Accelerating Circular Economy Transition through Achieving Data Model Standardization and Interoperability データモデルの国際標準化と相互運用性の実現:循環型経済 推進における重要性と展望

Dr. Lan Yamashita (lan1.yamashita@toshiba.co.jp)

IEC SC3D Chairperson, JahG22 Convenor Research and Development Center, Toshiba Corp. April 23rd, 2024

Contents

- 1. Background
 - DPP: Digital Product Passport
 - CFP: Carbon Footprint of Product Note: PCF in EU Projects
 - Interoperability
- 2. IEC CDD (Common Data Dictionary) developed in IEC/ SC3D
 - Outline, Standard data modelling activities
- 3. Digital transformation of standards
 - SMART: Standards Machine Applicable, Readable and Transferable
- 4. Interoperability achieved through data models
 - Examples from standardization activities
- 5. Conclusions

Self introduction

Lan Yamashita, (Ph.D. in Computer Science)

Corporate Research&Development Center, TOSHIBA Corp.

OBACKGROUND

data modelling, ontology, interoperability, system architecture, system engineering

- O Picked up standardization activities
- chairperson of IEC SC3D leading IEC 61360, IEC CDD data modelling methodology
- IEC TC111/JahG22 (CFP Digitalization): Convenor
- IEC SG12 (Digital transformation and systems approach): expert
- IEC MSB white paper: "Semantic Interoperability: Challenges in the digital transformation ages": author

ISO: International Organization for Standardization

IEC: International Electrotechnical Commission

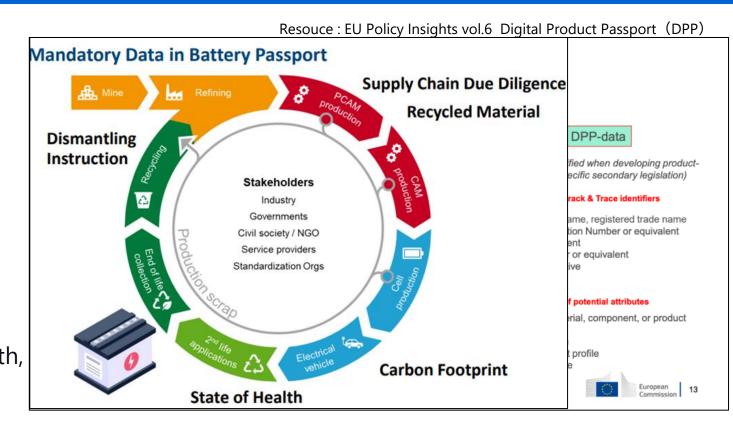
- ISO/IEC JTC1/SC41(IoT and Digital Twin)
 - project leader of ISO/IEC 21823-4 : IoT syntactic interoperability
 - Expert of ISO/IEC 21823-3: IoT semantic interoperability
- Liaison representative to IEC TC 65 (AAS), TC111 etc.

01 Background

Backgroud1 : DPP (Digital Product Passport) to facilitate Circular Economy

Interoperability among heteregenous systems are required for DPP

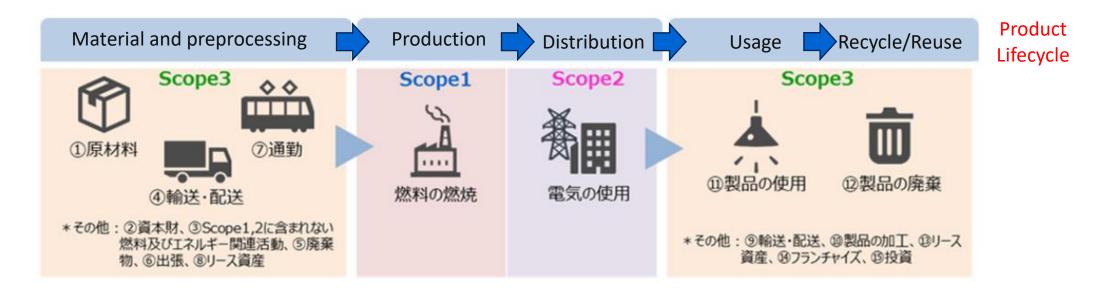
- (1) ESPR specifies that DPP is mandatory for products.
- ESPR:Ecodesign for Sustainable Products Regulation


- enters into force: first harf of 2024

(2) Three leading domains (Battery/Textile/Electronics)

 <u>https://cirpassproject.eu/wp-</u> <u>content/uploads/2023/07/D2.1_July_2023.pdf</u>
 Battery regulation entered into force on Aug. 17th, 2023

(3) DPP Data throughout lifecycle


- Product Carbon Footprint is the highest priority

Resource: Conclusion about Evaluation of Standardization Request for digital product passport

