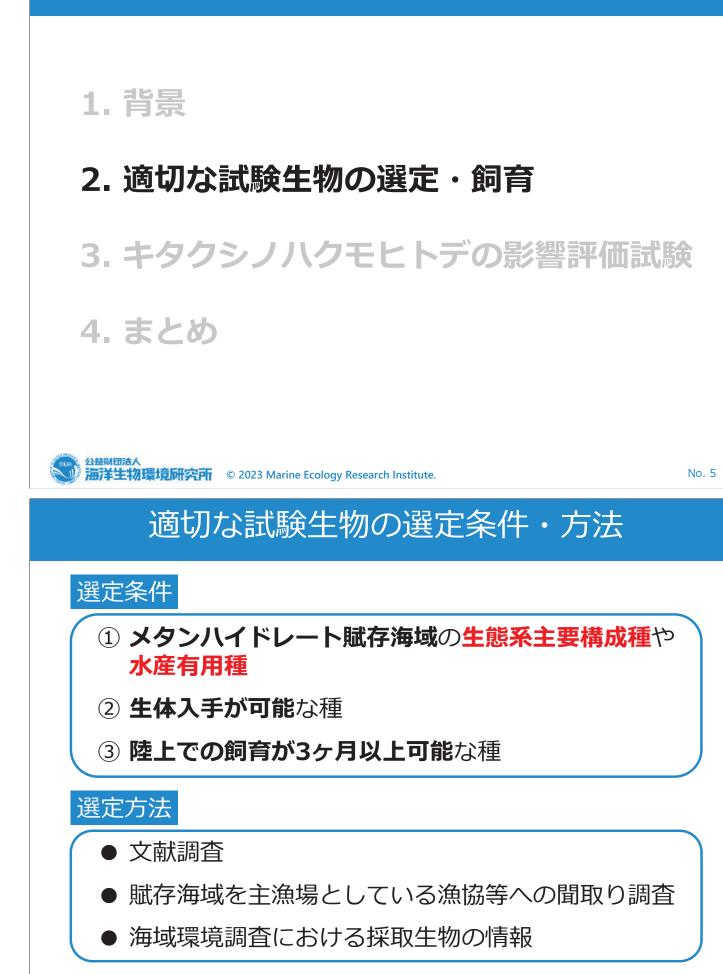


1. 背景


2. 適切な試験生物の選定・飼育

3. キタクシノハクモヒトデの影響評価試験

4. まとめ

適切な試験生物の選定結果

●キタクシノハクモヒトデ・深海ヨコエビ類

➡ 賦存海域の海底に多く生息。
魚類などの重要な餌生物。

ホッコクアカエビ(甘えび)・ベニズワイガニ・
 深海バイ類(エッチュウバイ・カガバイ・ツバイ)

➡ 日本海の賦存海域での水産有用種。

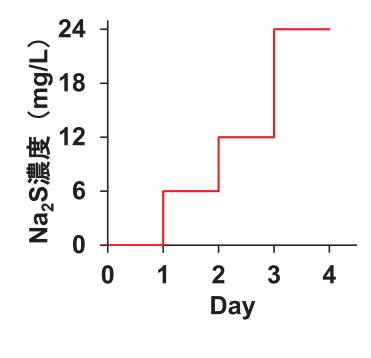
^{公益期团选人} 海洋生物環境研究所 © 2023 Marine Ecology Research Institute.

