Development of Mediolateral Ground Reaction Force across different Running Speeds to maintain a straight running path in Transfemoral Amputees Tang Ying Wai•Akihiko Murai•Hiroaki Hobara

Research Introduction

Research Protocol

- Nine participants were recruited
- Trials performed on instrumented treadmill (FTMH-1244WA; Tec Gihan, Kyoto, Japan)
- ▶ 6 x running trials (30 80% maximum speed)
- Maximum speed = average speed of fastest 100m recorded in competitions

Variables of interests

- \blacktriangleright M-L GRF (F_{avg})
- Mediolateral ground reaction impulse (M-L GRI)
- Step width (SW)
- Contact time(t_c)

Discussion

- > M-L GRI was similar between limbs implied the ability to maintain a relatively straight running path were present among the participants
- > Participants adopted similar strategies based on the similar SW observed.
 - Existing study shows lower SW as running speed increases in a single sprint among able-bodied runners [4]
 - > Reduced range of motion of the lower extremities might have restricted TFAs ability to mediate SW [5]
- Significant main effect of limb were present on M-L GRF, (50% and 70% trials)
 - > Suggests that limb-specific strategies were adopted to maintain symmetrical M-L GRI profile
- \triangleright A more than proportionate decrease in t_c as running speed increases and a generally similar
 - M-L GRF across all speeds resulted in a lower M-L GRI as running speed increased.
 - Lower M-L GRI implies that it might be easier to maintain straight running path at higher running speeds


References

- Makimoto, A. (2017). J. Appl. Biomech, 33(6), 406–409
- Hisano, G. et al. (2021). J. Biomech., 115, 110201.
- Sakata, H et al. (2020). Med Sci Sports Exerc, 52(4), 892–899.
- Nagahara, R et al.(2017). Int. J. Sports Med, 38(7), 534–540.
- Heitzmann, D. W. W. et.al. (2020). PLoS ONE, 15

• University of Tokyo

• Human Augmentation Research Center, National Institute of Advanced Industrial Science

> Structural differences between affected and unaffected limbs of the lower extremity amputees caused a high level of mechanical asymmetry between them during locomotion [1] > An appropriate M-L GRF profile that realizes a symmetrical mediolateral ground reaction impulse (M-L GRI) is essential for maintenance of straight running path [2] > Research purposes: To examine the mediolateral ground reaction force (M-L GRF) profile in unilateral transfemoral amputees (TFA), and to identify their strategies in maintaining straight running

Statistical analysis > One-way, two-way repeated ANOVA Friedmen test and Wilcoxon rank sum test

> TFA runners were able to maintain a relatively straight running path through limb specific

> Lower M-L GRI at faster running speeds implied that it is easier to maintain running direction

> Analyzing medial and lateral GRF individually to better understand the interlimb strategies > Centre of pressure trajectories to better understand the maintenance of movement direction among the population

-	Fig. 1: M-L GRI (A), Favg
	(B), $t_c(C)$ and SW (D) of
	the unaffected (white
	circles) and affected (red
	<i>circles</i>) limbs across 6
	different running speeds.
	** represents significant
	differences between limbs
	at each speed at $p < 0.05$.
:	#, \$, †, ●, ¢ represent
Affected	significant differences
	from 30%, 40%, 50%,
	60% and 70% speed trials
	at p < 0.05 respectively
5	