Novel Application of Delafossite Materials

Te-Wei Chiu

Department of materials and mineral resources Engineering, National Taipei University of Technology tewei@ntut.edu.tw

Out Line

- * What is delafossite
- * p-type transparent semiconductor thin films
- The other functions of delafossite materials (Novel functions developed in our Lab.)
- Nanocomposite catalyst derivate from delafossite nanopowder
- Summary

What is delafossite (赤銅鐵礦)

This sample of delafossite is displayed in the Smithsonian Museum of Natural History. http://www.mwit.ac.th/~physicslab/hbase/minerals/delafossite.html

 Delafossite is an oxide of copper along with iron with the composition CuFeO₂.

Symposium on Advanced Composite Materials

- * ABO₂
 - * A=Ag, Cu, Pd, Pt
 - * B= Al, Cr, Ga, Fe, Mn, Co, Rh, Ni, In, La, Nd, Sm, Eu, Y and Ti.
 - * e.g. CuAlO₂, CuCrO₂

Symposium on Advanced Composite Materials

T. ISHIGURO, A. KITAZAWA, N. MIZUTANI, AND M. KATO*

Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan

Single-Crystal Growth and Crystal Structure Refinement of CuAlO₂

Received April 6, 1981; in revised form July 9, 1981

Crystal structure of delafossite (Rhombohedral 3R)

Symposium on Advanced Composite Materials

窯業協会誌 92 [1] 1984 25

Single crystals of the delafossite-type c_{35}^{35} C_{128}^{36} Reid h_{25}^{36} slow-cooling method from 1200°C. Three columnar twin crystals with concave and m_{12}^{36} χ · Paper the spinel-type twin. CuAlO₃ is thomboth g/cm³ and Dm = 5.06 g/cm³. The crysta

JOURNAL OF SOLID STATE CHEMISTRY 40, 170-174 (1981)

デラフォサイト型化合物における8面体層の変形

石 黒 隆・石 沢 伸 夫・水 谷 惟 恭・加 藤 誠 軌 (東京工業大学 工学部 無機材料工学科)

デラフォサイト (delafossite, CuFeO₂) 型構造をとる約30 種の A*B*O, 化合物の格子定数か 結晶構造バラメーターを求め、BO&8 面体の編平度が B* イオンの半径 rsとともに増加し、そ 様子が rs=0.8~0.9 Å 付近を境に大きく変わることなどの現象を見いだし、このような BO₄ 8 (体層の異常な挙動をイオン結晶の格子エネルギーと A-O-B 結合の共有結合性とから議論した. (1983 年5 月 13 日受付)

Transparent p-type conductive thin films

*H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, *Nature (London)*, **389** (1997) 939-942

Materials	Transmittance (%)	Energy gap (eV)	Conductivity (S/cm)	Preparation method
CuAlO ₂	70	3.5	0.34	PLD
CuGaO ₂	80	3.6	0.063	PLD
CuGa _{1-x} Fe _x O ₂	60	3.4	1.0	PLD
CuIn _{1-x} Ca _x O ₂	70	3.9	0.028	PLD
CuCrO ₂	40	3.1	1.0	PLD
CuCr _{1-x} Mg _x O ₂	50	3.1	220	RF-sputtering
CuYO ₂	60	3.5	0.025	PLD
CuY _{1-x} Ca _x O ₂	50	3.5	1.05	PLD
		5	Symposium	on Advanced Composit

Properties of copper-aluminum oxide films prepared by solution methods

Symposium on Advanced Composite Materials

K. Tonooka et. al, Thin solid films, 411, 2002, p129

Preparation of CuCrO₂ thin films by chemical solution method

NSC-98-2218-E-027-004 (2009.1-2009-10)

- * PLD is difficult to prepare on wide area.
- * Vacuum system is expensive for industrial application.
- * Challenge in wet chemical process
 - Difficult to obtain pure delaffosite phase (easy to form spinel phase CuCr₂O₄ and residure CuO)
 - * Thin film quality always lower than prepared by vacuum method.
 - * High process temperature

Preparation of p-type conductive transparent CuCrO₂:Mg thin films by chemical solution deposition with two step annealing

- Solid state reaction :
- * $2\text{CuO} + 2\text{Cr}_2\text{O}_3 \rightarrow \text{CuCr}_2\text{O}_4 + \text{CuO} \quad 700^{\circ}\text{C}$
- * $CuCr_2O_4 + CuO \rightarrow 2CuCrO_2 + 1/2O_2$ 1050 °C
- * Strategies of two step annealing
- * $2CuO + H_2 \rightarrow Cu_2O + H_2O 400 \circ C$
- $Cu_2O + Cr_2O_3 \rightarrow CuCrO_2$ 500 °C

