

ゼロエミビジョン検討WG 活動報告

2022年7月4日

東京湾岸ゼロエミッションイノベーション協議会 - ゼロエミビジョン検討WG

東京湾岸ゼロエミッションイノベーション協議会(ゼロエミベイ)の概要

協議会の活動内容

東京湾岸が世界初のゼロエミッション・イノベーション・エリア(ゼロエミッション版シリコンバレー)世界から認識されることを目指し、①エリア内の企業・大学・国研等の活動情報を含むエリアマップの作成と世界への発信、②研究開発・実証プロジェクトの企画・推進(ナショナル・プロジェクトの提案を含む。)や成果普及・活用、③会員間の情報交換・連携の推進等を行う。

協議会の構成

- 会員は、ゼロエミッションに資する研究開発・実証 事業を行う企業、大学、国研、団体等の法人等 (個人会員は設けない)。
- 会員数: 134 (2022.04.19時点、幹事13、会員101、オブザーバー20の合計)
- ●会長:柏木 孝夫 東京工業大学 特命教授・ 名誉教授(吉野産総研ゼロエミッション国際共同 研究センター(GZR)研究センター長が指名)。
- 事務局は、産総研GZR。
- 協議会の会費は当面無料。

スケジュール

- 2020年6月2日に協議会設立、6月18日の第 1回総会では松本副大臣にご挨拶いただき、柏木 会長、吉野研究センター長の記念講演を実施。
- 総会は当面2回/年程度、幹事会は1回/2~3ヶ月程度開催。

正式名称: 東京湾岸ゼロエミッションイノベーション協議会 (英文: Tokyo Zero-emission Innovation Bay)

略称:ゼロエミベイ(英文: Zero-emission Bay)

ゼロエミベイ ロゴマーク

本日のアウトライン

1. 『ゼロエミビジョン検討WG』の概要

- ー 活動目的・取組みの狙い
- 活動体制·活動実績
- 主な論点・『脱炭素』改め『カーボンニュートラルモデル』テーマ選定

2. 『カーボンリサイクル/CCUS』の検討状況

- ーケミカルチェーンイメージ、CO2需給バランスイメージ、 GHG削減効果見える化
- -CO2排出源・回収方法の分類、必要な制度・実現に向けた課題

3. 『デジタルインフラ』の検討状況

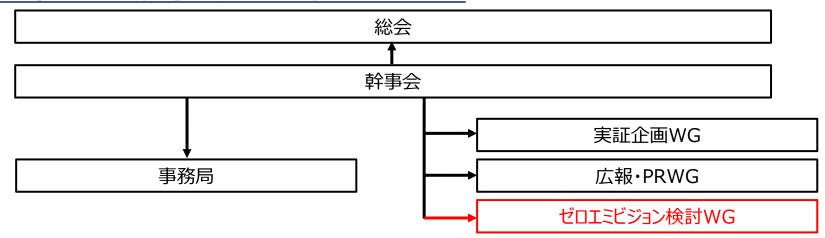
- ーデジタルに求められる要件、CO2回収・利用システム全体像とロードマップ
- ーデジタルインフラ構築に向けた具体的課題・解決策

4. 総論

- 検討内容まとめ
- 今後のWG活動

1. 『ゼロエミビジョン検討WG』の概要

● 活動目的


- 1. 産業界にて東京湾岸のカーボンニュートラル化実現に向けた共通ビジョン (=将来目指すべき姿) を取り纏め、産学官の関係者に共有・情報発 信する。
- 2. **WG各社の知見を融合した『カーボンニュートラルモデル』を策定**するとともに、実現に向けた**課題と解決策を整理**する。
- 3. **実証プロジェクトの創出**に繋げ、『<mark>カーボンニュートラルモデル」の社会実 装を加速</mark>する。

● 取組みの狙い(企業側の目線)

- 1. <u>産業界の共通ビジョン</u>を発信し、<u>ステークホルダー(政府、大学・研究機</u> 関等)との連携を強化することで、イノベーションを共創する。
- 2. 本協議会の場で発信し、<u>資金・制度面の政府支援</u>を得やすくする。

