61	上記条件にて 状態調節24時
プロスター 2.0 2.47 4.5 2.78 以下向じ PE 2V 5.0 6.02 7.0 4.22 プロスター 5.0 6.02 7.0 4.22 プロスター 5.0 2.43 8.0 4.86 グロスター 1.5 1.83 1.5 0.92 グロスター 1.5 9.18 7.0 4.28 グロスター 2.0 2.42 1.5 0.91 PE 4-V 0.5 0.60 0.5 0.30 グロスター 3.0 3.64 1.5 0.91 PE 5-V 1.0 1.21 2.0 1.21 グロスター 3.0 3.64 3.0 1.82 グロスター 4.87 2.0 1.21 グロスター 2.0 2.44 3.5 2.13 グロスター 2.0 2.44 3.5 2.13 グロスター 2.0 2.45 3.0 1.83 VC 1-V 0.5 0.61 0.5 0.31 グロスター 0.5 0.61 1.0 0.61						İ	間以上
PE 2-V 5.0 6.02 7.0 4.22 ッ a 2.0 2.43 8.0 4.86 ッ b 6.0 7.25 5.0 3.02 PE 3-V 1.5 1.83 1.5 0.92 ッ a 7.5 9.18 7.0 4.28 ッ b 6.0 7.35 5.0 3.06 ッ c 2.0 2.42 1.5 0.91 PE 4-V 0.5 0.60 0.5 0.30 ッ a 3.5 4.25 3.0 1.82 ッ b 3.0 3.64 1.5 0.91 PE 5-V 1.0 1.21 2.0 1.21 ッ a 3.5 4.25 3.0 1.82 ッ b 0.5 0.61 0.5 0.30 ッ c 5.0 6.03 9.0 5.43 PE 6-V 2.0 2.44 3.5 2.13 ッ a 4.0 4.87 2.0 1.22 ッ b 0.5 0.61 0.5 0.31 ッ a 1.0 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>以下同じ</td>			1			1	以下同じ
" a b 6.0 2.43 8.0 4.86 " b 6.0 7.25 5.0 3.02 PE 3-V 1.5 1.83 1.5 0.92 " a 7.5 9.18 7.0 4.28 " b 6.0 7.35 5.0 3.06 " c 2.0 2.42 1.5 0.91 PE 4-V 0.5 0.60 0.5 0.30 " a 3.5 4.25 3.0 1.82 " b 3.0 3.64 1.5 0.91 PE 5-V 1.0 1.21 2.0 1.21 " a 3.0 3.64 3.0 1.82 " b 0.5 0.61 0.5 0.30 " c 5.0 6.03 9.0 5.43 PE 6-V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.22 " b " a 4.0 4.87 2.0 1.23 " b " a 1.0 1.23 2.0 1.23 " b " a 1.0 1.23 1.0 0.61 " c 2.0 2.45 3.0 1.83 VC 2-V 0						1	
" b 6.0 7.25 5.0 3.02 PE 3-V 1.5 1.83 1.5 0.92 " a 7.5 9.18 7.0 4.28 " b 6.0 7.35 5.0 3.06 " c 2.0 2.42 1.5 0.91 PE 4-V 0.5 0.60 0.5 0.30 " a 3.5 4.25 3.0 1.82 " b 3.0 3.64 1.5 0.91 PE 5-V 1.0 1.21 2.0 1.21 " a 3.0 3.64 3.0 1.82 " b 0.5 0.61 0.5 0.30 " c 5.0 6.03 9.0 5.43 PE 6-V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.22 " b 0.5 0.61 0.5 0.31 " a 1.0 1.23 1.0 0.61 " a 1.0 1.23 1.0 0.61 " a 0.5						ļ	
アE 3-V 1.5 1.83 1.5 0.92						ţ	
" a b b 6.0 7.35 5.0 3.06 " c 2.0 2.42 1.5 0.91 PE 4-V 0.5 0.60 0.5 0.30 " a 3.5 4.25 3.0 1.82 " b 3.0 3.64 1.5 0.91 PE 5-V 1.0 1.21 2.0 1.21 " a 3.0 3.64 3.0 1.82 " b 0.5 0.61 0.5 0.30 " c 5.0 6.03 9.0 5.43 PE 6-V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.22 " b 7 6 0.5 0.61 0.5 0.31 " a 1.0 1.23 2.0 1.23 " b 7 6 0.5 0.61 0.5 0.31 " a 1.0 1.23 1.0 0.61 VC 2-V 0 0 0 0.5 0.31 " a 2 0 0 0.5 0.31 0.62 " a 3.0 3.69 4.5 2.77 VC 3-V 1.5 1.84 2.0 1.23 " a 4.0<							
" b 6.0 7.35 5.0 3.06 " c 2.0 2.42 1.5 0.91 PE 4—V 0.5 0.60 0.5 0.30 " a 3.5 4.25 3.0 1.82 " b 3.0 3.64 1.5 0.91 PE 5—V 1.0 1.21 2.0 1.21 " a 3.0 3.64 3.0 1.82 " b 0.5 0.61 0.5 0.30 " c 5.0 6.03 9.0 5.43 PE 6—V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.23 " a 4.0 4.87 2.0 1.23 " b 0.61 0.5 0.31 0.31 " a 1.0 1.23 2.0 1.23 " b 1.0 1.23 1.0 0.61 VC 2—V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " a 0 0<					•		
