

量子回路生成におけるEncoder-Decoder Transformerとその学習手法

南 俊匠

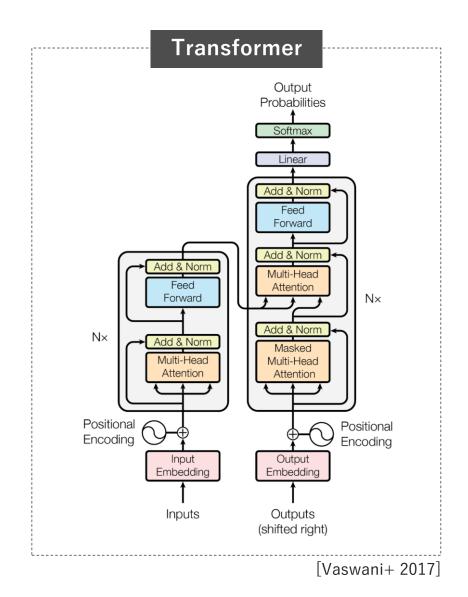
産総研 量子・AI融合技術ビジネス開発グローバル研究センター 量子アプリケーションチーム

INDUSTRIAL SCIENCE& TECHNOLOGY

NATIONAL INSTITUTE OF

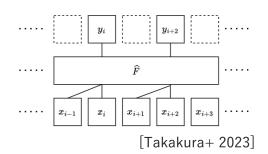
2025年05月08日 第2回 Quantum CAE研究会

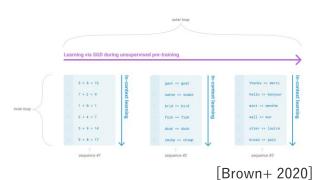
Transformer & Science



Transformerの能力

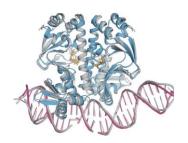
- seq-to-seq関数に対する万能近似性 [Yun+ 2020, Takakura+ 2023]
- 分布シフトに対する頑健性 [Bai+ 2021]
- In-context learning [Brown+ 2020]



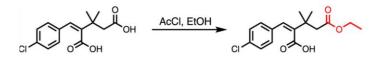


科学分野への応用

• AlphaFold [Abramson+ 2024]



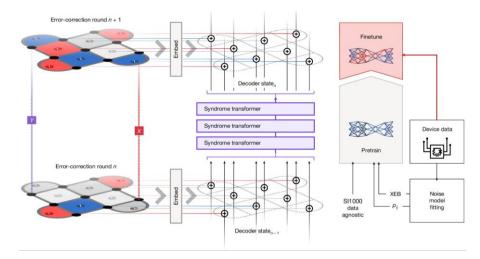
- DNA配列 [Dalla-Torre+ 2024]
- 化学反応予測 [Schwaller+ 2018]



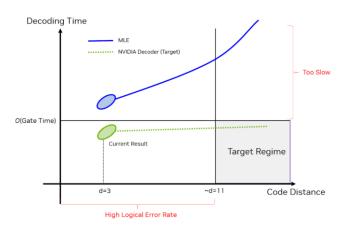
Transformer & Quantum Science

量子誤り訂正

• AlphaQubit [Bausch+ 2024]

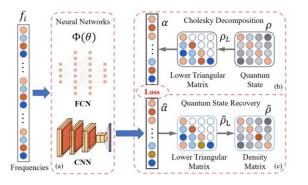


QuEra+NVIDIA



量子状態

- トモグラフィー [Ma+ 2023]
- Neural Quantum States [Lange+ 2024]
- Transformer Quantum State [Zhang+ 2022]



