- 1. 構造最適化 (QUBO)
 - 設計変数の乗算型更新
 - トラスの形状最適化と弾性体のトポロジー最適化
- 2. 有限要素離散化方程式の求解(QUBO&FMQA)
 - 1. 全ポテンシャルエネルギー最小化 (QUBO)
 - エンコーディング(実数表現)手法への依存性
 - 2. 残差ベクトルの最小化 (FMQA)
- 3. 非線形材料構成方則のパラメータ同定(FMQA)
- 4. メタ(代理)モデル (FMQA)
 - 1. メタモデル生成に際するハイパーパラメータ同定
 - 2. メタモデルによるリスク指標の最適化
 - リスク指標を最大化するパラメータの決定

実

(M1), Naruethep (Assoc. Prof.)

刑

(D2)

ひずみエネルギーの最大化問題(剛性最大化)

問題の設定

[1]Jacobson, D. and Lele, M. IEEE Transactions on Automatic Control 14(1969)

制約条件に関するペナルティパラメータλを導入し、式を統一

$$E(q) = -\boldsymbol{U}^{\mathrm{T}}\boldsymbol{\sigma}\boldsymbol{A}(\boldsymbol{q}) + \lambda \left(\sum_{e=1}^{N_{bar}} \frac{A_e(q)L_e}{V_0} - (\bar{V}_{contsr} - \bar{S})\right)^2$$

Encoding

- 未知変数を, (0,1)の二値変数で記述(下記の例はBinary Encoding) $\alpha = N \cdot (\sum_{l=-m}^{m} 2^l)^{-1} \cdot (\sum_{l=-m}^{m} 2^l q_{e,l}^+)$ $\bar{S} = (\sum_{l_S=-m}^{m} 2^{l_S})^{-1} \cdot (\sum_{l_S=-m}^{m} 2^{l_S} q_{e,l_S}^+)$
- これらの未知変数を代入

- 制約条件を満たしながらコストが収束
- 収束性はEncoding手法に非依存
- 未知変数が多くなると収束しない傾向

設計変数の乗算型更新

ex.

3種類の乗数 <mark>a</mark>(q) = {0.1,0.5,1.3}, 2回の反復で断面積を決定

▶ Encoding手法やqubit数による精度への影響が比較的少ない

3

2.5

2

0.5

12

10

volume ratio

弾性体のトポロジー最適化(剛性最大化)

0

0

2

4

6

iteration

8

proposed method:

volume constraint of design structure: 50% the penalty parameter λ : 7×10^3 $E = 2 \times 10^6$ N/m v = 0.3

First three iteration
$$\theta_1$$
: 1.2, θ_2 : 1.05

Naruethep Sukulthanasorn, J. Xiao, K. Wagatsuma, S. Moriguchi, K. Terada: Quantum annealing-based structural optimization with a multiplicative design update (Under review)

- 1. 構造最適化 (QUBO)
 - 設計変数の乗算型更新
 - トラスの形状最適化と弾性体のトポロジー最適化
- 2. 有限要素離散化方程式の求解(QUBO&FMQA)
 - 1. 全ポテンシャルエネルギー最小化 (QUBO)
 - エンコーディング(実数表現)手法への依存性
 - 2. 残差ベクトルの最小化 (FMQA)
- 3. 非線形材料構成方則のパラメータ同定(FMQA)
- 4. メタ(代理) モデル (FMQA)
 - 1. メタモデル生成に際するハイパーパラメータ同定
 - 2. メタモデルによるリスク指標の最適化
 - リスク指標を最大化するパラメータの決定

壊

(M1), Naruethep (Assoc. Prof.)

刑

(D2)

^{8/28}

- ✓ 自由度が少ない構造
 ⇒高い精度
- ✓ 実行時間増⇒精度の改善
- ✓ Encoding手法による差異
- ✓ 自由度数増
 ⇒精度が低下

有限要素離散化方程式の求解-I. QUBO ~ qubit数の解の精度への影響(Binary)~

initial state QA

theoretical displacement

- ✓ 解に不適切な大きな範囲を 探索すると、精度が低下
- ✓ 適切な範囲設定が必要

оноки

 $(2^{-3}, 2^{16})$

0

 ✓ 自由度が大きくなると 精度が低下

- 1. 構造最適化 (QUBO)
 - 設計変数の乗算型更新
 - トラスの形状最適化と弾性体のトポロジー最適化

壊

(M1), Naruethep (Assoc. Prof.)