. W C 2.0 2.42 1.5 0.91 PE 4—V 0.5 0.60 0.5 0.30 " a 3.5 4.25 3.0 1.82 " b 3.0 3.64 1.5 0.91 PE 5—V 1.0 1.21 2.0 1.21 " a 3.0 3.64 3.0 1.82 " b 0.5 0.61 0.5 0.30 " c 5.0 6.03 9.0 5.43 PE 6—V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.22 " b 1.0 1.23 2.0 1.23 " a 1.0 1.23 1.0 0.61 " c 0.5 0.61 1.0 0.61 " c 0.5 0.61 1.0 0.61 " c 0.5 0.61 1.0 0.61 " c 0.5 0.31 0.31							
PE 4-V 0.5 0.60 0.5 0.30 " a 3.5 3.5 4.25 3.0 1.82 " b 3.0 3.64 1.5 0.91 PE 5-V 1.0 1.21 2.0 1.21 " a 3.0 3.64 3.0 1.82 " b 0.5 0.61 0.5 0.30 " c 5.0 6.03 9.0 5.43 PE 6-V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.22 " b 7 2.0 2.45 3.0 1.83 VC 1-V 0.5 0.61 0.5 0.31 " a 1.0 1.23 1.0 0.61 " a 2.0 1.23 1.0 0.61 " a 0.5 0.61 1.0 0.61 " a 0.5 0.61 1.0 0.61 " a 0.5 0.61 1.0 0.61 " a 0.5 0.61 1.0 0.61 " a 0.5 0.5 0.61 1.0 0.61 " a 0.5 0.5 0.31 0.5 <td></td> <td></td> <td>i</td> <td></td> <td></td> <td></td> <td></td>			i				
" b 3.5 4.25 3.0 1.82 " b 3.0 3.64 1.5 0.91 PE 5-V 1.0 1.21 2.0 1.21 " a 3.0 3.64 3.0 1.82 " b 0.5 0.61 0.5 0.30 " c 5.0 6.03 9.0 5.43 PE 6-V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.22 " b 2.0 2.45 3.0 1.83 VC 1-V 0.5 0.61 0.5 0.31 " a 1.0 1.23 1.0 0.61 " a 1.0 1.23 1.0 0.61 " a 0.5 0.61 1.0 0.61 " a 0.5 0.61 1.0 0.61 " a 0.5 0.61 1.0 0.61 " a 0.5 0.61 1.0 0.61 " a 0.5 0.5 0.31 " a 0.5 0.5	•				i	1	
" b PE 5-V 1.0 1.21 2.0 1.21 " a 3.0 3.64 3.0 1.82 " b 0.5 0.61 0.5 0.30 " c 5.0 6.03 9.0 5.43 PE 6-V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.22 " b " c 2.0 2.45 3.0 1.83 VC 1-V 0.5 0.61 0.5 0.31 " a 1.0 1.23 2.0 1.23 " b 1.0 1.23 1.0 0 61 VC 2-V 0 0 0.5 0.61 1.0 0.61 VC 2-V 0 0 0.5 0.61 1.0 0.61 VC 2-V 0 0 0.5 0.5 0.31 " a 0 0.5 0.31 0.5 0.31 " a 1.0 1.23 1.0 0.61 VC 3-V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23							
PE 5-V 1.0 1.21 2.0 1.21							
" a b 0.5 3.64 3.0 0.5 0.61 0.5 0.30 " c 5.0 5.0 6.03 9.0 5.43 5.43 PE 6 - V 2.0 2.44 3.5 2.13 2.13 " a 4.0 4.87 2.0 1.22 1.22 " b 7 c 2.0 2.45 3.0 1.83 1.83 VC 1 - V 0.5 0.61 0.5 0.31 0.61 0.5 0.31 0.61 " a 1.0 1.23 1.0 0.61 0.5 0.61 0.61 " c 0.5 0.61 1.0 0.61 0.5 0.31 " a 0 0 0.5 0.31 0.5 0.31 " a 1.0 1.23 1.0 0.62 0.5 0.31 " a 1.0 1.23 1.0 0.62 0.62 " a 1.0 1.23 1.0 0.62 0.62 " b 7.0 8.61 6.0 3.69 0.246 VC 4 - V 1.0 1.23 2.5 1.53 1.5 1.53 " a 1.0 1.23 4.0 2.46 0.246 " b 2.0 2.46 4.0 2.46 0.246 " b 2.0 2.46 4.0 2.46 0.246 " c 3.5 4.34 11.5 7.13 7.13 T - 2 - A (VC 5 - a) 7 2 - A (VC 5 - a) 7 2 - A (VC 5 - a) 7 3.5 0 0 0.5 0.31 T - 2 - B (VC 5 - a) 7 - C 5 - a) 7 2 - A (VC 5 - a) 7 3.5 0 0 0.5 0.31	PΕ	5 — V					