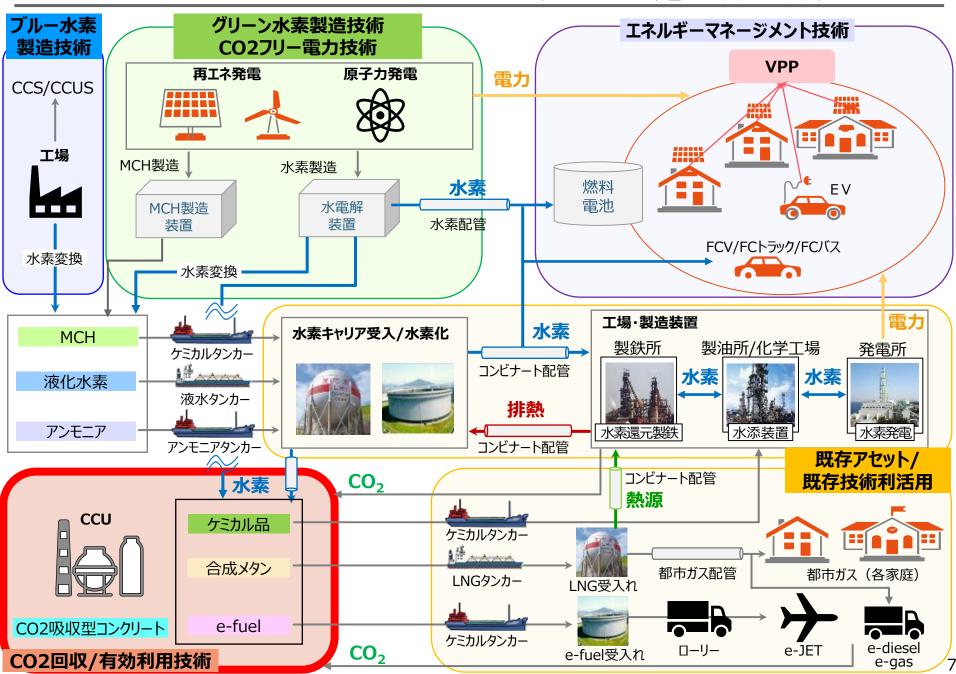
1. 『ゼロエミビジョン検討WG』の概要

● 活動体制・・・・幹事会の元、本WGを設置

参画企業(7/4現在)・・・15社(設立4社+新規11社)

Asahi KASEI

● 活動実績(2021/7 WG中間報告以降)

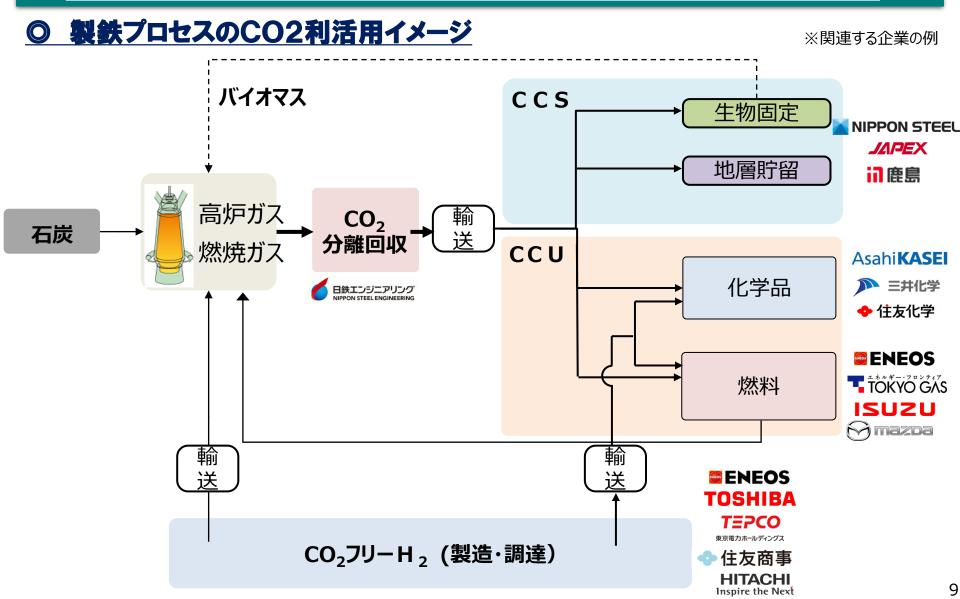

年	2021		2022		
月	7~9 10~12		1~3	4~6	
活動内容	・WG不在業界への参画 呼びかけ ・WG新規参加希望者と の意見交換	・WG新規参加者目線 のビジョン紹介 ・実証企画WGとの意見 交換	・WG最終報告の取り纏め方針討議 ・WG最終報告案作成開始	・CCUに特化した討議 ・デジタルインフラに特化 した討議 ・WG最終報告作成	