量子回路設計

KetGPT [Apak+ 2024]

```
OPENQASM 2.0; include "qelib1.inc" qreg q[13];
```



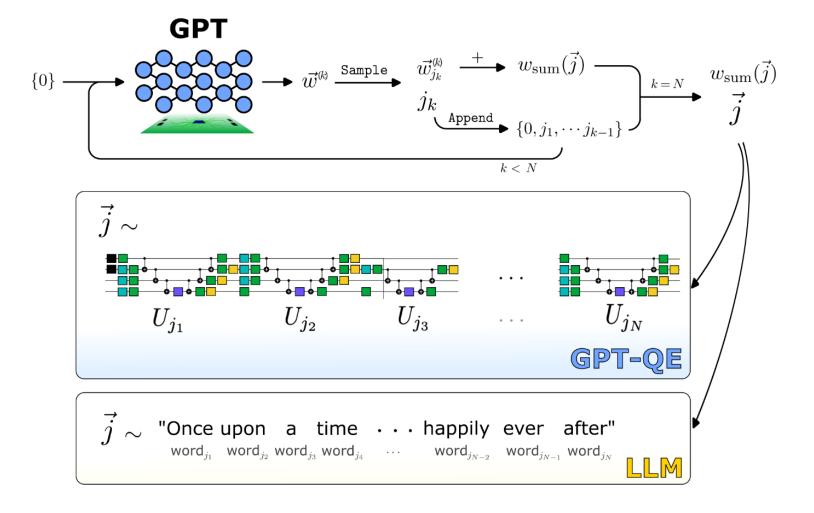
```
OPENQASM 2.0;
include "qelib1.inc"
qreg q[13];
h q[0];
h q[1];
...
```

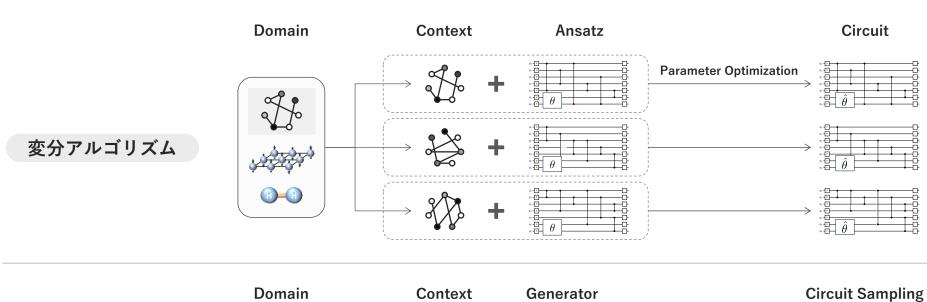
Transformer と 量子回路生成

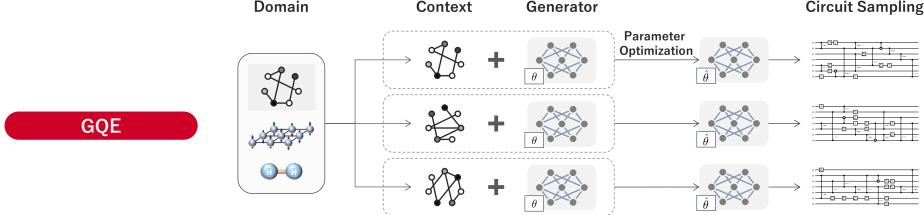
GQE: Generative Quantum Eigensolver

[Nakaji+ 2024]

■ 言語モデルによる文章生成と同じ方法で、Transformerに量子回路を生成させる





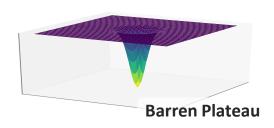


GQEに対する期待

パラメータ最適化

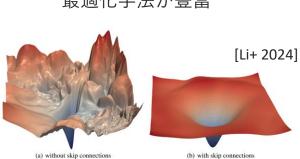
変分アルゴリズム

勾配が指数関数的にゼロに近づく



GQE

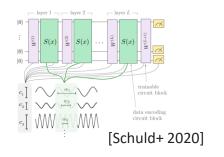
損失関数はより複雑だが 最適化手法が豊富



表現力

変分アルゴリズム

浅い回路では表現力に乏しい



GQE

高表現力の大規模モデルを使用可能

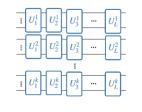


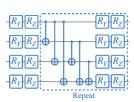
[Imaizumi+ 2022]

柔軟性

変分アルゴリズム

Ansatz設計に対する制約

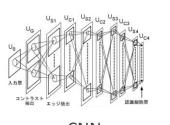


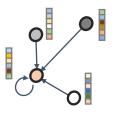


[Tüysüz+ 2023]