" b 0.5 0.61 0.5 0.30 " c 5.0 6.03 9.0 5.43 PE 6—V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.22 " b " c 2.0 2.45 3.0 1.83 VC 1—V 0.5 0.61 0.5 0.31 " a 1.0 1.23 2.0 1.23 " b 1.0 1.23 1.0 0.61 " c 0.5 0.61 1.0 0.61 VC 2—V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " a 0 0 0.5 0.31 " b 3.0 3.69 4.5 2.77 VC 3—V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4—V 1.0	"	a	1		3.0		
PE 6-V 2.0 2.44 3.5 2.13 " a 4.0 4.87 2.0 1.22 " b 2.0 2.45 3.0 1.83 VC 1-V 0.5 0.61 0.5 0.31 " a 1.0 1.23 2.0 1.23 " b 1.0 1.23 1.0 0.61 " c 0.5 0.61 1.0 0.61 VC 2-V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " a 0 0 0.5 0.31 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V 1.0 1.2	//	ь	0.5	0.61	0.5		
" b b	"	С	5.0	6.03	9.0	5.43	
" b は験片紛失のため測定出来ず " c 2.0 2.45 3.0 1.83 VC 1-V 0.5 0.61 0.5 0.31 " a 1.0 1.23 2.0 1.23 " b 1.0 1.23 1.0 0.61 " c 0.5 0.61 1.0 0.61 VC 2-V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " a 0 0 0.5 0.31 " b 3.0 3.69 4.5 2.77 VC 3-V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23 4.0 2.46 " a 1.0 1.23 4.0 2.46 " a 2.0 2.46 4.0 2.46 " a 2.0 2.46 4.0 2.46 <	PΕ	6 V	2.0	2.44	3.5	2.13	
" c 2.0 2.45 3.0 1.83 VC 1-V 0.5 0.61 0.5 0.31 " a 1.0 1.23 2.0 1.23 " b 1.0 1.23 1.0 0.61 " c 0.5 0.61 1.0 0.61 VC 2-V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " a 0 0 0.5 0.31 " b 3.0 3.69 4.5 2.77 VC 3-V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 </td <td>//</td> <td>a</td> <td>4.0</td> <td>4.87</td> <td>2.0</td> <td>1.22</td> <td></td>	//	a	4.0	4.87	2.0	1.22	
" C 2.0 2.45 3.0 1.83 VC 1—V 0.5 0.61 0.5 0.31 " a 1.0 1.23 2.0 1.23 " b 1.0 1.23 1.0 0.61 " c 0.5 0.61 1.0 0.61 VC 2—V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " a 0 0 0.5 0.31 " b 3.0 3.69 4.5 2.77 VC 3—V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4—V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46	"	b					
" a 1.0 1.23 2.0 1.23 " b 1.0 1.23 1.0 0.61 " c 0.5 0.61 1.0 0.61 VC 2—V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " a 0 0 0.5 0.31 " b 3.0 3.69 4.5 2.77 VC 3—V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4—V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 <td>"</td> <td>c</td> <td>2.0</td> <td>2.45</td> <td>3.0</td> <td>1.83</td> <td> 砂枫た山木 9</td>	"	c	2.0	2.45	3.0	1.83	砂枫た山木 9