Background2 : Products CO₂ emission calculation and exchange

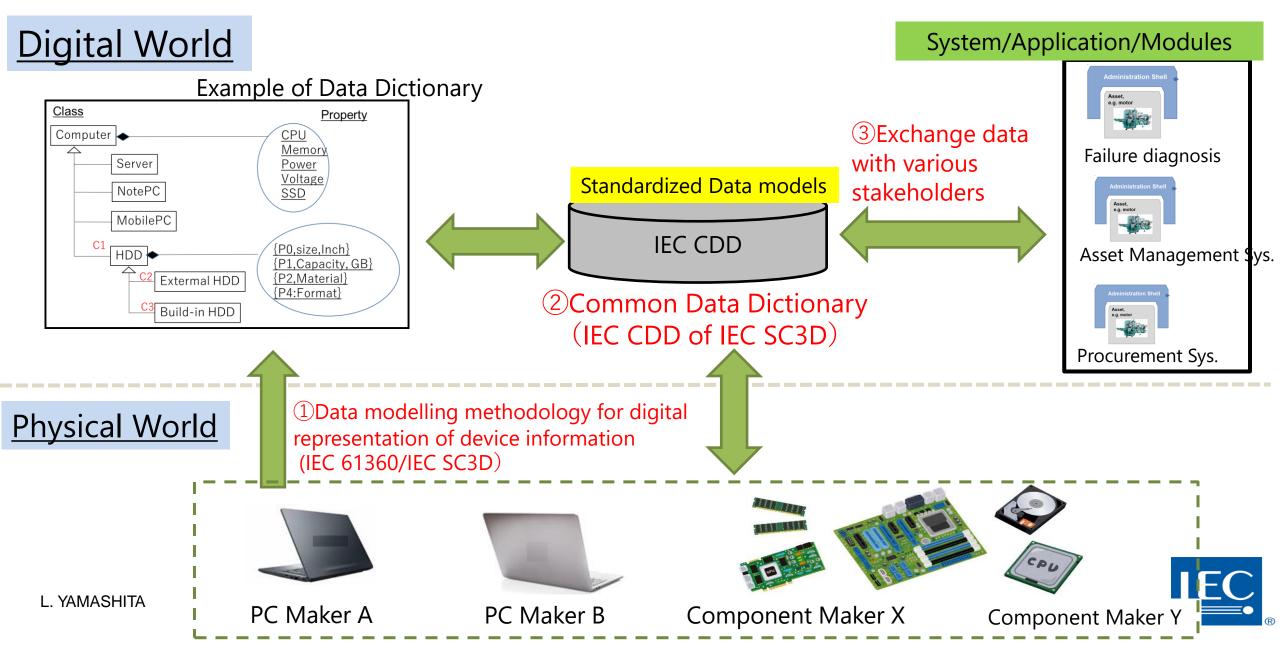
Interoperability required for Product CO₂ calculation and data exchange

- 1. Rule-making and standardization of CO₂ emission calculation of materials, parts, and products
- 2. Common data model for sharing data between different systems
 - E.g., WBCSD PACT*: CFP Data Exchange Model
- 3. Interoperability with data platforms in standardized approaches

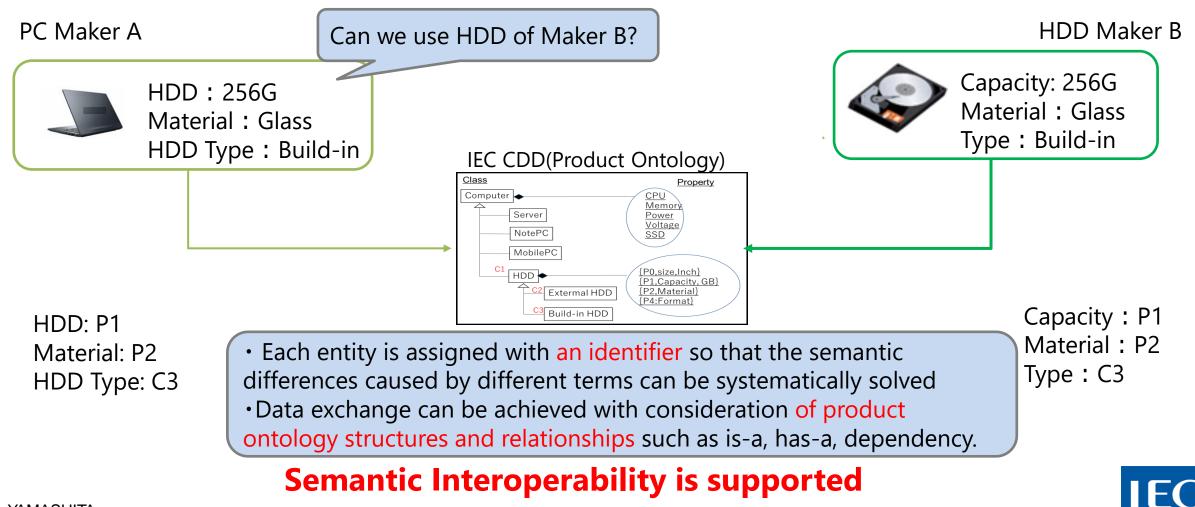
Background 3: Interoperability

Interoperability: ability of two or more systems or applications to exchange information and to mutually use the information that has been exchanged

