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AI for Science
• 科学的発⾒を加速するアルゴリズム
• 実験・シミュレーションも含め、科学的探索をアルゴリズムと捉える
• 計算機の中だけで完結しない研究
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Research
“of AI”

Research
“by AI”

Domain

Neurips, ICML,
JMLR etc

Machine Learning: 
Science and 
Technology (IOP, 
2021-), Digital 
Discovery (RSC, 2021-
) , Nature Machine 
Intelligence (NS, 
2019-), STAM 
Methods (TF, 2021-), 
Patterns  (Cell, 2020-)

Physics,
Chemistry,
Biology, etc.

Methods
Evaluation
Measure

Traditional 
AI Startups

Deep Tech 
Startups



How to explore the 
property space of materials

(beyond black-box optimization)



Golden recipe for materials discovery

• Bayesian optimization + Automated experiments
• Optimization is not everything

6Tamura et al., STAM Methods, 2023.



Exploration in materials science
• Sampling at design space to gain knowledge about 

property space

Example 1: Set of organic molecules Binding affinity, Toxicity

Example 2: Set of polymers Thermal conductivity,  Melting temp.

Design Space Property Space

Experiment
(black-box)



Two problems to address
• Boundary Exploration
• Density Estimation

Design Space Property Space

ALL POINTS



Part 1: Boundary Exploration



Boundless objective-free exploration 
(BLOX)

• Try to sample molecules uniformly in the 
property space 

• Not to be confused: Uniform sampling from 
the database
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Non-uniformity Measure 

• Given a set of samples V, measure deviation from 
the uniform distribution

• Kernel-based Stein discrepancy between p and q

• Set q to uniform, Sample-average approximation  



Stein novelty of a new point vp
• Novelty is measured by the decrement of non-

uniformity



Drawing a sample from the database

• Random forest 
(RF) predicts the 
properties 

• The molecule with 
highest predicted 
Stein novelty is 
selected 



Application: Finding dyes in a drug 
database

• 100,000 molecules from ZINC database
• Property space: Absorption wavelength and 

Oscillator strength 
• TD-DFT at B3LYP/6-31G* level

• Picked up 8 BLOX-chosen molecules, purchased 
them, experimentally confirmed their absorption 
spectra 

• Efficiently discovered “colored” drugs !





Distribution in property space



UV-vis absorption spectra



UV-vis absorption spectra



Part 2: Density Estimation



What is entropic sampling?

• Method for computing density of states 
developed in statistical physics
– Entropic population annealing
– Wang-Landau sampling
– Nested sampling

• Optimize and understand a black-box function 
at the same time !



Understanding a black box by 
complete profiling

• Try all possible inputs
• Observe density of states in the property 

space 
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Benefits of entropic sampling 

• Minimize the number of samples (=experiments) 
using weights
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Density of states 𝑛(𝑒)

• X: Set of all possible inputs
• 𝑒(𝑥): energy of black-box (i.e., a property of interest)
• 𝑛(𝑒): Fraction of inputs whose energy is e
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• Distribution depending on energy alone

𝑃! 𝑥 = exp(−β𝑒 𝑥 + 𝑓)

𝑓 = − log'
!∈#

exp( − 𝛽𝑒(𝑥))

• Sample from 𝑃!(𝑥)
– 1. Particle x is perturbed to x’
– 2. x’ is accepted with probability 

min(1,
𝑃$ 𝑥%

𝑃$ 𝑥
)

Markov Chain Monte Carlo (Metropolis)

β： inverse temperature

Free energy



Single histogram method

• When sampled from 𝑃!(𝑥),energy histogram is

ℎ! 𝑒 ∝ 𝑛 𝑒 exp(−𝛽𝑒)

• So, DoS is obtained as weighted histogram

𝑛(𝑒) ∝ ℎ! 𝑒 exp(𝛽𝑒)

• Each sample with e is assigned a weight exp(𝛽𝑒)

• This method is not efficient !



Multiple histogram method
(Ferrenberg and Swendsen, 1989) 

• 𝑁" samples from inv. temp. 𝛽"

• Weight of sample at 𝛽" with energy 𝑒

𝑟" 𝑒 =
𝑁"exp(−𝛽"𝑒 + 𝑓")
∑"𝑁"exp(−𝛽" + 𝑓")

• Proven optimal in terms of statistical error

• Free energy 𝑓" are obtained from histograms by fixed-

point iteration 



Population annealing
(Hukushima and Iba, 2003)

• Create samples at multiple temperatures by 
gradually decreasing temperature

• Update the sample set with resampling
(a) !"#$%&'()*&++(&%"+,*-"'.*/"+,%(*0&1'"2%(

β1 β3β2 β4 β5

345*670$%&'"7+*&++(&%"+,



Resampling

• M particles 𝑥", … , 𝑥# at temp 𝛽$

• Adapt the particle set for next temp 𝛽$%"

• Probability for 𝑥&
𝑞& ∝ exp(− 𝛽$%" − 𝛽$ 𝑒 𝑥& )

• Draw M particles with replacement

• Some particles multiply, some vanish 



Optimizing and Understanding Chemical Process
• Kinetic model of multi-step aromatic nucleophilic substitution 

reaction
• Design Space

– Concentration of 2,4-difluoronitrobenzene
– Molar equivalent of pyrrolidine
– Resident time, temperature

• Property Space
– Failure rate (energy), Space time yield, etc. 



Failure rate – space time yield
(20,000 samples)

(a) Complete profiling (b) Random sampling (c) Entropic polupation annealing
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Clusters of high-quality samples 
(failure rate < 0.01) 



Entropic population annealing as an 
optimization method 

• EPA is very much like a genetic algorithm
– MCMC = mutations
– Resampling = selection

• Why don‘t we apply it to materials design?
– Density of states comes as a bonus (!)
– Increased interpretability
– Need to reduce the number of black-box accesses



Self-learning entropic population 
annealing (SLEPA)

• Surrogate machine learning model of energy 𝑒̃(𝑥)
• MCMC is done with surrogate energy
• At temperature update, true energy is obtained, 

used for training. 

• Before applying multiple histogram method, 
distribution is corrected via resampling 

Li et al, Digital Discovery, 2022





Applying SLEPA to peptide design

• Designing peptide of length 5
• Target: Hydrophobic moment (modlAMP)
• MCMC: one-character flip
• Surrogate: Gaussian process
• DoS: Target property and amino acid composition 

at a position
• Comparison: SLEPA, EPA, Evolution Strategy (ES) at 

the same number of observations



Accuracy of DoS estimation 

• SLEPA better at strict thresholds of target 
property



DoS at different thresholds of target 
property
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Finding high-quality samples



Summary
• In scientific studies, what to optimize is not obvious 

initially: BLOX or Entropic Sampling 
• In quantum CAE, sampling is also possible
– Quantum enhanced MCMC
– Use quantum circuit to realize a proposal distribution
– Reverse annealing can also be used