" b 1.0 1.23 1.0 0 61 " c 0.5 0.61 1.0 0.61 VC 2-V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " b 3.0 3.69 4.5 2.77 VC 3-V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V 1.0 1.23 1.5 0.92 T-2-A 0 0 0.5 0.31 T-2-B 1.0 1.22 0.5 0.31	VС	1-V	0.5	0.61	0.5	0.31	
" C 0.5 0.61 1.0 0.61 VC 2-V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " b 3.0 3.69 4.5 2.77 VC 3-V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V (VC 5-V) 1.0 1.23 1.5 0.92 T-2-A (VC 5-a) 0 0.5 0.31 T-2-B 1.0 1.23 0.5 0.31	//	a	1.0	1.23	2.0	1,23	
V C 2-V 0 0 0.5 0.31 " a 0 0 0.5 0.31 " b 3.0 3.69 4.5 2.77 V C 3-V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 V C 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V (VC 5-V) 1.0 1.23 1.5 0.92 T-2-A (VC 5-a) 0 0.5 0.31 T-2-B 1.0 1.23 0.5 0.31	//	Ъ	1.0	1.23	1.0	0 61	
" a 0 0 0.5 0.31 " b 3.0 3.69 4.5 2.77 VC 3-V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V (VC 5-V) 1.0 1.23 1.5 0.92 T-2-A (VC 5-a) 0 0.5 0.31 T-2-B 1.0 1.23 0.5 0.31	//	С	0.5	0.61	1.0	0.61	
" b 3.0 3.69 4.5 2.77 VC 3-V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V (VC 5-V) 1.0 1.23 1.5 0.92 T-2-A (VC 5-a) 0 0.5 0.31 T-2-B 1.0 1.22 0.5 0.31	V C	2 — V	0	0	0.5	0.31	
V C 3-V 1.5 1.84 2.0 1.23 " a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 V C 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V (V C 5-V) 1.0 1.23 1.5 0.92 T-2-A (V C 5-a) 0 0.5 0.31 T-2-B 1.0 1.23 0.5 0.21	//	a	0	0	0.5	0.31	
" a 1.0 1.23 1.0 0.62 " b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V 1.0 1.23 1.5 0.92 T-2-A 0 0.5 0.31 T-2-B 1.0 1.23 0.5 0.31				3.69	4.5	2.77	
" b 7.0 8.61 6.0 3.69 " c 2.0 2.46 4.0 2.46 VC 4-V 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V (VC 5-V) T-2-A (VC 5-a) T-2-B 1.0 1.23 1.5 0.92 0 0.5 0.31 T-2-B 1.0 1.22 0.5 0.31	V C	3 — V		1.84	2.0	1.23	
" c 2.0 2.46 VC $4-V$ 1.0 1.23 2.5 1.53 " a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V (VC $5-V$) 1.0 1.23 1.5 0.92 T-2-A (VC $5-a$) 0 0.5 0.31 T-2-B 1.0 1.23 0.5 0.31	//	a					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
" a 1.0 1.23 4.0 2.46 " b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V 1.0 1.23 1.5 0.92 T-2-A 0 0 0.5 0.31 T-2-B 1.0 1.23 0.5 0.31		i					
" b 2.0 2.46 4.0 2.46 " c 3.5 4.34 11.5 7.13 T-1-V (VC 5-V) T-2-A (VC 5-a) T-2-B 1.0 1.23 1.5 0.92 0 0 0.5 0.31 T-2-B 1.0 1.23 0.5 0.31		4 — V					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		İ					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(VC	5-V)			1.5	0.92	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(V C	$\begin{bmatrix} 2 - A \\ 5 - a \end{bmatrix}$	0	0	0.5	0.31	
	T — (V C	$\begin{pmatrix} 2 - B \\ 5 - b \end{pmatrix}$	1.0	1.23	0.5	0.31	