GQE

多様なネットワーク構造

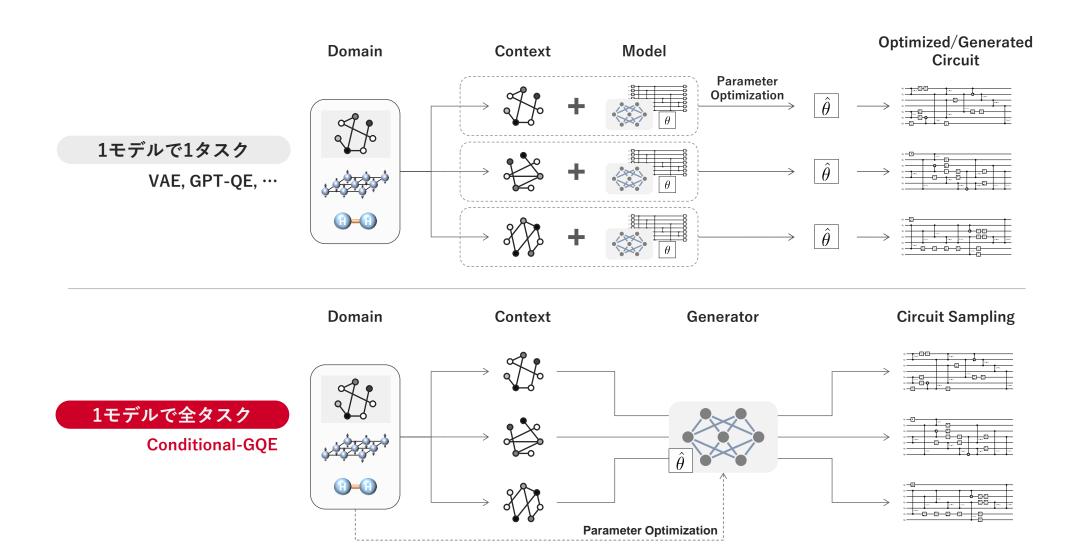




CNN

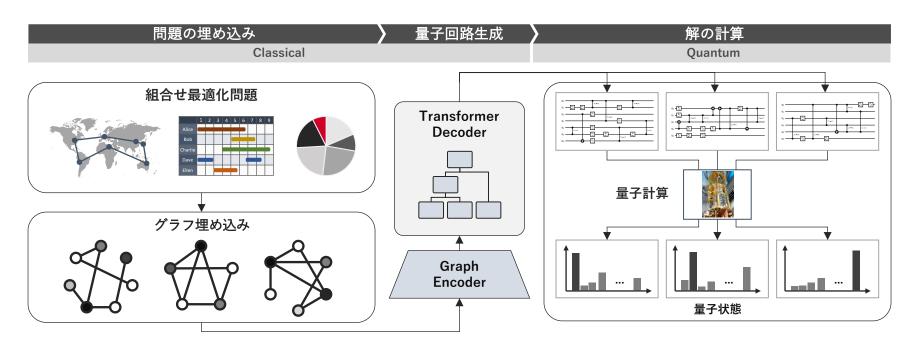
GNN

大規模量子回路生成モデルへ向けて



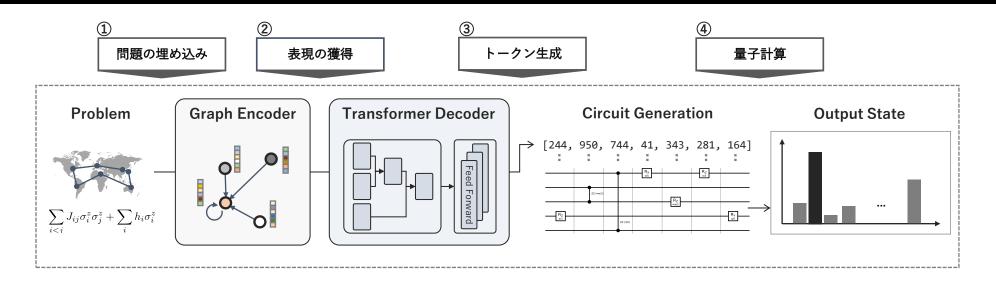
GQCO: Generative Quantum Combinatorial Optimization