Reported electrical and optical properties of CuCrO₂:Mg thin films

Composition	Method	Process temperature	Resistivity	Transmittance	Thickness	Ref.
CuCr0.95Mg0.05O2	Sputtering	600	0.045	30	250	R. Nagarajan, et. al, J. Appl. Phys., 89 (2001) 8022
CuCr0.95Mg0.05O2	DI D	500	0.1	60	100	My work in AIST
	PLD	600	0.5	60	100	5941
CuCr0.93Mg0.07O2	Splay Pyrolysis Ar annealing	800	1	80	155	S. H. Lim et. al, J. Phys Chem., 69 (2008) 2047
uCr0.95Mg0.05O2	Sol-gel,	600	16	21	210	S. Götzendörfer et. al,
	Ar annealing	700	210	32	200	J. Sol-Gel Sci Technol 52 (2009) 113
CuCr0.95Mg0.05O2	CSD,	500	3.55	50	197	This work
	Two-step annealing	600	0.32	70	195	Te-Wei Chiu et. al, Ceramics International, accepted
		700	6.92	70	195	

11

Symposium on Advanced Composite Materials

The other functions of CuCrO₂

- Transparent p-type conductive thin films
 - Antibacterial

- We are the first to demonstrate this function
- Photo catalyst for Hydrogen generation
- * Photo catalyst for environmental applications

12

Ozone gas detector

Surface area

- Additives for the catalytic combustion
- Thermoelectric materials

Gas purification catalyst

*

*

Antibacterial properties (E. coli)

Incubated with glass substrate.

Incubated with CuAlO₂/glass substrate. Symposium on Advanced Composite Materials

aterials

Potential application of transparent antibacterial thin films

- Touch panel
- * Artificial-tooth, glasses
- Antifouling
 - * Sightseeing submarine
 - * Aquarium box

1/

Symposium on Advanced Composite Materials

Photo catalyst for Hydrogen generation

13

	$e \times 10$	^{(°} (Ωет) ⁻¹	$\Delta E (eV)$	1.04	//K3 μ=	10° tem ² V	5h - 1	Fite (Vice)	$E_{g}(qV)$	VH ₂ (cm ³)	π(09
CeFeO ₂	28,74		0.18	600	5.6	1	-	0.1	1.30	2.05	0.125
CuCrO ₂	4.176		0.22	660	5.6	ALC: N		-0.02	1.32	1.70	0.081
CaAlO2	40		0.17	2035	4			-0.11	1.34	1,45	0.088
CuMnO	20		0.50	550	90			0.15	1.25	1.20	0.057
All enider	are prep	ared from »	olid state r	nation.							
The main p	hyrical pro	portion of p-Ca	CrO ₇ synth	ainst theo	oph XSR* and	NR ⁹					
acide .	02 cm3 -1	\$ (pYK "3	$\Delta f_{1}^{*} (i V)$	1.5891	$X_{\rm p}$ (p/m ²)	N _A /N _A mia	pa HP	E.W.	Freibin	40	
				100.00							
Cucro, Cucro, * Solid in * Nitrate (4.176 n.412 de resetten reset	460	1	12 12	28.70 34.09 (A) Leng (D) Unit (C) Pres	0.05 0.24 m in tangent nil with deaths o net grage with w	2.46 0.74	132	-#42	-	
CLOOD, CLOOD, * Selid as * Ninte I * Ninte I * Ninte I * Selid as A Sel	4.1% 6.412 dr moetien meet	44 22	14	***	25.70 34.09 (A1 Lang (D) Anno (D) Anno	0.05 0.24 0.24 mill of longenet mill of the Australia of the Australia	Ap ge	oparatu	s for m	neasuring	3 H ₂

Room temperature ozone senser

Electrical resistance changes at room temperature of CuCrO₂ (a)nano crystal and (b)micro crystal due to successive increases in O₃ concentration.

S. Zhou, X. Fang, Z. Deng, D. Li, W Dong, R. Tao, G. Meng, T. Wang, Sensors and Actuators B, 143 (2009) 119.

16

EXHAUST GAS PURIFICATION CATALYST

- * Japanese Patent: No.2008-156130
- * DELAFOSSITE TYPE OXIDE, METHOD FOR MANUACTURING THE SAME AND EXHAUST GAS PURIFICATION CATALYST
- * PROBLEM TO BE SOLVED: To provide a delafossite type oxide having high oxygen storage capacity from a low temperature range without requiring the presence of a noble metal, a method for manufacturing the same and an exhaust gas purification catalyst.
- * SOLUTION: the delafossite type oxide of 3R type is represented by the general formula : ABOx, wherein A represents at least one selected from the group consisting of Cu, Ag, Pd and Pt; and B represents at least one selected from the group consisting of Al, Cr, Ga, Fe, Mn, Co, Rh, Ni, In, La, Nd, Sm, Eu, Y and Ti.