	験 体	最大ソリ	ソリ率(%)	最大ネジレ	ネジレ率(%)	備考
記	号 	(mm)	W 1,000	(mm)	W 1,000	
T-	$\frac{2-C}{5-C}$	2.0	2.45	4.5	2.76	上記条件にて 状態調節24時 間以上
VC	6 - V	0.5	0.61	0.5	0.31	
"	a	1.0	1.23	1.0	0.61	以下同じ
//	b	0.5	0.61	0.5	0.31	
//	С	1.0	1.23	2.5	1.54	
V C	7 — V	1.0	1.23	1.5	0.92	
//	a	2.0	2.46	4.0	2.46	
"	b	1.5	1.84	3.5	2.15	1
//	С	1.0	1.22	1.0	0.61	
V C	8-V	1.0	1.23	1.0	0,61	
"	a	0.5	0.61	0.5	0.31	
//	Ъ					試験片一部破のため測定せ
A 1	— v	0	0	0	0	りため例定型
//	a	0	0	0	0	
//	b	0	0	0	0	
//	С	0	0	0	0	
A 2	v	0	0	0	0	
//	a.	0.5	0.62	0.5	0.31	
//	b	0	0	0	0	Į
//	c	0	0	0	0	
A 3	— v	0	0	0	0	
//	a	1.0	1.24	1.5	0.93	
//	Ъ	2.5	3.10	6.0	3.72	
//	С	1.0	1.24	1.5	0.93	
S 1	- v	0	0	0.5	0.80	ļ
//	а	0.5	1.60	1.0	1.60	
//	b	0.5	1.59	0.5	0.80	
"	С	0	0	1.0	1.59	ĺ
S 2	— v	1.0	3.20	0.5	0.80	
//	a	0	0	1.0	1.60	
//	b	1.0	3,20	1.0	1.60	
//	c	0	0	0.5	0.80	
S 3	— v	0	0	0.5	0.80	
//	a	0	0	0.5	0.80	
//	Ъ	0.5	1.59	0.5	0.80	
"	С	0.5	1.59	0.5	0.79	
		1			ı	1