■ Encoder-Decoder 構造を持つTransformerを用いて、任意の組合せ最適化を解くための量子回路生成器 GQCO を開発

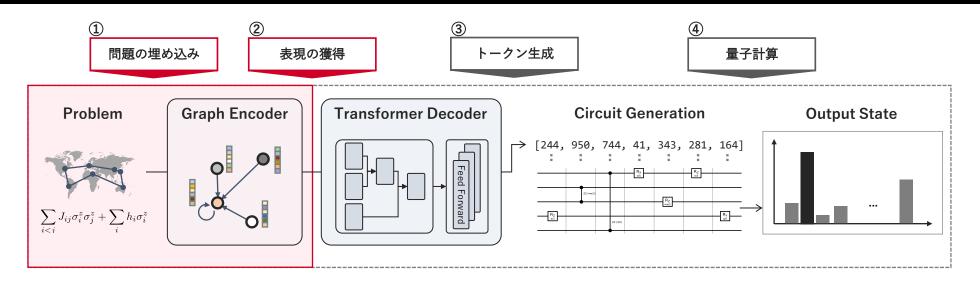


モデリングと学習

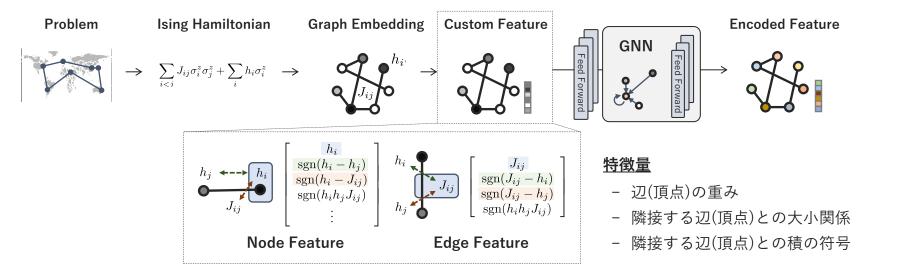
GQCO Workflow



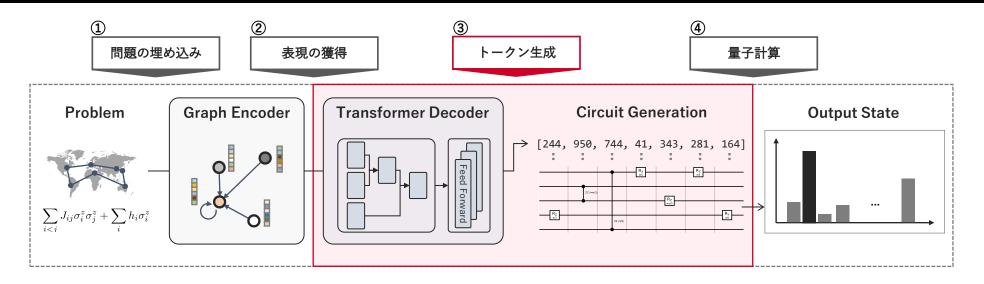
What/How to Encode



- ① 組合せ最適化問題をイジングハミルトニアンとして表現する
- ② 係数をグラフに埋め込み、Graph Transformerを用いて特徴量を計算する

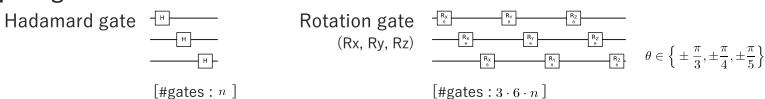


What to Generate

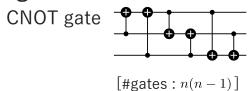


Gate Pool

• 1-qubit gates



• 2-qubit gates



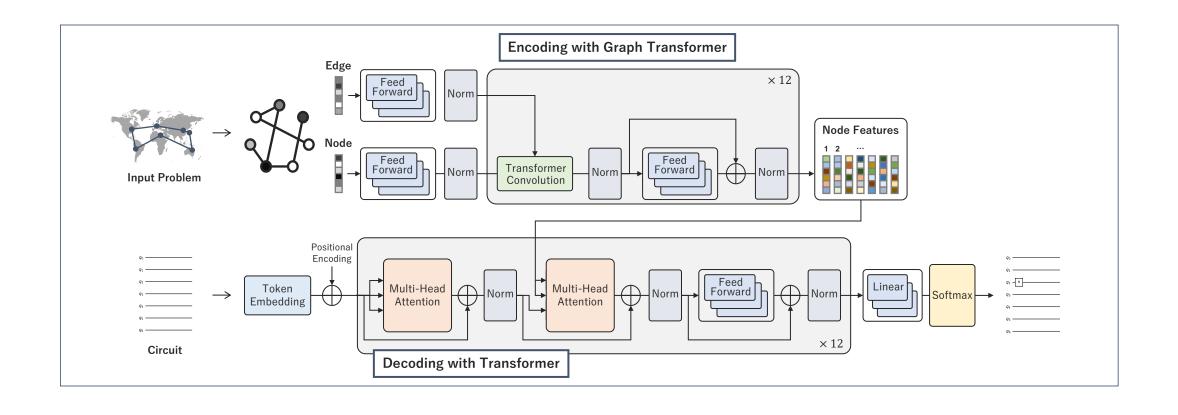
Rzz gate $\frac{\mathbf{z}_{(8)}}{\mathbf{z}_{(8)}} \qquad \theta \in \left\{\pm \frac{\pi}{3}, \pm \frac{\pi}{4}, \pm \frac{\pi}{5}\right\}$