5

1. 『ゼロエミビジョン検討WG』の概要

- 主な論点 (アウトプットの方向性)
- 1. カーボンニュートラル社会に繋がる、リアリティのあるインフラの姿とは何か。
- 2. 個社では実現できない技術の組合わせを提示できないか。
- 3. 社会全体の当事者意識・参加意欲をどのように高めることができるか。
- 『カーボンニュートラルモデル』のテーマ選定
- 1. <u>コンビナートにおける水素利活用</u> 海外からの安価なCO2フリー水素の受入れ拠点となるコンビナートエリアの水素 利活用に着目。
- 2. <u>カーボンリサイクル/CCUS</u> ※<mark>発展的に深堀</mark> コンビナートエリアに集積するCO2排出源等を有効活用し、熱・化学品といった、 ゼロエミ電力で置き換えできない用途のカーボンニュートラル化に着目。
- 3. <u>地産地消エネルギーのマネージメント</u>
 <u>地産地消型のカーボンニュートラルメニュー</u>を電力・熱の両面で複数提示し、<u>地域</u>
 コミュニティ(自治体・市民)レベルでCNに関する参加意欲向上に着目。
- 4. <u>デジタルインフラ</u> ※新規追加 カーボンニュートラルな社会に必要なデータの見える化・データ相互連携等、<u>デジ</u> タルインフラのあり方に着目。

