

Application of FMQA for Hyper-parameter Optimization and Metamodel-based Optimization in DEM Granular Flow Simulations

*Junsen Xiao^a, Katsuhiro Endo^b, Mayu Muramatsu^c, Reika Nomura^d, Shuji Moriguchi^d,

Kenjiro Teradad

 a. Department of Civil and Environmental Engineering, Tohoku University
b. Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST)

- c. Department of Science and Engineering, Keio University
- d. International Research Institute of Disaster Science, Tohoku University

*E-mail: xiao.junsen.s2@dc.tohoku.ac.jp

[1] Kadowaki T, Nishimori H. Quantum annealing in the transverse Ising model. Physical Review E. 1998;58(5):5355.

[2] Gunther, L. Quantum tunnelling of magnetisation. Phys. 1990; World 3, 28.

[3] Kitai K, Guo J, Ju S, et al. Designing metamaterials with quantum annealing and factorization machines. Physical Review Research. 2020;2(1):013319.

Contact force model

[4] Cundall, P. A.; Strack, O. D. L. (1979). "A discrete numerical model for granular assemblies". Geotechnique. 29 (1): 47–65.

Creation of metamodel (surrogate): input and output 5/14 Latin hypercube sampling (LHS)^[6] \boldsymbol{x} (FABE, FABS, COR, SC) Input X x_1 : Friction angle between elements (FABE) $\mathbf{X}_{2 max}$ Friction angle with bottom surface (FABS) χ_2 : x_3 : Coefficient of restitution (COR) $\mathbf{X}_{_{2mir}}$

→ X,

 \overline{X}_{1max}

 $\mathbf{X}_{1\min}$

input variables in the analysis of output from a computer code. Technometrics 42, 55–61.

 x_4 : Spring coefficient (SC)

TOHOKU

Creation of metamodel (surrogate): input and output 6/14

Examples

Setting of example 1

- Friction angle between elements 30.94°
- Friction angle with bottom surface 29.65°
- Coefficient of restitution 0.38
- Spring coefficient 8.46e+6 [N/m]

Setting of example 2

- Friction angle between elements 28.32°
- Friction angle with bottom surface 21.43°
- Coefficient of restitution 0.46
- Spring coefficient: 9.50e+6 [N/m]

Problem 1: For various high-risk parameter set^[5], excessive trials of DEM granular flow simulations are time consuming

[5] https://www.geospatial.jp/ckan/dataset/aas-disaster-201809/resource/7b043a45-59b4-408e-8046-eab11d1bb1a5

1. Metamodel-based simulation optimization (MBSO)

Search for optimal parameter set using the created metamodel by the application of FMQA

Problem 2: Metamodel with/without HPO, traditional methods may be inefficient

2. Hyper-parameter optimization (HPO) in metamodel

Determine optimal hyper-parameter set by the application of FMQA

Objective : Examine the applicability of FMQA to HPO and MBSO in landslide risk assessment and compare its performance with existing optimization methods

Methodology

Gaussian process regression (GPR) metamodel^[7]

тоноки

9/14

[7] Williams, C. K. (1998). Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Learning in graphical models (pp. 599-621). Dordrecht: Springer Netherlands.

Metamodel-based simulation optimization (MBSO) 12/14

Metamodel-based simulation optimization

13/14

FMQA process in MBSO

- Examined the applicability of QA for hyper-parameter optimization (HPO) and metamodel-• based simulation optimization (MBSO) targeting granular flow simulation.
- FMQA is equivalent to Bayesian optimization and was applicable to the field of landslide risk assessment.

Future work

Further discuss the applicability of FMQA to more complex optimization problems.