THERMOELECTRIC MATERIAL

- * Japanese Patent: 2007-149996
- * LAYERED OXIDE THERMOELECTRIC MATERIAL HAVING DELAFOSSITE STRUCTURE
- * PROBLEM TO BE SOLVED: To develop p-type and n-type oxide thermoelectric materials being chemically stable at a high temperature and having a dimensionless figure of merit ZT close to 1.
- * SOLUTION: The P-type thermoelectric conversion material is composed of a layered oxide having a delafossite structure shown in general formula $CuCr_{1-x}$ Mgx O₂ (0.03 \leq x \leq 0.05). Mg²⁺ with an ion radius near that of Cr³⁺ is substituted for Cr³⁺ of CuCrO₂ and carriers are introduced, and a figure of merit Z (Z=S² /) can be enhanced by improving an electric conductivity . The excellent electric conductivity is obtained at the high temperature of 600 to 1,100 K, and a <u>Seebeck coefficient reaches 200 to 350 µ V/K</u>. The dimensionless figure of merit ZT exceeds 0.2 at 1,100 K, and the p-type thermoelectric conversion material is available as a hightemperature thermoelectric power-generation material.

Additives for the catalytic combustion

Symposium on Advanced Composite Materials

Symposium on Advanced Composite Materials

- Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)based solid-state propellants.
- The Cu-Cr-O composites in recent years are found great promising in application as burning rate catalysts (ballistic modifier) for solid propellants used in defense (ballistic missiles) and space vehicles (rocket propellants).
- Addition of the Cu-Cr-O nanocomposites as catalysts obviously enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants.

LI Wei, CHENG Hua J. Cent. South Univ. Technol. (2007)03-0291-05

Various type of sugar

20

6

Rock candy

Granulated sugar

Cotton candy

Various type of CuCrO₂

<section-header><complex-block>

Synthesis of CuCrO₂ powder

- * Solid state reaction
 - * The particle size of CuCrO₂ powder prepared by traditional solid state reaction is in micro order
 - * Easy to contain spinel impurities (CuCr₂O₄)
 - * In order to obtain pure derafossite phase :High calcination temperature and controlled atmosphere was required (High energy consumption)
- Our method
 - * Burning the raw material by ignition (self combustion)

23

Symposium on Advanced Composite Materials

- * With out high temperature furnace
- * Just under air

Porous CuCrO₂ powder

24

Raman spectra

Absorption isotherms Solid state reaction 0.05 0.04 0.10 0.15 0.20 0.25 0.05 0,10 0,15 0,20 0.25 0.10 Relative Pressure (P/Po) Relative Pressure (P/Po) Absorption isotherms of CuCrO₂ Absorption isotherms of CuCrO₂ power prepared by solid state nano powder reaction. Surface area = $30.92 \text{ m}^2/\text{g}$ Surface area = $0.47 \text{ m}^2/\text{g}$

27

Symposium on Advanced Composite Materials

Composite catalyst derived from Delafossite

28

- Use delafossite it-self as a catalyst
 - * Photo catalyst
 - Gas purification
 - Combustion catalyst
- Cu-base catalyst derived from delafossite
 - * Steam reforming
 - * CO oxidation

- * Supported metal cluster
 - Using delafossite as a supporter materials
 - * CO selective oxidation
 - * Preparation method
 - * Co-precipitation
 - * Deposition-precipitation
 - * Chemical vapor deposition
 - * Laser vaporization
 - * Modified wet impregnation
 - * Photo-deposition

Failed experiment?

Au/CuCrO₂ nano composite

Application on steam reforming

Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel $\mbox{CuFe}_2\mbox{O}_4$

Satoshi Kameoka 4,4, Toyokazu Tanabe 4, An Pang Tsai 4,6

² Instituty of Maltalisciplinary Research for Advanced Materials (MRAM); Toholas University, 2:11-1 Konohira, Aoba-ku, Sendat 1880-8577; Japan ... ⁶ National Institute of Materials Science (NIMS), 1-2-1 Senger, Tuikuba 305-0047; Japan

Applied Catalysis A: General 375 (2010) 163-171

31

S. Kameoka, et. al, Applied Catalysis A: General 375 (2010) 163–171 35 Symposium on Advanced Composite Materials

Summary

- Conductive and transparent p-type CuCrO₂:Mg thin films were prepared by chemical solution deposition with two step annealing.
- Antibacterial properties of delafossite thin films such as CuAlO₂ and CuCrO₂ were demonstrated
- Highly porous CuCrO₂ nanopowder were performed by selfcombustion process in air.
- High performance steam reforming catalyst were derived from CuCrO₂ nanopowder.
- CuCrO₂ supported Au nano cluster were synthesized by photo catalytic reduction.