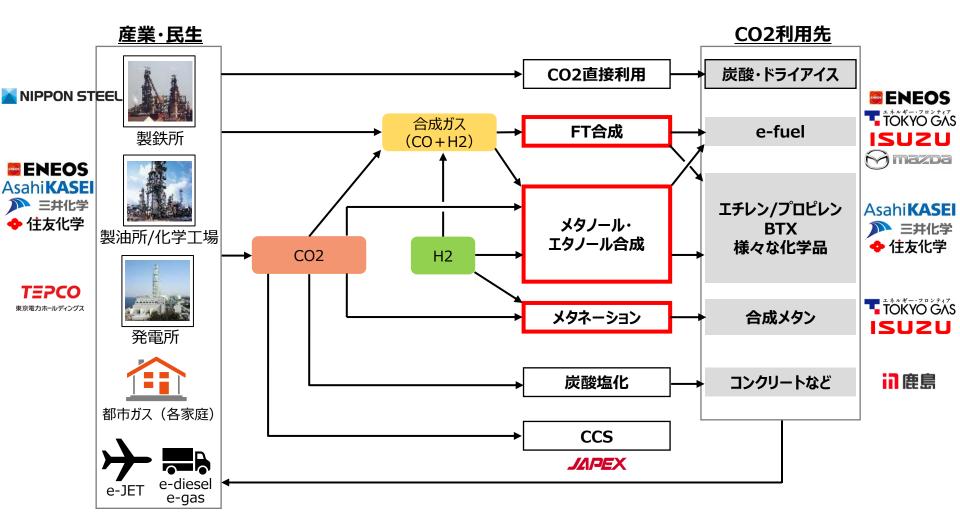
2. 『カーボンニュートラルモデル(CCUS)』の検討状況


2.1. カーボンリサイクル/CCUS ~ビジョン検討の論点整理~

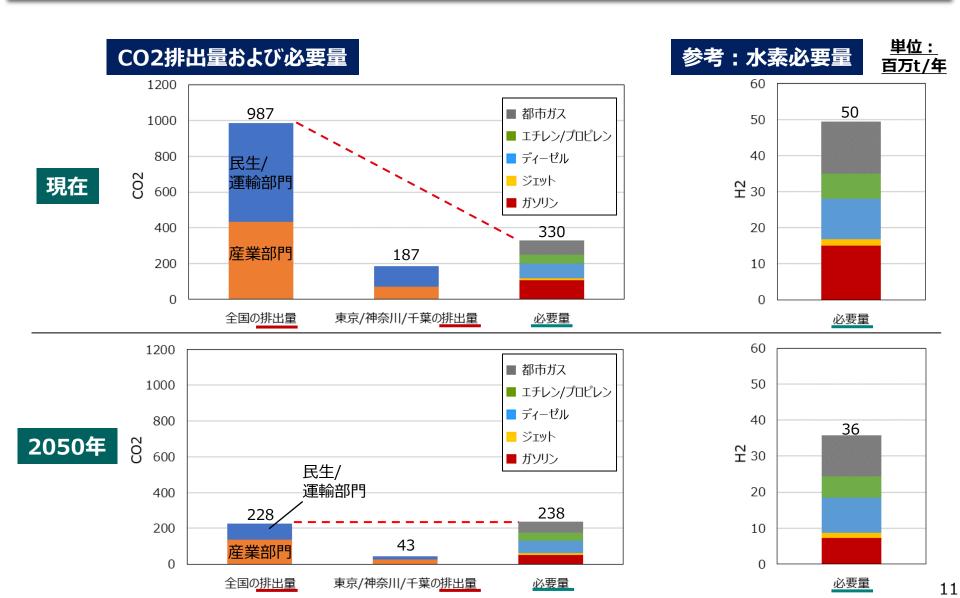
• 新規WGメンバーの視点を反映し、以下①~⑤の論点にてビジョンを深堀りした。

論点	概要等
①どのようなケミカルチェーンによって、 カーボンリサイクルがなされるか (=「CCUSのケミカルチェーン具体化」)	化学品・製鉄プロセスのCO2利活用イメージを 作成し、ケミカルチェーンにおけるWG各社の繋が りを整理
②カーボンニュートラル達成時に、 CO2の需給はどのようにバランスするのか (=「CO2需給バランスの定量化」)	燃料、化学品をCO2およびH2から製造する際のCO2需給バランスを試算し、日本全体でのカーボンの循環をイメージ
③CCUSはカーボンニュートラルに対してどのように寄与するか (= 「GHG削減効果の見える化」)	リサイクルできないカーボンの削減として、CO2吸収型コンクリート活用時のCO2削減ポテンシャルを推定
④CO2排出源に対する最適な回収技術 は何か (=「CO2排出源・回収方法の分類」)	各CO2排出源に適する回収方法を分類し、今 後のCO2リサイクル技術の方向性を整理
⑤CCUSを社会実装するにあたって、必要な 制度や実現に向けた課題は何か (= 「制度・技術の課題」)	カーボンリサイクル/CCUS利活用に際する、課題 および解決策を整理

2.2. 論点① CCUSのケミカルチェーン具体化(CO2源)


- ・ 産業部門の製鉄プロセスから発生するCO2が主要な供給源となるものと想定
- ・ 次世代高炉技術(水素還元製鉄・CR)を前提にケミカルチェーンが繋がるイメージ

2.2. 論点① CCUSのケミカルチェーン具体化(利用)


- コンビナートに集中して発生するCO2と再エネ水素を原料に、FT合成/メタネーション/メタ ノール合成技術により高付加価値な化学品製造に繋げるケミカルチェーンイメージ
- ◎ 化学品製造プロセスのCO2利活用イメージ

※関連する企業の例

2.3. 論点② CO2需給バランスイメージ

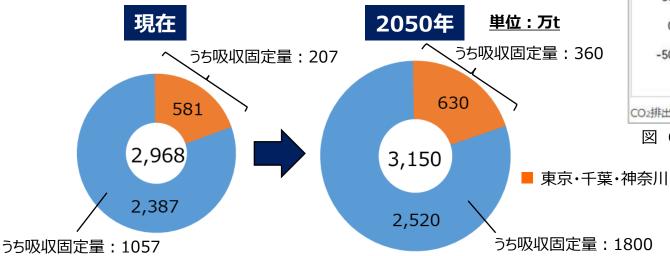
・ 2050年のCO2排出量が30年対比で6割減程度で、燃料および化学品(エチレン/プロピレン)の将来需要をまかなうCO2必要量を確保できる。

2.4. 論点③ GHG削減効果の見える化

○ CO2吸収型コンクリートによるGHG削減効果の位置付け

- ・ ケミカルチェーンベースのCCUSに加え、CO2吸収型コンクリート技術が社会実装されれば 大気中のCO2を固定化(カーボンネガティブ)も可能
- ・ 2050年時点のコンクリート生産量の全てをCO2吸収型コンクリートに置換することで、 約3,150万トン/年のCO2を削減(うち吸収固定量は1800万トン/年)

