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Traditional
Al Startups

Research
“of Al”

Neurips, ICML,
JMLR etc

Methods

)

Deep Tech
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(lby AIII

Machine Learning:
Science and
Technology (IOP,
2021-), Digital
Discovery (RSC, 2021-
), Nature Machine
Intelligence (NS,
2019-), STAM
Methods (TF, 2021-),
Patterns (Cell, 2020-)

Evaluation
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-
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How to explore the
oroperty space of materials

(beyond black-box optimization)



Golden recipe for materials discovery

* Bayesian optimization + Automated experiments
e Optimization is not everything
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Exploration in materials science

* Sampling at design space to gain knowledge about
property space

Design Space Property Space
Experiment
(black-box) A
PRI RS
Example 1: Set of organic molecules Binding affinity, Toxicity

Example 2:  Set of polymers Thermal conductivity, Melting temp.



Two problems to address

* Boundary Exploration
* Density Estimation

Design Space

ALL POINTS

Property Space

o

v



Part 1: Boundary Exploration

Chemical
Science
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Pushing property limits in materials discovery via
boundless objective-free explorationf

Kei Terayama, 2 *®<¢ Masato Sumita, 2¢ Ryo Tamura, 2 Daniel T. Payne, ©"
Mandeep K. Chahal, {2¢ Shinsuke Ishihara {2® and Koji Tsuda*3

Materials chemists develop chemical compounds to meet often conflicting demands of industrial
applications. This process may not be properly modeled by black-box optimization because the target
property is not well defined in some cases. Herein, we propose a new algorithm for automated materials
discovery called Boundless Objective-free eXploration (BLOX) that uses a novel criterion based on
kernel-based Stein discrepancy in the property space. Unlike other objective-free exploration methods,
a boundary for the materials properties is not needed; hence, BLOX is suitable for open-ended scientific
endeavors. We demonstrate the effectiveness of BLOX by finding light-absorbing molecules from a drug
database. Our goal is to minimize the number of density functional theory calculations required to
discover out-of-trend compounds in the intensity-wavelength property space. Using absorption
spectroscopy, we experimentally verified that eight compounds identified as outstanding exhibit the
expected optical properties. Our results show that BLOX is useful for chemical repurposing, and we
expect this search method to have numerous applications in various scientific disciplines.



Boundless objective-free exploration

(BLOX)

* Try to sample molecules uniformly in the
property space

* Not to be confused: Uniform sampling from
the database

Molecule Database
(Design Space)

Jled 14d

Property 2

Property 1



Non-uniformity Measure

* Given a set of samples V, measure deviation from
the uniform distribution

* Kernel-based Stein discrepancy between p and g
S(p, Q) — Ex,x'wp[ép,q (X)Tk(xr x,)ép,q(X,)T]a

Op,q(X) = sq(x) — sp(x) sp = Vx log p(x)

* Set g to uniform, Sample-average approximation

: 1 . 92
S(V)= ——k(v;, v;).
V) n(n —1) Z Z OvOv; (Vi v;)

1<i#£j<n t=1



Stein novelty of a new point v,

* Novelty is measured by the decrement of non-

uniformity
N(V,v,)=8V)-S(Vu{v,}).

&

Desired property 1

Desired property 2

Stein Novelty




Drawing a sample from the database

Step 1. Initialization

] ~
Ra n d om fO re St « Initial sampling: Select g‘ ® Initially
. materials randomly from a z observed
( R F) p re d | Cts t h e database s . distribution
. « Observe their properties by ‘% ® o
p o p e rt IesS experiment or simulation (slow) < >
Desired property 1
v
—» Step 2. Build a ML-based prediction model (fast)
. v
* The molecule with Step 3. Select the next candidate by
. . I Stein novelty (fast)
highest predicted .
A : Predicted unchecked é Next
' I materials by the ML-based 2| A Tcandidate
Stein novelty is mater I
: °
selected 1 d
Desired property 1
Step 4. Evaluate the selected candidate by
experiment or simulation (slow)




Application: Finding dyes in a drug
database

100,000 molecules from ZINC database

Property space: Absorption wavelength and
Oscillator strength

TD-DFT at B3LYP/6-31G* level

Picked up 8 BLOX-chosen molecules, purchased
them, experimentally confirmed their absorption
spectra

Efficiently discovered “colored” drugs !



Stein Discrepancy
o

10
—— Random —— BLOX (SVR)
S —— BLOX (Ridge) —— BLOX (RF)
BLOX (Lasso) —— BLOX (NN)
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UV-vis absorption spectra
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UV-vis absorption spectra
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Part 2: Density Estimation

ORGANIC PROCESS RESEARCH & DEVELOPMENT
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Understanding Chemical Processes with Entropic Sampling
Yuji Kaiya, Ryo Tamura,* and Koji Tsuda™

Cite This: Org. Process Res. Dev. 2022, 26, 3276—3282 I: I Read Online

ACCESS I [l Metrics & More | Article Recommendations | o Supporting Information

ABSTRACT: Kinetic models are widely used in simulating the relationship between the input space and the outcome space of a
chemical process. Ignoring the computational cost, complete profiling, i.e., performing simulations at all grid points in the input
space, would be the best way to understand the model because it provides us with a complete picture of intervariable relationships.
Optimization methods that sample favorable input points can only provide narrower views. In this paper, we employ entropic
sampling, a statistical physics method, to approximate complete profiling. It is cost-effective and provides a holistic picture of the
model, where one can perform post hoc exploratory analyses across any region of the outcome space. Using a kinetic model of the
nucleophilic aromatic substitution reaction, we analyze how the failure rate is related to process parameters and elucidate different
ways to achieve low failure rates.