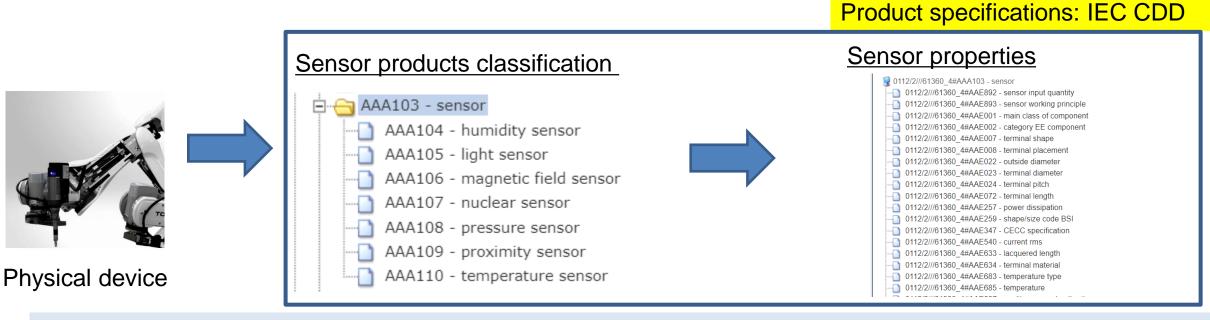
Interoperability for Data Spaces


異なるシステムを接続し、相互の情報・データ (形式や意味など)を理解し、利活用をする

Legal Level] ,	To ensure that organisations under different legal jurisdictions and frameworks can share data with common legally binding conditions.
Organizational Level	 ,	To let stakeholders align goals, expectations, responsibilities and business processes.
Semantic Level	 ,	To ensure that format and meaning of shared data is preserved and understood.
Technical Level		To provide software and hardware components for controlled, sovereign and secure sharing of data.



IEC CDD : Standard data modelling activities


Background: DX Issues to be solved by IEC SC3D standards

Background: Interoperability issues to be solved with IEC SC3D standards

Modelling example: How to model physical devices in IEC CDD?

Products classifications

- Hierarchical relationship/Composition relationship are supported
- > A set of properties for a product class
 - Catalogue information, operational information, monitoring information etc.
- > Typical units/values can be assigned to each property
- Property relationships

IEC TC 3/SC 3D: Product properties and classes and their identification

SC 3D Scope

https://www.iec.ch/ords/f?p=103:7:616475896896878::::FSP_ORG_ID,FSP_LANG_ID:1345,25

Standardization for representation of technical information along the life cycle of a product including service, device, system, software or plant, covering rules, principles and methods associated with the machine sensible representation of the technical information. This refers to:

- · definition, structuring and identification of classes and properties
- structural design of product data dictionaries and ontologies
- consistent methodology for the purpose of structuring technical information and its exchange
- support for the design of classes and properties in all domains/industries and their publication in IEC Common Data Dictionary (IEC CDD)
- maintenance and quality control of the IEC Common Data Dictionary (IEC CDD)
- Supporting semantic interoperability

Horizontal function related to the methodology, design, architecture and interface for supporting product data dictionaries.

- Data modelling methodology for unambiguous product specifications and their relations as Common Data Dictionary (IEC CDD)
 - Product data dictionary/domain ontology/product ontology

IEC SC3D standards support IEC CDD

➢IEC 61360-1/ISO 13584-42 provides methodology to construct product data dictionaries in various industrial domains

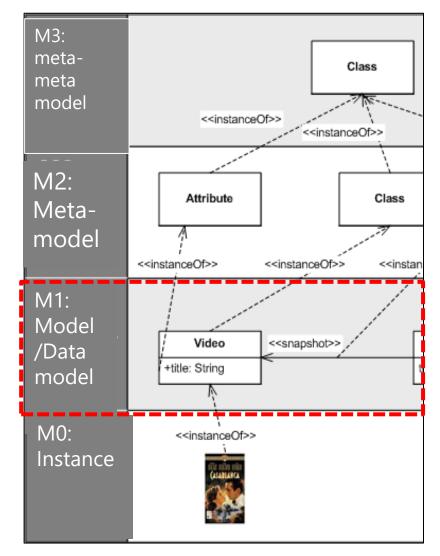
- Syntax for product data dictionaries is specified and formalized.
- E.g., structures of the entity, relations among entities, value/format constraints for entities.