CO2吸収型コンクリートのCO2削減・吸収固定効果


・現在および将来目標のCO2削減・吸収固定量を示す

	削減量	うち吸収固定量
現在	306 kg/m³	109 kg/m³
将来目標	350 kg/m³	200 kg/m³

コンクリート生産量

	全国	うち東京・千葉・神奈川
現在	9,700 万㎡	1,900 万㎡
2050年見込み	9,000 万㎡	1,800 万㎡

CO2削減ポテンシャル

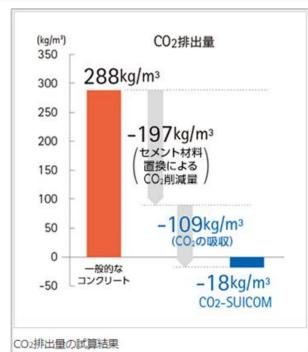
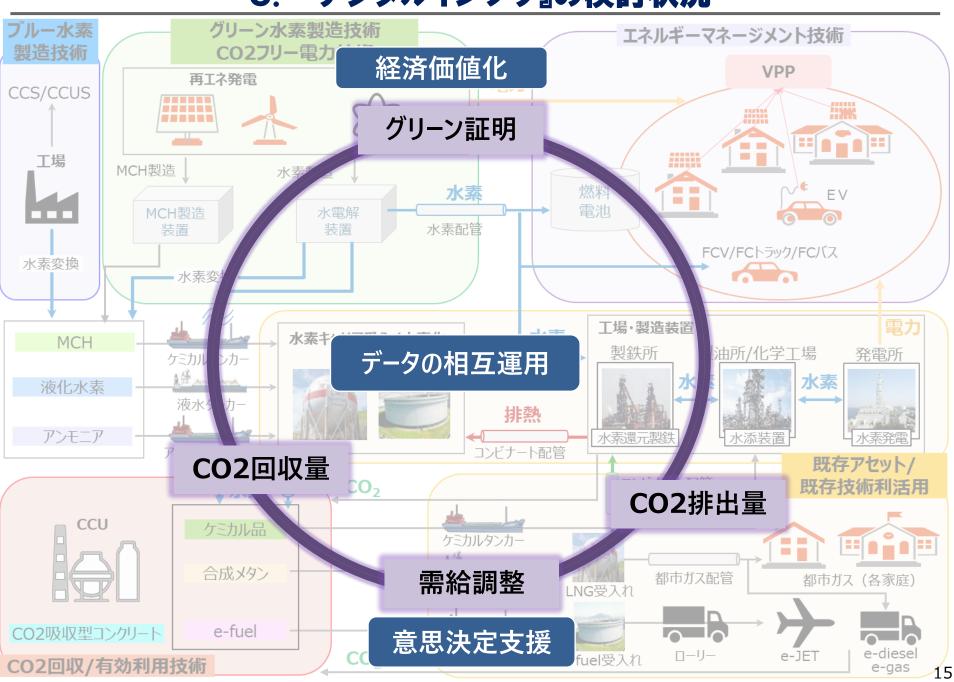


図 CO2-SUICOMのCO2排出量(現状)

12

2.5. 論点④ CO2排出源·回収方法の分類

将来的に、<u>低濃度のCO2回収技術</u>が不可欠。<u>化学吸収法/物理吸着法/膜分離法等の</u>
 技術革新が求められる。


CO2回収法	原理	起因力	主な発生元 (想定利用先)	長所	短所
物理吸収法	物理反応	分圧差 (濃度差)	・天然ガス随伴ガス リフォーマー向け ・IGCC ・水素・アンモニア製造	・高分圧ガス向き ・適用範囲が広い ・腐食、浸食、泡立が少ない ・再生熱源を必要としない	・吸収液が高価・重炭化水素への親和力が高い
膜分離法	透過	分圧差 (濃度差)	・IGCC等高圧ガス向け・天然ガス随伴ガスへの 適用・水素・アンモニア製造	・簡便 ・(将来的には)安価 ・小容量向き	・回収したCO2が低純度 ・運転費が高い ・大容量に不向き ・油脂分含有ガスに弱い(膜劣化)
深冷分離法	液化·精留	相変化	(・火力発電所)	・高純度精製が可能 ・大容量向き	・装置が複雑・建設費が高価・運転費が高い
化学吸収法	化学反応	温度差	・製鉄副生ガス・ボイラー燃焼排ガス・天然ガス火力発電所・セメント工場・石油精製・化学工業	・低分圧ガス向き ・高純度精製が可能 ・炭化水素への親和力が低い ・大容量向き	・吸収液が高価 ・腐食、浸食、泡立がある ・熱が必要
物理吸着法 (PSA)	吸着	分圧差 (濃度差)	海外ではリフォーマー向け 実績多数	高純度精製が可能・装置が比較的簡易・適用範囲が広い	・再生用のガスが必要 ・水分の親和性が強い