5 年 目

测定年月日 昭和43年6月25日 温度 23℃ 湿度 60%

<u> </u>	4- H	,		77 日 11日本日43年() 月25日 (Ⅲ度 25	C 似皮 00%
試	験 体	最大ソリ	ソリ率 (%)	最大ネジレ	ネジレ率(%)	Viii ⇒×
記	号	(mm)	W 1,000	(mm)	W 1,000	備 考
PΕ	1 — V	1.0	1.23	1.0	0.61	上記条件にて 状態調節24時
"	a	2.0	2.47	3.0	1,85	間以上
//	b	2.0	2.47	6.0	3.71	以下同じ
РЕ	2 — V	5.0	6.03	7.0	4.22	
//	a	3.0	3.64	7.5	4.56	
//	Ь	5.0	6.05	5.0	3.03	
РЕ	3 — V	2.0	2.45	2.0	1.22	
"	a	8.0	9.79	8.0	4.90	
//	b	11.0	13.5	6.0	3.68	
//	c	3.0	3.64	2.0	1.21	
PΕ	4 — V	1.0	1.21	0.5	0.30	
//	a	3.0	3.64	3.0	1.82	
11	b	3.0	3.64	1.5	0.91	
РЕ	5 — V	, 1.5	1.82	1.5	0.91	
//	а	3.0	3.64	2.0	1.22	
//	b	0.5	0.61	0.5	0.30	
11	С	5.5	6.64	10	6.04	,
PΕ	6 — V	2.0	2.44	3.5	2.13	
"	a	3.5	4.26	2.5	1.52	試験片紛失のた
* //	b					め測定出来ず
//	c	2.0	2.45	2.0	1.22	,
V C	1-V	0.5	0.61	0.5	0.31	
11	a	1.0	1.23	2.5	1.54	
//	b	1.0	1.23	1.0	0.61	
<i>"</i>	С	0.5	0.61	1.0	0.61	
V C	2 — V	1.0	1.23	1.0	0.62	
<i>"</i>	a	1.0	1.23	1.0	0.62	
//	р	4.0	4.92	8.0	4.92	
V C	3 — V	1.0	1.23	2.0	1.23	
"	a	1.0	1.23	1.0	0.62	
"	b	6.0	7.38	5.5	3.38	
// V/C	C	2.0	2.46	4.5	2.77	
V C	4 — V	1.0	1.23	2.0	1.23	
<i>!!</i>	a	1.0	1.23	4.0	2.46	
"	b c	2.0 3.0	2.46	5.0	3.08	
т —	1-V	i	3.72	10	6.21	
(VC T—	5-V) 2 — A	1.0	1.23	2.0	1.23	
(V C	5-a) 2-B	0	0	0	0	
(VC	5-b	1.0	1.23	1.0	0.61	

=+ E> H-	里 中 ソ 11	u n 応 (0/)		ネジレ率(%)	<u> </u>
試 験 体	最大ソリ	ソリ率 (%)	最大ネジレ		備考
記号	(11111)	W 1,000	(mm)	W 1,000	1 = 3 to 10 10
$\begin{array}{c c} T-2-C \\ (VC & 5-c) \end{array}$	2.0	2.45	4.5	2.76	上記条件にて 状態調節24時
VC = 6-V	0	0	1.0	0.61	間以上
n a	2.0	1.23	3.0	1.84	以下同じ
// b	2.5	3.07	2.0	1.23	
// c	1.0	1.23	2.5	1.54	
V C 7-V	1.5	1.85	2.5	1.54	
и a	2.0	2.46	4.0	2.46	
// b	1.5	1.84	3.0	1.84	
" c	1.0	1.23	1.5	0.92	
v c 8-v	3.0	3.69	4.0	2.46	
″ a	2.0	2.46	2.5	1.54	를 가고 있다. 그리 소의 4 등
// b	. 2.0	2.46			試験片一部破損 のため測定せず
A1 — V	0.5	0.62	0.5	0,31	3.030,000
″ a	0.5	0.62	0	0	
" b	0	0	0	0	
<i>"</i> с	0	0	0	0	
A 2 — V	0.5	0.62	0	0	
n a	0.5	0.62	0	0	
// b	0	0	0	0	
// c	0	0	0	0	•
A 3 — V	0.5	0.62	0	0	
n a	1.0	1.24	2.0	1.24	
" b	2.0	2.48	6.0	3.71	試験片一部破損
// C	1.0	1.24			のため測定せず
s 1 - v	0	0	0.5	0.80	
<i>″</i> а	0.5	1.60	1.0	1.60	
// b	0.5	1.59	0.5	0.80	
<i>"</i> С	0	0	1.0	1.59	
s 2 - v	1.0	3.20	0.5	0.80	
n a	0.5	1.60	1.0	1.60	
// b	1.0	3.20	1.0	1.60	
// C	0	0	1.0	1.59	
s 3 - v	0	0	0.5	0.80	
// a	0	0	0.5	0.80	
// b	1.0	3.18	0.5	0.80	
// C	0	0	0.5	0.79	
ļ					