Data formats supported

- -IEC 61360-2: a formal EXPRESS format
- -IEC 62656-1: a formal spreadsheet format
- -IEC 62656-3: a RDF and XML format included
- -IEC 62656-8: a JSON/XML format included

➤Selected IEC CDD in industries

- IEC 61987 (IEC TC65): CDD for process automation
- IEC 62683 (IEC TC121): CDD for low voltage switchgear and controlgear
- IEC 61360-4(IEC SC3D): CDD for Electric/Electronic components
- Online management system
 - https://cdd.iec.ch

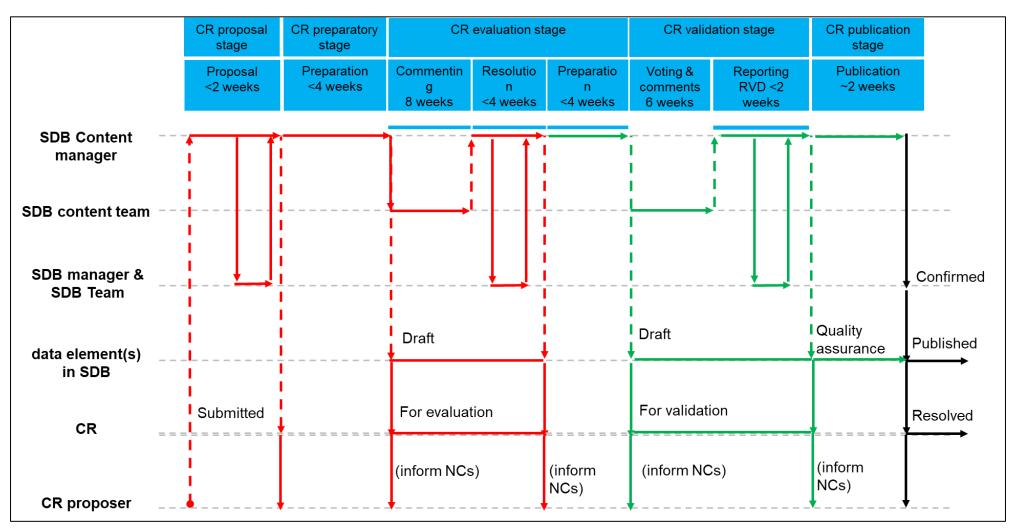

IEC CDD example in electrical and electronic domains

14

https://cdd.iec.ch

International Electrotechnical Co IEC 61360-4 - IEC/SC 3D - Comm		- V2.0015.0004)	Home C
AAA017 - battery AAA020 - capacitor AAA032 - conductor AAA032 - conductor AAA041 - delay line AAA042 - diode device	English French German	Print Export Japanese Chinese Multilingual definitions PROPERTY	
AAA056 - filter	Code:	0112/2///61360_4#AAE685	
■ AAA057 - integrated circuit ■ AAA074 - inductor	Version:	001	Globally unique
AAA075 - lamp	Revision:	06	identifier
→ 🗋 AAA076 - liquid crystal diplay 🕀 🗀 AAA077 - optoelectronic device	IRDI:	0112/2///61360_4#AAE685#001	
AAA087 - oscillator	Preferred name:	temperature	
AA088 - piezoelectric device	Synonymous name:		
AAA103 - sensor	Symbol:	@T	
AAA104 - humidity sensor AAA105 - light sensor	Synonymous symbol:		
AAA106 - magnetic field sensor	Short name:	@T	
AAA107 - nuclear sensor AAA108 - pressure sensor	Definition:	temperature of a component, or its environment, as a variable	
AAA109 - proximity sensor	Note:		
AAA110 - temperature sensor	Remark:	This data element to be used in combination with AAE683-005.	Unit
AAA118 - transistor	Primary unit:	°C	
AAA131 - trigger device 	Alternative units:		
AAA136 - tube	Level:		
AAA229 - microwave component AAA232 - printed wiring circuit	Data type:	INT_MEASURE_TYPE	Data type
AAA232 - printed wining circuit	Format:	NR1 S4	
		of reserved attributes for each entity	

IEC CDD modelling methodology: MoF (Model-Object Facility)


- The IEC CDD data modelling methodology aligns with MoF
- A meta-model (M2) and detailed specifications for IEC CDD data model (M1)
- Standardized data models is located at M1
 - IEC CDD data model
 - CFP Calculation data model
 - E.g., IEC 63369, IEC 63372, IEC 63058,
 - GLEC
 - CFP exchange data model
 - E.g., PACT, ECLASS CFP, ZVEI AAS CFP

Resource: ISO/IEC 19502:2005 Information technology -- Meta Object Facility (MOF)

Procedure for digitalized standard development (under discussion)

IEC CDD can be developed in 6 months

Relevant fundamental terms and definitions

➢Information model^(*1): a representation of concepts, relationships, constraints, rules, and operations to specify data semantics for a chosen domain of discourse.