(出典) 「平成 25 年度シャトルシップによる CCS を活用した二国間クレジット制度実現可能性調査委託業務」(環境省)を元に作成

2.6. 論点⑤ 制度・技術の課題

項目	課題	解決の方向性
CCUSのコスト低減	・CCUSによる製品コスト高 ・革新的なCO2分離・回収・利用 技術の確立	・イノベーティブな研究開発基盤の整備 (人・物・金) ・研究開発〜実証〜実装を加速する政府 支援 スキーム (GI基金/脱炭素関連投 資)
原料の安定確保 (CO2フリー水素、 CO2)	・CO2フリー水素サプライチェーンの構築・異業種間のCO2融通体制(スキーム)/インフラの構築	 ・GI基金でのプロジェクト連携 ・カーボンニュートラルコンビナートの基盤整備 (水素・CO2パイプライン、需給予測システム) ・CO2不足時に大気中CO2回収技術
LCA評価·認証制度	・CCUSに関する適切なLCA評価手法とCO2削減効果に関する認証システムの確立 ・CO2削減効果貢献の帰属先明確化	・CCUSに関するLCA評価手法の国際標準化 ・デジタルインフラを活用した認証システム ・二国間クレジット(JCM)の対象国拡大

3. 『デジタルインフラ』の検討状況

3.1. デジタルインフラに求められる要件

カーボンニュートラル時代に求められる「デジタルインフラ」の姿として、4つの要件を抽出。

議論のまとめ

- ●企業間でのデータ共有・一括管理
- 電力・水素・熱シームレス連携
- 需要側・供給側のシステム連携
- リアルタイムデータの取得
- ●機密保持、信頼性
- ●CO2排出削減効果可視化
- 電力・水素・鉄などの由来(ブルー・グリーン等)判別・証明
- ESG情報開示
- ■需給予測:気象データ・価格変動など、需要・供給連携
- ●社会動向:潜在ニーズ・市場動向・法律・条例
- ●デジタル化の進展によるエネルギー消費の増大
- ●デジタル自体の強靭性