 $\left[\texttt{\#gates: } 6 \cdot \frac{1}{2} n(n-1) \right]$

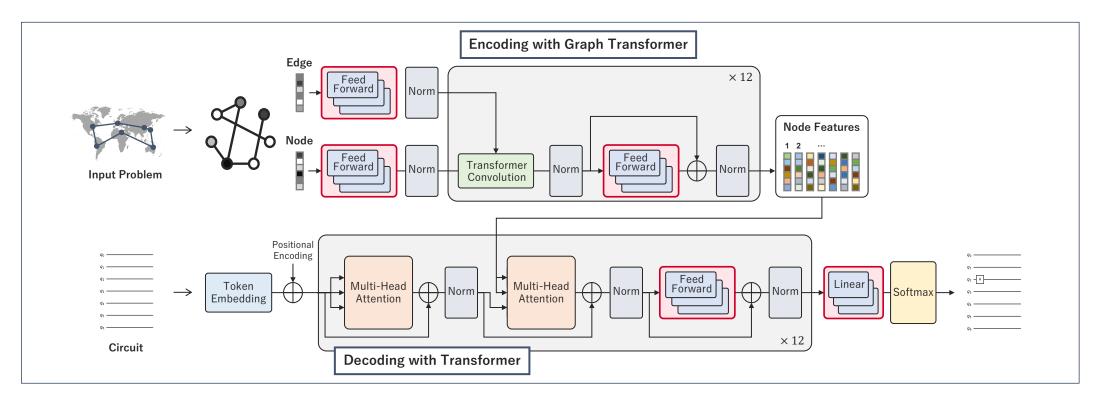
n : number of qubits

Vocabulary size $4n^2+15n+1 \label{eq:condition}$ (Gate set + Identity)

Model Architecture

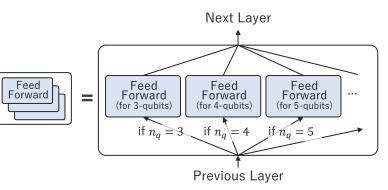


Model Architecture



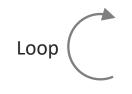
Qubit-based Mixture-of-Experts

- 生成回路の量子ビット数に応じて一部のレイヤーを切り替える
 - 少パラメータで高表現力
 - Curriculum学習やExpert-tuningへの接続

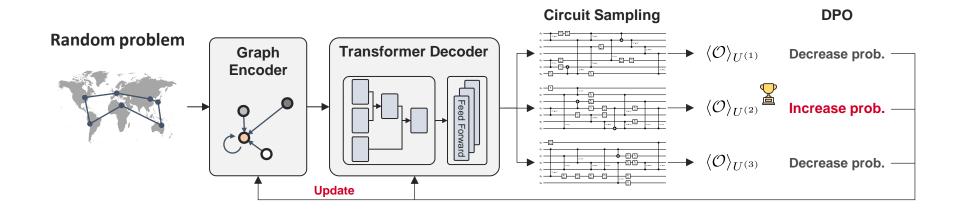


How to Train

<u>Direct Preference Optimization + Negative Log-likelihood (= Contrastive PO)</u> [Rafailov+ 2023, Xu+ 2024]



- 1. ハミルトニアン係数として問題をランダムに生成する
- 2. 生成された問題に対して回路を複数サンプリングする
- 3. パラメータを次のように更新する:
 - 最もコストの値が小さい回路の生成確率を上げる
 - それ以外の回路の生成確率を下げる