➢Data model^(*2): graphical and/or lexical representation of data, specifying their properties, structure, and inter-relationships

Y. Tina Lee, "Information modelling from design to implementation," National Institute of Standards and Technology., 1999.
 [2] [SOURCE:ISO/IEC 11179-1:2015, 3.2.7]

• Information model : conceptual understanding, abstract

- Data model: focus on data, concrete
- Sometimes be used interchangeables

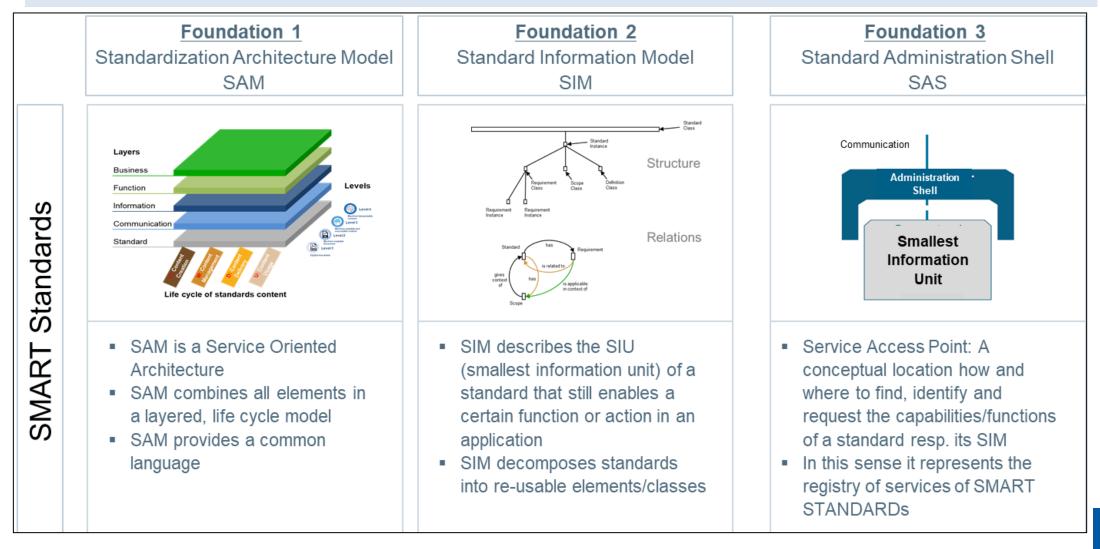
>Ontology^(*1): An ontology is an explicit specification of a conceptualization.

- An ontology is a set of concepts and categories in a subject area or domain that shows their properties and the relations between them.
- knowledge sharing among AI software
- ➢Ontology definition adopted in IEC SC3D
 - Specification of concrete or abstract things, and the relationships among them, in a prescribed domain of knowledge ^(*2)
 - ✓ Note 1 to entry: The specification should be computer process-able

IEC CDD and Ontology

- IEC CDD: ontology for unambiguous specifications and relations of products/system/service etc.
 - ✓ Data model, data dictionary, data catalog, domain ontology

(*1) Tom Gruber http://www-ksl.stanford.edu/kst/what-is-an-ontology.html *DARPA:Defense Advanced Research Projects Agency 米国·防衛高等研究計画局 (*2) ISO/IEC 19763-3:2010



03

Digital transformation of standards ~SMART: Standards Machine Applicable, Readable and Transferable

IEC/SG12: Digital transformation and system approach (ongoing)

SMART: Standards Machine Applicable, Readable and Transferable

IEC CDD provides methodology to create standardized data models in Level 4

IEC CDD = Digitalized and standardized data models

; / /

In the Four-Levels model, IEC SC3D provides to create standards in Level 4. lity

- Level 1: digital document
- Level 2: machine readable document
- Level 3: machine readable and executable content
- Level 4: machine interpretable content

Content Creation M: Content Management D: Content Delivery U: Content Usage Digital document standardization tosting repository Customer interface Use of stantards content (SMB/7326/R) Life cycle of standards content Life cycle of standards content Use of stantards Customer interface

Levels

One example of SMART: JAHG22(CFP Digitalization)

JAHG 22

Investigation and standardization proposal for "digitalization and data exchange of Carbon Footprint of Products (CFP)

linked to SC 3D

Objective of the JahG: jointly develop a new work item proposal (NWIP) for an IEC project on digitalization of carbon footprint of product data as per SMB Decision 175/6. The standard would be published as a data model in the IEC CDD (IEC Common Data Dictionary available under https://cdd.iec.ch) with a guidance document on how to use the data model.