デジタルに求められる要件

1. データの相互運用

- 異種システム間連携
- •評価軸の共通化
- •リアルタイム性
- セキュリティ
- •トラスト

情報の流通

2. カーボンニュートラル貢献の経済価値化

- •環境価値のモデル化
- デジタル認証
- •トレーサビリティ

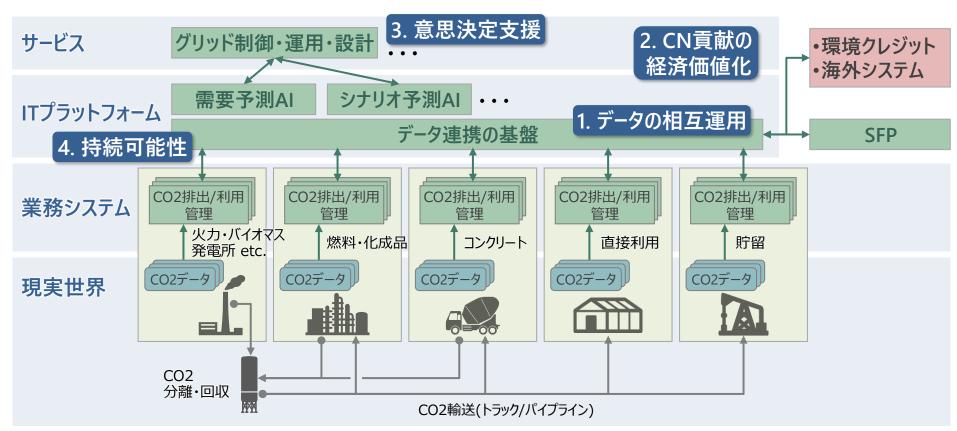
情報の価値化

3. 意思決定支援

- •将来データ予測
- 将来シナリオ予測

情報の補完

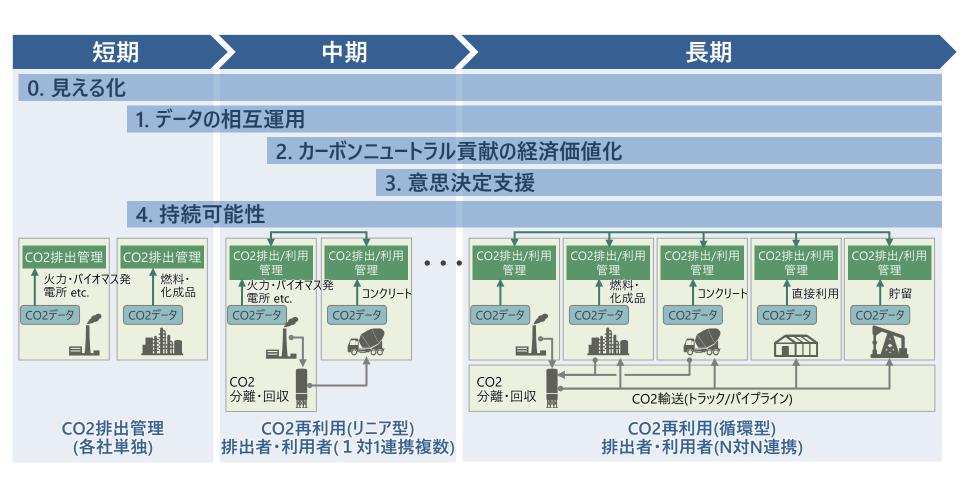
4. 持続可能性


- •最適化されたデジタル処理
- グリーンでレジリエントなITアーキテクチャ

役割

条件

3.2.「CO2回収・利用システム」のデジタルインフラ全体像


- 典型的なデジタルインフラのユースケースとして「**CO2回収・利用システム」を想定**。
- ・ <u>4つの要件を満たすことで、CO2排出・利用など様々なデータをステークホルダ間で相互活</u> <u>用し、新たな価値を創出する。</u>

SFP:Sustainable Finance Platform

3.3.「CO2回収・利用システム」の展開ロードマップ

• CO2回収・利用システムのロードマップと紐づく、デジタル要件の優先度を整理。

3.4. 具体的課題·解決策

- 課題を解決には、様々な技術開発(下表参照)が必要不可欠。
- GI基金事業のサプライチェーン実証との連携等、具体的案件での構築・検証が早道

#	要件案	具体的な課題	解決技術・方針
1	データの相互運用 (情報の流通)	・ I/Fが接続先毎に異なり、都度開発が必要 ・ データの出自がわからないので、安心して使えない ・ データ提供により自社の運用・経営状況が露呈する ・ データ利用・提供の契約手続きが煩雑	 データ連携の基盤の構築 ✓ I/Fの標準化 ✓ データの秘匿利用 ✓ 契約代行/管理のサービス化
2	カーボンニュートラル 貢献の 経済価値化 (情報の価値化)	 カーボンニュートラルの信頼性担保が必要 (グリーンウォッシュ対策) データの粒度、精度と、デジタル管理の範囲が不明確 	 Sustainable Finance Platform 発電設備等の稼働データをIoT収集 (Monitoring) ✓ Blockchainに蓄積して改ざん防止 (Monitoring) ✓ 稼働データからCO2削減量へ自動換算 (Reporting) ✓ CO2削減量に関する第三者検証支援 (Verification) 外部システムとの連携 ✓ 炭素排出量の算出、クレジットの算定と認証 ✓ クレジットの売買・管理
3	意思決定支援 (情報の補完)	 CO2排出量などのKPIを把握していない (→情報の可視化(見える化)) 需給のマッチング (CO2、ガス(H2/CH4)、電気)が複雑(難しい) 適切な設備設計・拡張が必要(投資判断) 	 グリッド制御、運用、設計 ✓ CO2/ガス/電気の供給量と需要量の予測AI ✓ CO2回収量の計測と供給の制御 ✓ CO2供給インフラの運用 ✓ 設備設計(施設、ネットワーク)
4	持続可能性	 ・データセンタおよびネットワークにかかるエネルギー消費の 削減が必要 ・負荷集中の回避(→エネルギー消費ピークの平準化) ・非常時にでも止まらない(レジリエンシー) 	 ITアーキテクチャの刷新(低消費電力、レジリエント) データ処理のデマンドレスポンス 部品供給含めたサプライチェーン強化

4. 総括

● 検討内容まとめ

新たな「カーボンニュートラルモデル」として、「カーボンリサイクル/CCUS」と「デジタルインフラ」について深堀りし、以下の通り、実現に向けた課題と解決策を整理した。

「カーボンリサイクル/CCUS」

- 2050年に向け、コンビナートエリアに集積する**産業分野**で大幅にCO2排出量が削減される中、**削減しきれないCO2を有効活用**し、**化学品・燃料に転換して利活用**することで、カーボンニュートラル化に貢献する。
- ケミカルチェーン実現には、①技術革新(CO2分離回収・変換技術)②産業連携基盤の強化(カーボンニュートラルコンビナート構想等)③LCA評価・認証制度、が鍵を握る。