刑

(D2)

- 2. 有限要素離散化方程式の求解(QUBO&FMQA)
 - 1. 全ポテンシャルエネルギー最小化 (QUBO)
 - エンコーディング手法(実数表現)への依存性
 - 2. 残差ベクトルの最小化 (FMQA)
- 3. 非線形材料構成方則のパラメータ同定(FMQA)
- 4. メタ(代理) モデル (FMQA)
 - 1. メタモデル生成に際するハイパーパラメータ同定
 - 2. メタモデルによるリスク指標の最適化
 - リスク指標を最大化するパラメータの決定

有限要素離散化方程式の求解-II.FMQA

結果 (One-Hot)

✓ 最適化傾向は見られるが, コストは0には収束しない

	case1	case2	
qubits	40		
range	(-4,4)		
Training data	30	20	
iteration	200	20	
epoch	5000	50000	
Optimal cost	3.0×10^{9}	4.0×10^{10}	

15 / 28

結果 (Gaussian)

✓ 最適化傾向は見られるが, コストは0には収束しない

16 / 28

35

40

FMQA

	case3	case4
qubits	1	00
Mean value		0
Standard deviation	4/3	
Training data	30	20
iteration	200	20
epoch	5000	50000
Optimal cost	9.0×10^{9}	4.0×10^{1}

参考:ベイズ最適化

✓ 古典コンピュータによるブラックボックス最適化手法のひとつ

有限要素離散化方程式の求解-II.FMQA

✓ 求解は可能であり、定式化・アルゴリズム自体は妥当

一次元バネ問題[5]

4自由度の問題では精度が得られない

50000 = 10000x

- ✓ 一次元バネ問題を検証
- ✓ cost = (50000 10000x)²
 の最小化
- ✓ FMにおける次元数=qubit数

有限要素離散化方程式の求解-II.FMQA

1次元問題 (One-Hot)

	Case A	Case B	
qubits	1000		
range	(-10,10)		
Training data	20	30	
iteration	210	200	
Epoch	2000	5000	
Optimal cost	2.0×10^{3}	2.0×10^{3}	
х	4.994	4.994	

- ✓ いずれのケースも解の候補の中で最も5に近い値をとり得る
- ✓ Epoch数を増やしたCase Bの方が最適値への 収束が良好

- 1. 構造最適化 (QUBO)
 - 設計変数の乗算型更新
 - トラスの形状最適化と弾性体のトポロジー最適化

裝載

(M1), Naruethep (Assoc. Prof.)

刑

(D2)

- 2. 有限要素離散化方程式の求解(QUBO&FMQA)
 - 1. 全ポテンシャルエネルギー最小化 (QUBO)
 - エンコーディング(実数表現)手法への依存性
 - 2. 残差ベクトルの最小化 (FMQA)
- 3. 非線形材料構成方則のパラメータ同定(FMQA)
 4. メタ(代理) モデル (FMQA)
 1. メタモデル生成に際するハイパーパラメータ同定
 - 2. メタモデルによるリスク指標の最適化
 - リスク指標を最大化するパラメータの決定

▶ 11個のパラメータセットXを決めると、一つの応力-ひずみ曲線と、平均二乗和誤差 (cost)が取得可能

ブラックボックス最適化

[2]松原成志朗,荒川裕介,加藤準治,寺田賢二郎,京谷孝史,上野雄太,宮永直弘,平山紀夫,山本晃司,日本計算工学会論文集, 2014 21 / 28

FMQA[3]

- ブラックボックス最適化手法の一つ
- 機械学習モデルのひとつ
 Factorization Machine[4] (FM) で
 予測関数を獲得

$$\hat{y}(\boldsymbol{x}) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j$$