The following tasks were identified for the JahG CFP digitalization [lead TC is based on subject matter expertise] :

- Assessing environmental impacts (e.g. climate change) for digitalization of carbon footprint of products (CFP) [TC111 lead] 3D/399/Q ® Registered trademark of the International Electrotechnical Commission
- Investigating standardization projects and standards on carbon footprint calculation and representation [TC111 lead] Note: this should leverage results originally provided to ahG94
- Task3 Identifying data models (structured concepts with classes and properties) for data exchange ensuring interoperability. [SC3D lead]
- Task4 Develop NWIP for data model (to be included in CDD) and guidance document

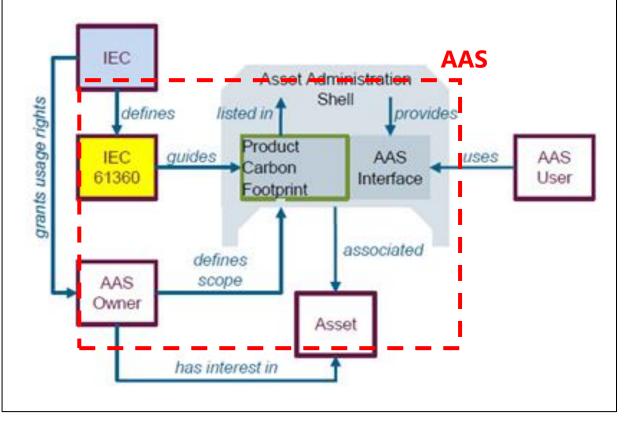
JAHG 22 Convenor & Members	
Convenor	National Committee
Ms Lijie Xu	CN
Mrs Lan YAMASHITA	JP

- IEC SC3D, in collaboration with IEC TC111 (Environmental Standardization), established a JahG to facilitate the CFP digitalization
 - □ CFP calculation models
 - CFP data exchange models
- 30 experts from 9 NCs(CA, NL, JP, FI, FR,GB, DE, CN, KR) had been nominated

Participants

Siemens, NXP, Schneider, Rockwell, Hitachi,
 Yokokawa, Mitsubishi heavy, NEC, Canon, Azbil,
 JEMA, JEITA, Toshiba, etc.

04


Interoperability achieved through data models

Examples from standardization activities

AAS standardized data models to support CPF and DPP

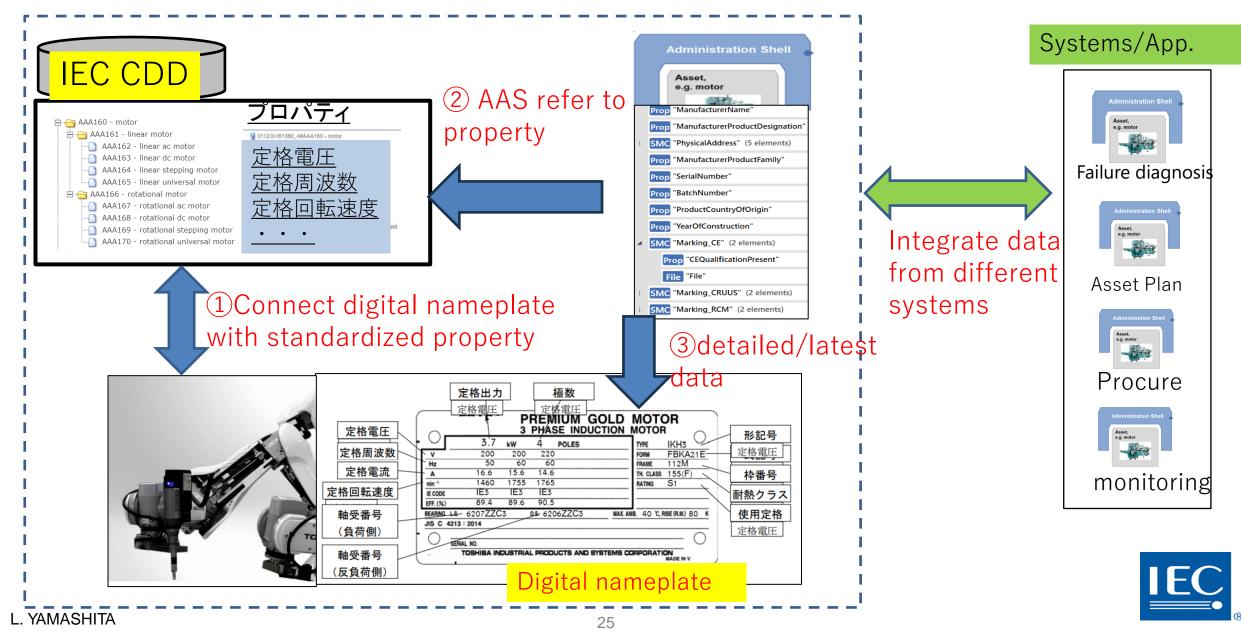
AAS data models for CFP and DPP (Ongoing)