「デジタルインフラ」

- 全てのカーボンニュートラルモデルを繋ぎ、CO2排出認証システム等による削減価値の見える化・経済価値化を実現するとともにステークホルダーの意思決定を支援する共通基盤を提供する。
- データ相互運用システムの標準化、グリーンでレジリエントなシステムアーキテクチャの実現が鍵を握る。

4. 総括

● 今後のWG活動

- 1. WG個社の実証プロジェクト (G I 基金事業等) をベースに、WGメンバー企業 同士の新たな組み合わせによる、カーボンニュートラルモデルの実証プロジェクト 創出を目指す。
- 2. 広報・PRWGと連携し、産学官の関係者に『カーボンニュートラルモデル』を共有・情報発信し、ビジョン実現のためのイノベーションを共創する。

以下、参考資料

2.3. 論点② CO2需給バランスイメージ

◎ CO2需給バランスの試算結果

<u>単位:百万t</u>

.没 击 星	現在			2050年		
必要量	年間消費量	CO2必要量	(H2必要量)	年間消費量	CO2必要量	(H2必要量)
ガソリン	34.52	106.40	15.11	16.57	51.06	7.25
ジェット燃料	3.78	11.70	1.65	3.27	10.12	1.43
ディーゼル	26.15	81.40	11.30	22.61	70.39	9.77
エチレン	6.00	50.98	6.95	5.19	44.08	6.01
プロピレン	8.60	(同時に生産)	(同時に生産)	7.44	(同時に生産)	(同時に生産)
都市ガス (メタン)	28.97	79.68	14.48	22.76	62.59	11.38
合計	108.02	330.17	49.50	77.83	238.24	35.84

CO2排出量	現在	2050年
全国	987.30	228.00
全国 産業部門	433.90	136.80
東京/神奈川/千葉	186.95	43.17
東京/神奈川/千葉 産業部門	69.94	25.90

2.3. 論点② CO2需給バランスイメージ

◎ CO2需給バランスの試算前提

	して高和ハノノへの武井削延
項目	前提
CO2 排出量	・現在のCO2排出量については以下を参照 「部門別CO2排出量の現況推計」(環境省 2019年) https://www.env.go.jp/policy/local keikaku/tools/suikei.html
	 ・2050年では、2030年の非電力由来CO2排出量 5.7億トンの60%が電化・水素化され、残りがCCUSに利活用されると推定し、東京/神奈川/千葉の排出量については、現在の排出量の割合から算出 ・産業部門は電化シフトが難しいため、2050年では排出量全体の6割を占めると仮定「2050年カーボンニュートラルに向けた資源・燃料政策の検討の方向性」(経済産業省 2020年) https://www.meti.go.jp/shingikai/enecho/shigen_nenryo/pdf/030_02_00.pdf
CO2 必要量	・ガソリン/ジェット燃料/ディーゼルの現在の年間消費量は以下を参照 ・ガソリン/ジェット燃料/ディーゼルの2050年消費量は、2025年までの年率で2050年まで減少すると仮定して算出「2021~2025年度石油製品需要見通し(案)」(経済産業省 2021年) https://www.meti.go.jp/shingikai/enecho/shigen_nenryo/sekiyu_gas/sekiyu_shijo/pdf/007_02_00.pdf
	・ガソリン/ジェット燃料/ディーゼルについては、それらの主成分の化合物をCO2とH2から収率100%で合成すると 仮定
	・エチレン/プロピレンはMTO技術で合成すると仮定(エチレン収率37%, プロピレン収率53%) 「今後の水素政策の課題と対応の方向性中間整理(案)」(経済産業省 2021年) https://www.meti.go.jp/shingikai/energy_environment/suiso_nenryo/pdf/025_01_00.pdf
	・エチレン/プロピレンの2050年消費量は、2030年までの年率で2050年まで減少すると仮定して算出「2030年に向けたエネルギー政策の在り方」(経済産業省 2021年) https://www.enecho.meti.go.jp/committee/council/basic_policy_subcommittee/2021/040/040_005.pdf
	・都市ガスの年間消費量は以下を参照 「都市ガスの販売量」(日本ガス協会 2019年) <u>https://www.gas.or.jp/kensu/</u>
	・都市ガスの2050年消費量は、LNG需要の2040年までの減少年率で2050年まで減少すると仮定して算出「2050年に向けたガス事業の在り方研究会について」(経済産業省 2020年) https://www.meti.go.jp/shingikai/energy_environment/2050_gas_jigyo/pdf/001_05_00.pdf