Studies on Testing Methods and Weatherability of Plastics to Outdoor Exposure

Satoru SUZUKI, Hiroshi KUBOTA Okio NISHIMURA and Takashi TSURUE

Synopsis

This is a preliminary report on the studies concerning the weatherability of plastics, used for building materials, exposed to the outdoor for five years. These studies were made as a joint project by the Government Industrial Development Laboratory, HOKKAIDO, (SAPPORO), the Industrial Arts Institute, TOHOKU Branch Office, (SENDAI), (renamed to the Government Industrial Research Institute, TOHOKU), the Industrial Arts Institute, (TOKYO), (renamed to the Industrial Products Research Institute), the Government Industrial Research Institute, OSAKA, (IKEDA), and the Industrial Arts Institute, KYUSHU Branch Office, (KURUME), (renamed to the I. P. R. I.), under the auspices of the Agency of Industrial Science & Technology, M. I. T. I., JAPAN.

The two objectives of the present study were to improve the testing methods of weatherability of building plastics, and to collect fundamental data concerning the weathering properties various plastics.

As for the first purpose, we have taken some part in establishing the JIS A-1410 (1968) "Recommended Practice for Outdoor Exposure of Plastics Building Materials", and JIS A-1411 (1968) "Standard Method of Tests for Changes in Properties of Plastic Building Materials Resulting for Outdoor Exposure".

As for the second purpose, we exposed plastics plate specimens to the outdoor. The species used were six types of Unsaturated Polyester (mainly FRP), eight types of Poly (vinyl chloride), three types of Poly (methyl methacrylate) and three types of Polystyrene. The compositions are shown in Table I.

The measurements were made for a fullperiod of five years from June 1963 through to May 1968. And the changes in properties of plastics were measured. The results of some measurements made in SAPPORO are reported and dis-

Table I. Composition of Specimens

Symbol		Characteristics	Thickness	U.V. absorbent	Main Component
UP	- 1	cast grade	2.2mm		ortho-phthalic acid, cont- aining MMA
	2	general purpose	2.3	0	ortho-phthalic acid, FRP, G.C. 28%
	3	general purpose	1.8		ortho-phthalic acid, FRP, G.C. 28%
	4	non inflamable	2.0	· O	ortho-phthalic acid, FRP, G.C. 28%
	5	non inflamable	2.1		maleic acid anhydride, FRP,G.C. 28%
	6	chemical resist.	2.1	0	iso-phthalic acid, FRP, G.C. 28%
PVC	- 1	transparent	2.1	0	Sn (maleate) stabilizer 3%
	2	transparent	2.1		Sn (maleate) stabilizer 2.5%
	3	industrial pur- pose	2.0		Pb Stabilizer 5%, TiO 5%
	4	10% PVAC mold purpose	3.0		Sn stabi. + Pb stabi. 5.5%, TiO 3%
	5	5% PVAC	1.9	0	Sn (maleate) stabilizer 3%
	6	5% PVAC	2.0		Sn (laurate, maleate) stabilizer 2%
	7	5% PVAC	2.0	0	Sn (maleate) stabilizer 4%
-	8	5% PVAC	1.9		Sn (mercaptol) stabilizer 2.5%
PMMA-1		transparent	2.0		
	2	copolymer	2.2	0	containing a few % of acrylic-ester
	3	semitransparent	2.1		(milky)
PS	- 1	general purpose	3.0		
	2	high impact type	2.9		containing Butadien
	3	weather resist.	2.9		containing MMA

cussed here.

The color differences using a Hitachi EPR-2 Spectrophotometer were determined by MURAYAMA et al. of the Industrial Products Research Institute,

and the mechanical properties were determined by KURODA, and KONDO et al. of the Government Industrial Research Institute, OSAKA.