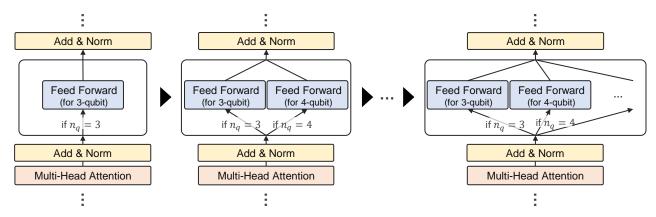


損失関数
$$\log \left\{ 1 + \exp \left\{ -\beta \left(\log \frac{p(C_{best})}{\exp\{-E(C_{best})\}} - \log \frac{p(C_i)}{\exp\{-E(C_i)\}} \right) \right\} - \log p(C_{best}) \right\}$$

Curriculum Learning & Expert Tuning

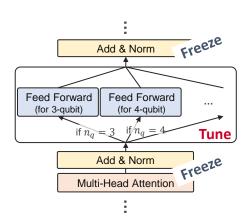
Curriculum learning

- 簡単なタスクから学習を始め、徐々に難易度を上げていく
 - 3量子ビット回路の生成 → 4量子ビット → · · ·
 - 随時Expert Moduleを追加していく



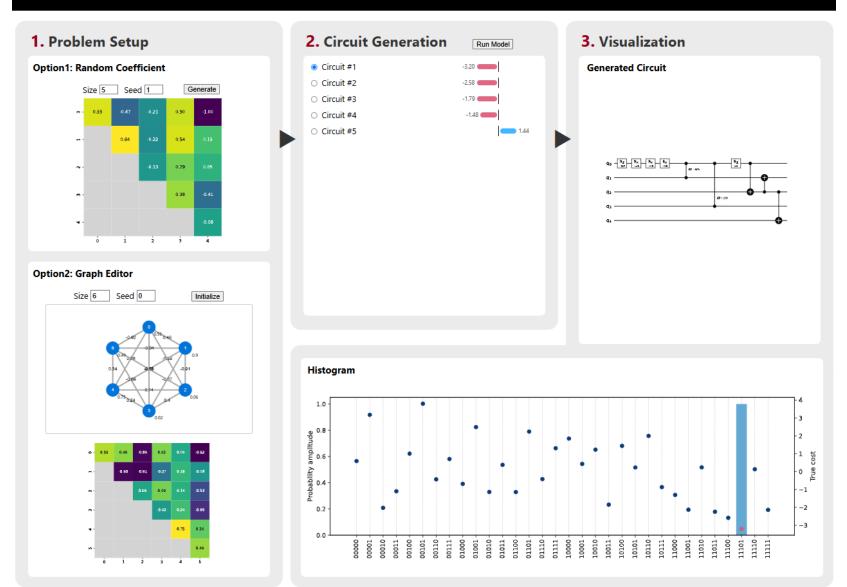
Expert-Tuning

- Expert Moduleだけを、対応する問題タスクでチューニングする
 - 他の問題サイズに対する精度を変えずに、対象の問題サイズの精度を上げられる



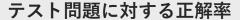
結果

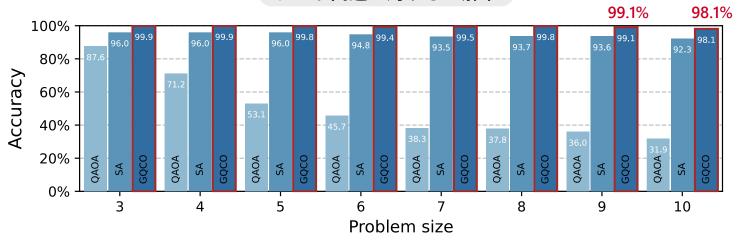
GQCO Web App



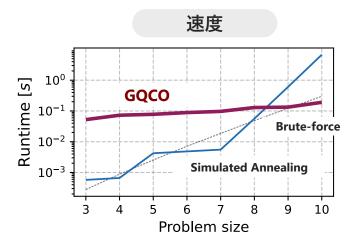
Code

GQCOのパフォーマンス





► 10 量子ビット回路のサイズまでGQCOを訓練し、99%超の精度を達成