発表内容

2. 適切な試験生物の選定・飼育

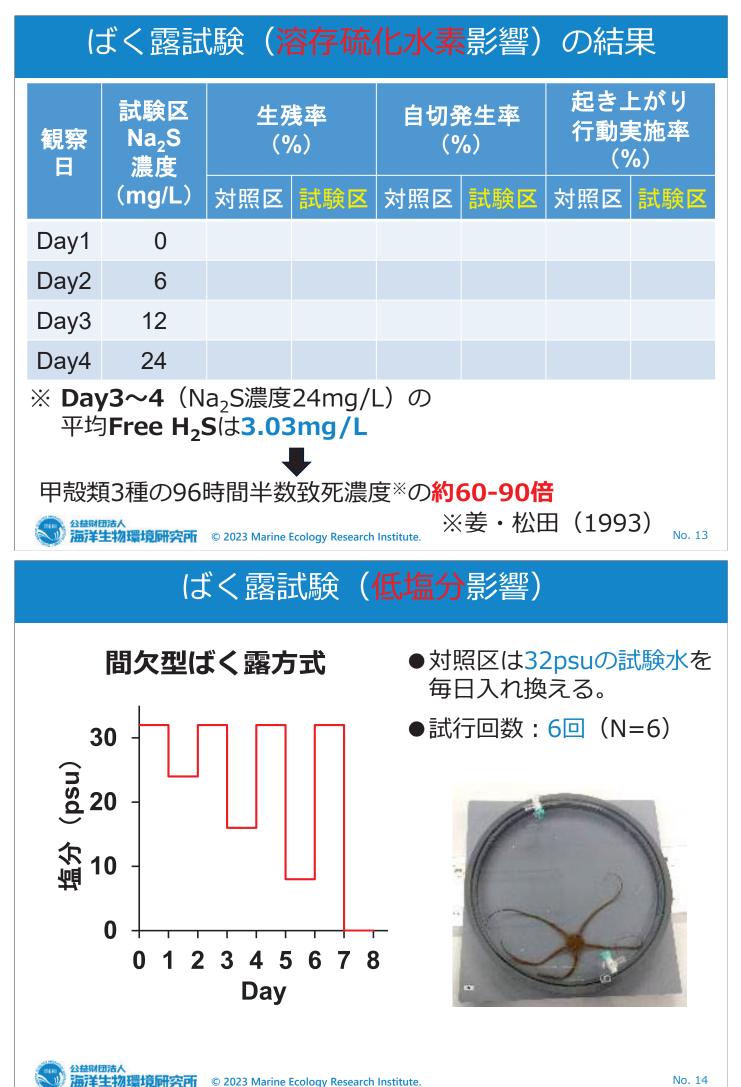
3. キタクシノハクモヒトデの影響評価試験

4. まとめ


ばく露試験方法(閉鎖系試験)

	ばく露	試験((溶存ン	メタン	影響)	の結果	Ę
観察 日	試験区 CH ₄ 濃度	生残率 (%)		自切発生率 (%)		起き上がり行動 実施率(%)	
	(mg/L)	対照区	試験区	対照区	試験区	対照区	試験区
Day1	0						
Day2	1						
Day3	0						
Day4	2						
Day5	0						
Day6	4						
Day7	0						
Day8	8						
◎ A基财团法人 油洋生物環境研究所 © 2023 Marine Ecology Research Institute. No. 11						No. 11	

ばく露試験(溶存硫化水素影響)


ステップワイズばく露方式 ●対照区は0mg/Lの試験水を

入去时根益公

- 毎日入れ換える。
- ●試行回数:6回(N=6)
- ●Na₂S溶液のS総量測定 ↓算出 Free H₂S

●3試験区を同時に実施 ●試行回数:3回(N=3)

海洋生物環境研究所 © 2023 Marine Ecology Research Institute.

ばく露試験(低酸素影響)の結果 生残率 自切発生率 起き上がり行動実施率 試験区 (%) (%) (%) 対照区 60%区 20%区 ※ 20%区の試験開始時の溶存酸素濃度は約2.4mg/L ●水産用水基準では、生物の生残に影響を及ぼさない 溶存酸素濃度は6mg/L以上 ●24時間半数致死濃度はマダイで2.0mg/L、 ヒラメで1.6mg/L* ※環境省(2014) 公益財団法人 海洋生物環境研究所 © 2023 Marine Ecology Research Institute. No. 17 ばく露試験方法(高濁度試験) 試験装置 ●試験水温:6℃ ●評価項目 ①致死影響:生残率 ②行動影響:起き上がり行動 供試生物 自切 ●懸濁物:カオリン(濁度試験の) 一般的な標準物質) ●ばく露濃度 ポンプ ポンプ 8.0 ل 収容籠は **戦** ●1.4 上下に分か 反 例 0.2 れており、 対照区は0g/L一定 各1個体収容 0

0

1

2

Day

3

4

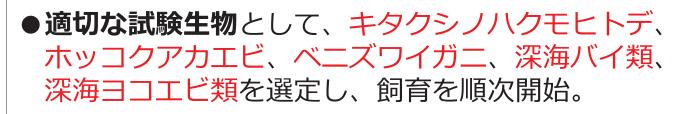
高濁度ばく露試験の結果

観察	試験区 懸濁物	生残率 (%)		自切発生率 (%)		起き上がり行動 実施率(%)	
B	濃度 (g/L)	対照区	試験区	対照区	試験区	対照区	試験区
Day1	0.0						
Day2	0.2						
Day3	0.4						
Day4	0.8						
※ Day3~4(懸濁物濃度0.8g/L)の平均 濁度 は575NTU							
●水産用水基準では、海域において 人為的に加えられる懸濁物濃度は2mg/L以下							
●ヒラメの24時間半数致死濃度は <mark>9.9g/L</mark> [※]							
※岩田ら(2011) No. 19					1) _{No. 19}		

キタクシノハクモヒトデの急性致死影響

ストレス要因	致死影響(24時間)の 閾値	判定
溶存メタン	溶存メタン濃度 >16 mg/L (飽和)	高耐性
溶存硫化水素	硫化水素濃度 > 3 mg/L	高耐性
高濁度	>575 NTU	?
低塩分	塩分 16-21 psu	比較的脆弱
低酸素	溶存酸素飽和度 <20%	高耐性

2. 適切な試験生物の選定・飼育


3. キタクシノハクモヒトデの影響評価試験

4. まとめ

No. 21

まとめ

●キタクシノハクモヒトデの影響評価試験 既往知見*と比較し、特に溶存硫化水素、低酸素に 対して高い耐性がある。

→影響発現機序の推定について、産総研で網羅的遺 伝子発現解析および骨格観察・元素分析を実施中。

●今後、他の試験生物についても、ばく露試験を順次 実施する予定。複合影響試験についても検討。

※丸茂・横田(2012a)、丸茂・横田(2012b)

ご清聴頂き、有難うございました。

謝辞

本研究は**経済産業省のメタンハイドレート研究開発** 事業の一部として実施しました。関係各位に謝意を 表します。

公益財团法人 海洋生物環境研究所 © 2023 Marine Ecology Research Institute.

No. 23