The results obtained are summarized as follows:

(1) Change of color (Methods and evaluation)

The results using a Grey Scale (utilized for color change) were in good accord with visual inspection. It was ascertained that the Grey Scale is an excellent means for the indication and discrimination of discoloration, resulting from the degradation of the pigment or the dye, and coloration, resulting from the degradation of resin. It was difficult, however, to determine changes or make distinctions in samples with a high pigment concentration or FRP with prominent glass fibers.

Although the spectrometer gave accurate results of color differences, it could not discriminate between coloration and discoloration. "Lightness" acording to L, a, b system by Hunter showed good discrimination, and were in good accord with visual inspection. Consequently, it is advisable to use color differences along with Hunters Lightness Scale.

Yellowness Index and change of Yellowness Index were frequently not in accord with visual inspection and the Lightness scale.

(2) Change of color (Experimental results)

In the case of UP, and its FRP, the general purpose type was colored a dirty yellow, and the non-inflamable type was colored a brown.

In the case of PVC, the yellowness of the homopolymer was a somewhat less than in the case of copolymer (PVAC), and when it contained a moderate quantity of U.V. absorbent some improvement was seen in regard to the change of color. The Pb stabilizer was excellent in color change by itself while the Sn stabilizer in contrast, shorved a poor performance.

PMMA showed a good performance. PS, contrary to the above results, showed a poor performances. However, an addition of U.V. absorbent gave results in increasing the yellowness.

(3) Change of dimension

In the measurement of length and thickness of plate specimens, no abnormality was recognized with the exception of extruded plates of PVC. Warp and distortion were observed in UP and its FRP, especially in the case of the non-inflamable type and thin plates.

(4) Observation of U.V. energy

U.V. intensity in solar radiation and meteorology were observed. U.V. energy in the 300 - 400 m μ region were measured by using a Toyorika pH-11

integrating photometer. However, in the calibration of sensitivity, several problems arose during the first several years, which led to noticeable errors. However from 1967, this instrument gave results within a nearly acceptable accuracy range.

Assuming that the sensitivity of the photometer is within an acceptable range the results, 508 W/cm/year as the annual integrating intensity of U.V. energy, was obtained. In SAPPORO, the exposed surfaces of samples and the sensitive portion of the photometer were at an angle of 45 degrees to the horizontal and was facing south.

This value may offer some clue for defining a possible relationship between outdoor exposure and accelerated artificial exposure.

(5) Mechanical properties

In the case of UP, the experimental values were scattered widely; this may be attributed to the difference of molding and after cure conditions. The bending strength of UP decreased by 15 - 35%, however, showed an unexpected increase in the non-inflamable type.

In the case of PVC, the bending strength increased slightly in homopolymer containing U.V. absorbent or Pb stabilizer. In the copolymer (PVAC) a decrease of about 10 - 35 % was seen. In the homopolymer and copolymer containing only Sn stabilizer the decrease was about 40 %.

In the PMMA, the bending strength generally showed no change, but a decrease was seen in the colored specimens.

In PS, a decrease of about 50 - 80% was seen, however, in titan white and carbon black colored PS, an improvement in durability was noted.

(6) The relationship between color change, mechanical properties and compositions

In the UP, although the non-inflamable type showed a clear color change, the bending strength hardly showed any change. The addition of U.V. absorbent showed a slight effect in color change and strength.

In the PVC, the tendency of color change was in approximate agreement with that of the bending strength.

(7) Period of observation

In the long term outdoor exposure the recommended periods of observation were as follows, in as much as significant differences could not be obtained by short term observations.

(6 months), 1 year, 2 years, (3 years), 5 years.

北海道工業開発試験所報告

第 6 号

昭和46年 5 月30日 印刷 昭和46年 6 月10日 発行 編集兼発行者

行 所

工業技術院北海道工業開発試験所 札 幌 市 東 月 寒 41—2 電 話 札 幌 腳 0 1 5 1

印 刷 人 印 刷 所

株式会社 正文 舎 印 刷 所 札 幌 市 菊 水 西 町 2 丁 目 電 話 札 幌 剛 7151~3