予測関数の最小値をQAで求め,予測
 関数をアップデート

[3]Kitai, K., Guo, J., Ju, S., Tanaka, S., Tsuda, K., Shiomi, J.and Tamura, R.: Phys. Rev. Res. 2, 2020

- ✓ 載荷時のみの結果から同定
- ✓ 弾性率E, クリープパラメータ C_3 , C_4 を除いた8個のパラメータを同定

- 非弾性ひずみの加算分解

$$\varepsilon = \varepsilon^e + \varepsilon^p + \varepsilon^c$$

等方性弾塑性構成則

$$f(\sigma, \alpha_p) = \sigma - \sqrt{\frac{2}{3}}\sigma_y(\alpha_p) = 0$$

$$\sigma_y(\alpha_p) = \sigma_{y0} + H\alpha_p + R_0(1 - \exp(-\beta\alpha_p))$$

等方性クリープ構成則
$$\dot{\varepsilon}^c = \dot{\gamma}_c \operatorname{sign}(\sigma)$$

 $\dot{\gamma}_c = C_1(\sigma)^{C_2} \exp(-\frac{C_3}{T}) t^{C_4}$

- 等方性損傷力学モデル
$$E = (1 - D)E_0$$
 $D(\bar{\varepsilon}) = D_1(\bar{\varepsilon}_{\max})^{D_2} \qquad 0 \le D < 1$

23 / 28

各手法における解の探索範囲

材料パラメータ	記号	PSO	FMQA Binary	FMQA One-Hot
初期弾性率(MPa)	E	2500	2500	2500
初期降伏応力(MPa)	σ_{y0}	(10, 30)	$(2^{-8}, 2^6)$	(10, 50)
硬化パラメータ (MPa)	H	(500, 700)	$(2^{-4}, 2^{10})$	(100, 1000)
	R_0	(20, 40)	$(2^{-8}, 2^6)$	(10, 100)
	β	(300, 400)	$(2^{-5}, 2^9)$	(100, 500)
クリープパラメータ	C_1	$(10^{-10}, 10^{-9})$	$(2^{-42}, 2^27)$	$(10^{-10}, 10^{-8})$
	C_2	(3, 5)	$(2^{-11}, 2^3)$	(1, 10)
損傷パラメータ	d_1	(0, 10)	$(2^{-9}, 2^5)$	(0, 20)
	d_2	(-1, 1)	$(2^{-14}, 2^0)$	(0, 1)

パラメータ同定問題(Binary)

最適化履歴

得られた応力-ひずみ曲線

- サイクル中は、初期データほど大きな値をとらないが、最適化傾向も見られない
- ひずみ速度依存の変化が見られない

パラメータ同定問題(One-Hot)

- サイクル中にコストが初期データより低いところに集まる傾向が見られる
- ひずみ速度依存の変化をある程度表現している

同定されたパラメータ

材料パラメータ	記号	同定值 (PSO)	同定値 (FMQA Binary)	同定值 (FMQA One-Hot)
初期弾性率(MPa)	E	2500	2500	2500
初期降伏応力(MPa)	σ_{y0}	19.71	49.11	29.87
硬化パラメータ(MPa)	H	684.6	1908	238.9
	R_0	29.20	118.1	35.37
	β	389.8	97.50	314.8
クリープパラメータ	C_1	1.413×10^{-12}	1.151×10^{-9}	9.269×10^{-9}
	C_2	3.855	1.089	1.544
損傷パラメータ	d_1	6.581×10^{-2}	26.89	4.832
	d_2	8.044×10^{-2}	1.317	0.899
コスト		0.9761	2.123	1.961

One-Hot encodingはBinary encodingより も最適化傾向が見られたものの,両手法とも 既存手法PSOには及ばない

✓ パラメータ同定問題では,8変 数でもある程度の最適化傾向 ✓ 釣り合い式では,1変数で最適 化傾向が出現

あらかじめそれぞれの設計変数 ごとに適切な解の範囲を特定で きる場合,また相互作用が弱い 場合はFMQAによる最適化が可能

線形方程式の求解について(我妻の考察): パラメータ同定に比べてトラス問題は探索範囲を 絞っていないため精度が得られていないが,探索 範囲を絞るのは力学的な主旨から外れてしまう