IEC CDD and CPF in AAS

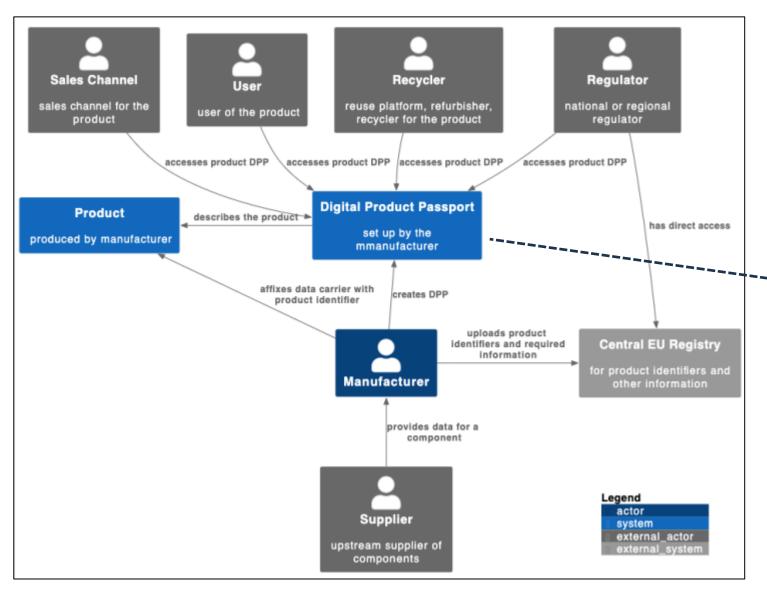
Resource: SMB_7552e_INF

ECLASS for CFP and DPP in AAS

Identification, description and properties as well as environmentally relevant information as submodels of the AAS.


Submodel	ECLASS Designation Submodel	Properties
Identification	AAS Submodel Nameplate	Manufacturer name
		Address
		Serial number
		Year of manufacture
		Markings
		Number of markings
		Markings
		Label name
Description and	AAS Submodel technical data (via ECLASS	Size
characteristics	classification) [Aspect - AC].	
		Form
		Material
		Functions
Environmentally	AAS Submodel Environmental Footprint	Carbon footprint
relevant informa-		Number of PCF methods
tion		Number of TCF methods
		Product Carbon Footprint (PCF)
		PCF calculation method
		PCF CO2eq
		PCF CO2eq
		PCF CO2eq PCF reference value for the calcula tion
		PCF CO2eq PCF reference value for the calcula tion PCF quantity specification for the

Resource: ECLASA e.v.(2023)

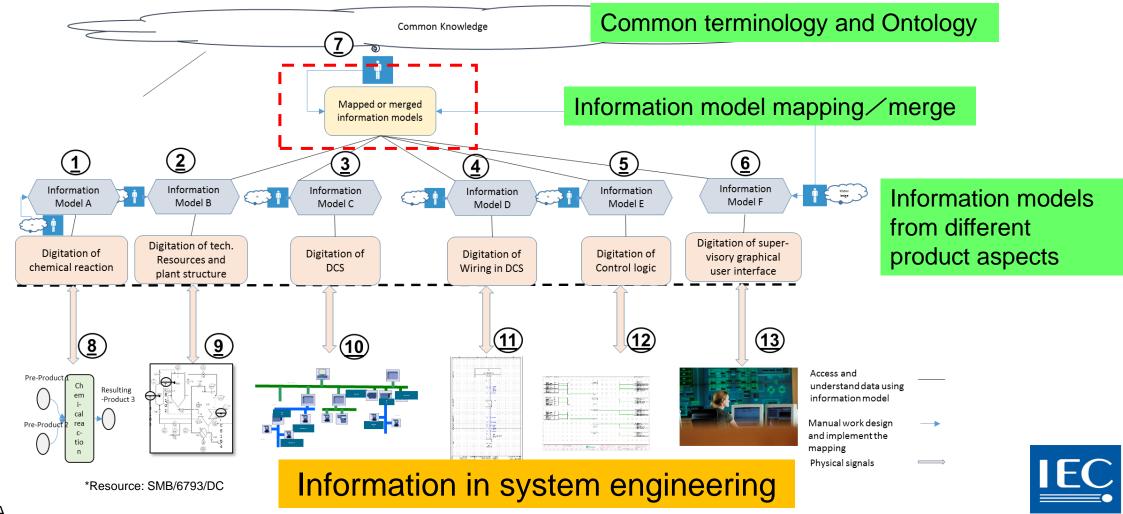


L. YAMASHITA

Digital nameplate and IEC CDD for DX/DT interoperability

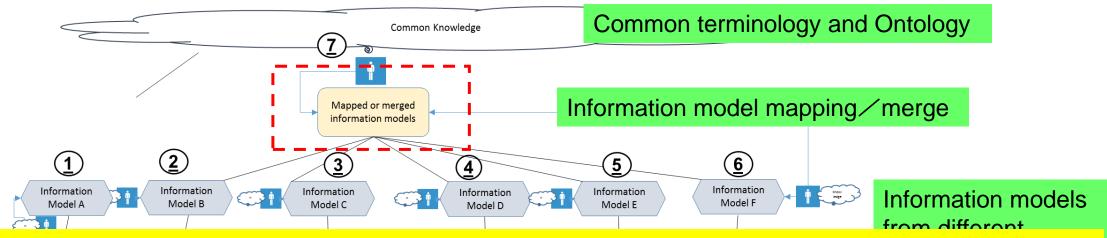
Interoperability among different actors in DPP system