KEYWORDS: density of states, entropic sampling, kinetic model



What is entropic sampling?

 Method for computing density of states
developed in statistical physics
— Entropic population annealing
— Wang-Landau sampling
— Nested sampling

* Optimize and understand a black-box function
at the same time !



Understanding a black box by
complete profiling

* Try all possible inputs

* Observe density of states in the property
space

Design Space Property Space
A 4 '

Quality

)

Property



Benefits of entropic sampling

 Minimize the number of samples (=experiments)
using weights

Design Space Property Space

Quality

Property



Density of states n(e)

e X: Set of all possible inputs

* e(x): energy of black-box (i.e., a property of interest)

* n(e): Fraction of inputs whose energy is e

Design Space

)

n(e)




Markov Chain Monte Carlo (Metropolis)

* Distribution depending on energy alone
B: inverse temperature

P’B(x) = exp(—Be(x) + f)
f=— logz: exp( — fe(x))

Free energy x€eX

* Sample from Pg(x)

— 1. Particle x is perturbed to x’
— 2. x”is accepted with probability

PB(XI))
Pg(x)

min(1,



Single histogram method

When sampled from Pz (x),energy histogram is
hg(e) x n(e)exp(—pfe)
So, DoS is obtained as weighted histogram
n(e) < hg(e)exp(fe)
Each sample with e is assigned a weight exp(fe)

This method is not efficient !



Multiple histogram method
(Ferrenberg and Swendsen, 1989)

N; samples from inv. temp. f;

Weight of sample at 5; with energy e

Niexp(—pie + fi)
2. Niexp(—p; + f)

Proven optimal in terms of statistical error

ri(e) =

Free energy f; are obtained from histograms by fixed-

point iteration



Population annealing
(Hukushima and lba, 2003)

* Create samples at multiple temperatures by
gradually decreasing temperature

* Update the sample set with resampling

(a) Simulated annealing with single particle
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Resampling

M particles x4, ..., x); at temp [;
Adapt the particle set for next temp ;41

Probability for x,,
qm < exXp(—(Bir1 — Bi)e(xm))
Draw M particles with replacement

Some particles multiply, some vanish



Optimizing and Understanding Chemical Process

Kinetic model of multi-step aromatic nucleophilic substitution
reaction

Design Space

— Concentration of 2,4-difluoronitrobenzene

— Molar equivalent of pyrrolidine

— Resident time, temperature

Property Space

— Failure rate (energy), Space time yield, etc.

Input Outcomes

S1 : concentration of 1 F\ij’: )
S92 : molar equivalents of 2 07 ~F “NO o N
/ 1 . 29 2

~

Additional
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H
.. 0 N
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Clusters of high-quality samples
(failure rate < 0.01)

Cluster 1
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Entropic population annealing as an
optimization method

* EPA is very much like a genetic algorithm
— MCMC = mutations

— Resampling = selection

* Why don‘t we apply it to materials design?
— Density of states comes as a bonus (!)
— Increased interpretability

— Need to reduce the number of black-box accesses



Self-learning entropic population
annealing (SLEPA)

Surrogate machine learning model of energy é(x)
MCMC is done with surrogate energy

At temperature update, true energy is obtained,
used for training.

Before applying multiple histogram method,
distribution is corrected via resampling

Li et al, Digital Discovery, 2022



(a) Target distribution (b) Black-box optimization
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Applying SLEPA to peptide design

Desighing peptide of length 5

Target: Hydrophobic moment (modIAMP)
MCMC: one-character flip

Surrogate: Gaussian process

DoS: Target property and amino acid composition
at a position

Comparison: SLEPA, EPA, Evolution Strategy (ES) at
the same number of observations



Hellinger distance

Accuracy of DoS estimation

e SLEPA better at strict thresholds of target
property

M =50

M =100

M = 200 M = 500

M = 1000

® SLEPA (Ki=100)
® EPA(Ki=1)

e ES

® Random

Percentile for qualification threshold
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Summary

* In scientific studies, what to optimize is not obvious
initially: BLOX or Entropic Sampling

* |In quantum CAE, sampling is also possible

— Quantum enhanced MCMC
— Use quantum circuit to realize a proposal distribution

— Reverse annealing can also be used

Article

Carlo

Quantum-enhanced Markov chain Monte

https://dol.org/10.1038/s41586-023-06095-4

Recelved: 6 May 2022

Accepted: 18 April 2023

David Layden'®, Guglielmo Mazzola?*, Ryan V. Mishmash'®, Mario Motta', Pawel Wocjan®,
Jin-Sung Kim'® & Sarah Sheldon’

Published online: 12 July 2023

" Ccheck for updates

Quantum computers promise to solve certain computational problems much faster
than classical computers. However, current quantum processors are limited by their
modest size and appreciable error rates. Recent efforts to demonstrate quantum
speedups have therefore focused on problems that are both classically hard and
naturally suited to current quantum hardware, such as sampling from complicated—
although not explicitly useful—probability distributions' >, Here we introduce and
experimentally demonstrate a quantum algorithm that is similarly well suited to
current hardware, but which samples from complicated distributions arising in
several applications. The algorithm performs Markov chain Monte Carlo (MCMC),