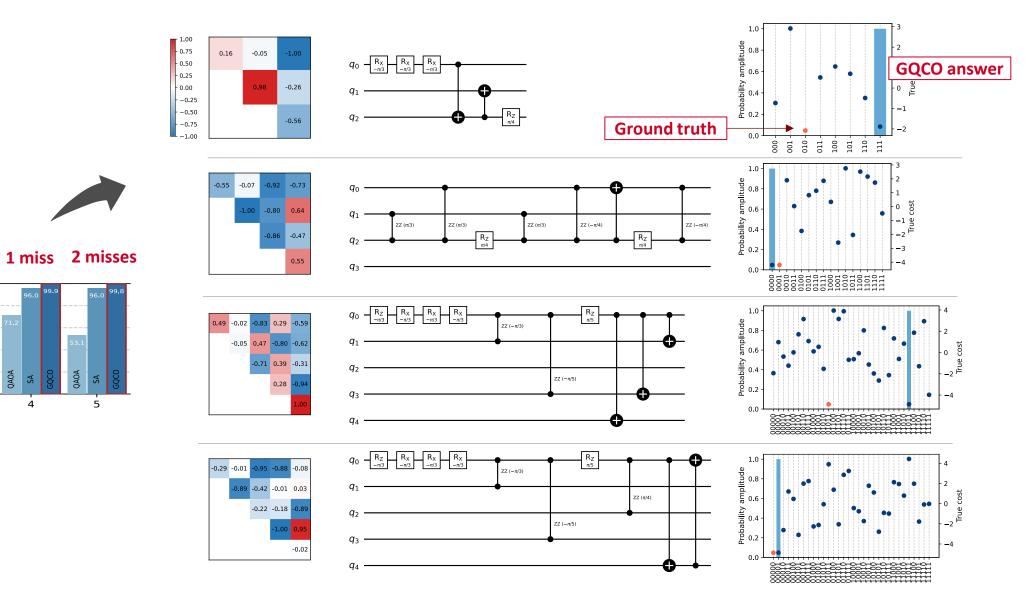
▶ 10量子ビットの問題に対しては総当たり法よりも早く解ける可能性

GQCOの間違い方

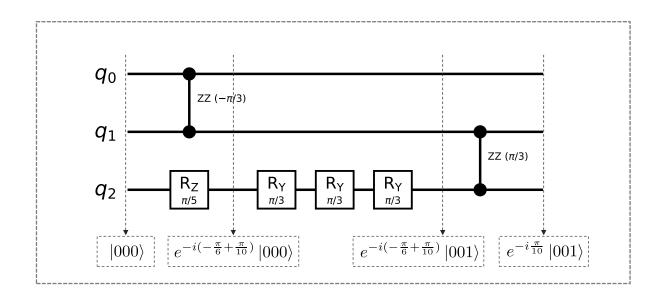
100%

QAOA

Accuracy



► GQCOモデルは、準最適な解にトラップされやすい

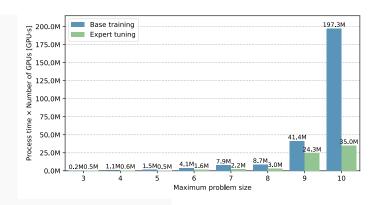


- ► 多くのGQCO回路は上図のような構造を持つ
 - 同じ回路(Ryゲート等)の繰り返し
 - 多くの場合 まとめて0-1のビットフリップゲートになるか、Identityゲートになる
 - 解そのものには影響を与えないグローバル位相の操作(Rzzゲート)
- ▶ 組合せ最適化以外のタスクでは違う挙動を示す可能性

(Conditional-)GQEの今後

回路サイズのスケールアップ

- 現状、10量子ビットまでの量子回路生成が可能
 - ► 総訓練コスト:91K V100 GPU·hour.
 - ▶ 計算ボトルネック:
 - ・モデル訓練(勾配計算)
 - ・ 量子回路シミュレーション(特に10量子ビット以上)
- 実際のアプリケーションのためにはスケールアップが必須
 - ・ 訓練戦略の改善: 損失関数、事前学習、 …
 - ・ モデル構造: ドメイン知識との融合、ゲートプール設計



Code

他タスク

- Conditional-GQE for 分子の基底状態探索
- Conditional-GQE for 量子機械学習
- Conditional-GQE for ···