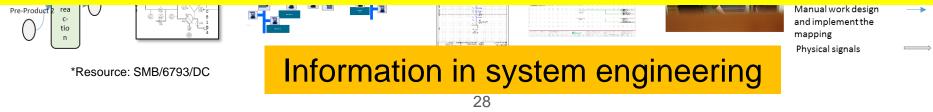
Resource: 2023-12 Discussion Paper DPP4.0 Architecture v1.1.pdf (zvei.org)


L. YAMASHITA

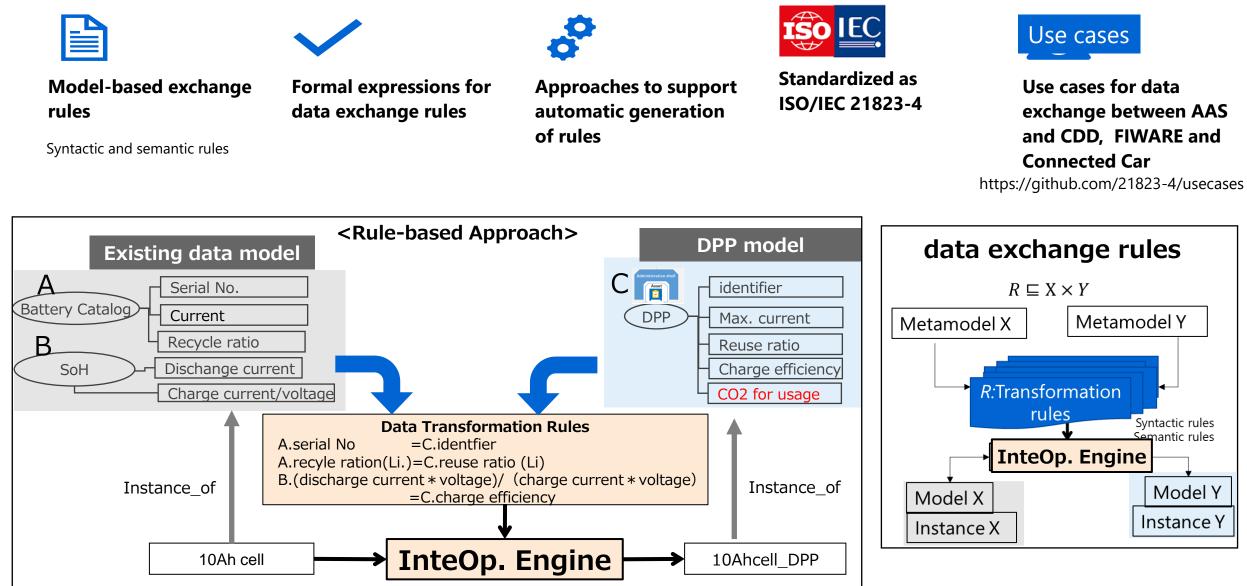
 Common data understanding among different actors are required
 Standardization of data models and APIs are in progress

IEC MSB white paper: "Semantic Interoperability: Challenges in the digital transformation ages"


https://www.iec.ch/basecamp/semantic-interoperability-challenges-digital-transformation-age


IEC MSB white paper: "Semantic Interoperability: Challenges in the digital transformation ages"

https://www.iec.ch/basecamp/semantic-interoperability-challenges-digital-transformation-age


L. YAMASHITA

- IEC SC3D provides principles including formal syntax to construct information models/data models for different systems
- IEC CDD, as a collection of products definitions, can be utilized as common knowledge for information integration and mapping.

Technologies for Interoperability between different data models

05 Conclusions

Conclusions

- 1. ISO and IEC is transiting from paper-based standards development to SMART: Standards Machine Applicable, Readable and Transferable.
- 2. IEC SC3D is supporting digitalized standards development as data models to accelerate application in industries.
 - collaborates with TC/SCs for domain data models development
- 3. To facilitate CE, data exchange and interoperability among different data ecosystems and data spaces are required. Standardized data models are underway. E.g.,
 - WBCSD PACT Pathfinder for CFP data exchange
 - DPP in AAS, RDF/OWL format

Thank you!

