

Electronic Materials

Latest Materials for Displays

Feb/24/2011

Symposium on Advanced Composite Materials

Yoshiki Nakagawa Technical Marketing

DISPLAY CHEMICALS / DISPLAY TECHNOLOGIES ROHM AND HAAS ELECTRONIC MATERIALS (DOW CHEMICAL GROUP)

Contents

1.Dow Activities in Display Industry

- 2. Technology Trend of Flat Panel Displays
- **3.Latest Materials in LCD & Flexible/E-Paper**
 - **3-1. New Semiconductor for TFT**
 - 3-2. Fast Response LC Mode
 - **3-3. Wide Aperture Technology**
 - **3-4. Touch Panel**
 - 3-5. Flexible Display/E-paper
 - **3-6. Replacement of CVD Layer**

On April 1, 2009, Dow acquired Rohm and Haas Company

- Specialty and electronic chemicals
- Market focus
- Application technology
- \$10B, 15,000 employees (2008)

- Operational excellence
- Global reach
- Technology innovation / Base material
- \$58B, 46,000 employees (2008)

Display Technologies in Dow Chemical Group

<Display Chemicals Operation Site>

- Fab. : Cheonan (Korea), Sasakami (Japan)
- R&D : Cheonan (Korea), Sasakami (Japan), New R&D Center (Korea, 2H/2011)

Sales Office : Seoul (Korea), Tokyo (Japan), Tao-Yang (Taiwan), Shanghai (China)

Display Category (What is FPD?)

E-Paper including Flexible display.

Electronic Materials

TFT LCD Structure -1

TFT LCD Structure -2

Glass Thickness =0.7mm

Electronic Materials

Sub-Pixel Image

Drive: AC Control Original TV Signal Frame rate : 60Hz HDTV = 1080 (V) x1960 (H) dots

TFT X-Section Image

One mask:

Film Depo.→ Resist Coating

 \rightarrow Photo Litho \rightarrow Dev. \rightarrow Etch. \rightarrow Resist Remove

Cu Gate technology is ready.

LCD MFG Process / Dow Products

Display Chemicals

Contents

- **1.Dow Activities in Display Industry**
- 2. Technology Trend of Flat Panel Displays
- **3.Latest Materials in LCD & Flexible/E-Paper**
 - **3-1. New Semiconductor for TFT**
 - 3-2. Fast Response LC Mode
 - **3-3. Wide Aperture Technology**
 - **3-4. Touch Panel**
 - 3-5. Flexible Display/E-paper
 - **3-6. Replacement of CVD Layer**
- 4.Summary

Key Words in FPD Industry : History

Historical Key Words in FPD Industy

Category		1990~	2000~	2010~	
Main Customers		Japan	Korea / Taiwan	China	
Application		Note PC	LCD TV	3D TV	
		Monitor	Mobile Phone	Touch Panel	
Dipslay Mode		LCD PDP	(OLED)	OLED E-Paper	
	Back-plane	a-Si TFT	LTPS TFT	Oxide SC TFT Organic SC TFT	
LCD Key Technology	LC Mode	TN	IPS/FFS	Photo Alignment VA	
		I IN	VA	PSA	
	BLU	CCFL		LED	

TFT: Thin Film Transistor

LTPS: Low Temperature Poly-Si

TN: Twisted Nematic

IPS: In-plane Switching

VA: Vertical Alignment

PSA: Polymer Sustainable Alignment

BLU: Back Light Unit

FFS: Fringe Field Switching

CCFL: Cold Cathode Fluorescence Light

Key Words in FPD Industry : 2010~

KEY WORD in 2010 ~

	Key Word Sub Key Words		Technical Words				
	Green	Low Power Consunption	High Trasmittance	CF on Array Rib-Less Design(Photo-Alignment, PSA) 4 Pixels Design (Yelllow or White)			
			LED BLU	Low Power, Hg Free Local Deming, Slim Design			
	China	Large Consumer Maket	Low cost product	Fast LCD Shft from CRT LCD TV price down			
	China	New TFT Fab Construction	New Customers				
ions	3D	3D Movie	Avatar, New TV Channel	PDP is also matched with 3D.			
w Applicat	Touch Danci	Windows 7	To Support Touch Panel Function	IPS/FFS (Strong for Finger Touch)			
	Touch Panel	i-Pad	Full Touch Panel Function				
Ne	E-Paper Amazon Kindle, SONY Reader		E-Ink, Flexible Sustrate (in the futre) Digital Sinage				

Another Key Word : M&A, Alliance (e.g. Innolux/CMO/TPO → CMI)

Contents

- **1.Dow Activities in Display Industry**
- 2. Technology Trend of Flat Panel Displays
- **3.Latest Materials in LCD and Flexible/E-Paper**

- **3-1. New Semiconductor for TFT**
- 3-2. Fast Response LC Mode
- **3-3. Wide Aperture Technology**
- 3-4. Touch Panel
- 3-5. Flexible Display/E-paper
- **3-6. Replacement of CVD Layer**

3. Latest Materials in LCD & Others (Summary)

1. New Semiconductor for TFT : Next mode of LTPS, High Mobility

Oxide SC : TAOS (Transparent Amorphous Oxide Semiconductor)

Organic TFT

2. Fast Response LC Mode : 3D, High Frame Rate

PFA : Polymer sustainable alignment for VA mode

Photo Alignment for VA mode

3. Wide Aperture Technology: Low Power Consumption

Transparent Polymer Film on TFT Array Technology

CF Layers on TFT Array Technology

4. Touch Panel:

New Application

Very High Transmittance

5. Flexible Display/E-Paper: **New Application**

Low temperature process-able materials for plastic substrate

6. CVD Layer Replacement: Low Cost MFG, Dry \rightarrow Wet Process

Gate Insulator

TFT Passivation Layer

There are other new materials are also discussed.

For example: Blue Phase LC Mode, Ink Jet Printing Process, etc.

3-1. New Semiconductor for TFT: Oxide Semiconductor

TAOS: Transparent Amorphous Oxide Semiconductor (Prof. Hosono, TIT) High TFT channel mobility Almost same as LTPS (Low Temperature Poly-Si) Sputtering Process (a-Si = CVD)

Material: IGZO (InGaZnO: $In_2O_3 + ZnO + Ga_2O_3$), etc..

Needs: 1) To replace for LTPS (About 9 Mask) → OLED TV
SONY, AUO
2) Large size TV + High Resolution (2kx4k) + High Frame Rate (>120Hz)
Samsung, 70", Dot=2kx4k, 3D-TV (2010)

3-2. Fast Response LC Mode

New LC Vertical Alignment Control Technology

IDW'10: H. Okada et. al., Sharp, Japan

The UV²A Technology for Large Size LCD-TV Panels

Figure 1. Schematic illustration of alignment behavior.

Figure 5. Schematic illustration of Off-states.

Photo alignment makes following Merits.

- 1) Wide aperture
- 2) Low photo leakage
- 3) Fast response
- 4) Matched with new 4 pixels design.

(=MVA needs symmetric rib design.)

Figure 8. Schematic illustration of switching behavior.

(a)Conventional

(b)MPC technology

Figure 9. Pixel design.

Compatible CF Process (Rib / Rib-less)

Dow: Novolac Resin Base Products

1.CF Layers on TFT Array Substrate Design

To reduce glass alignment tolerance between CF And TFT.

2. Organic Insulator on TFT Design

Bubble Decker structure = To reduce unexpected Capacitor

ITO pixel electrode

Reduce Glass Alignment Tolerance

Cross-sectional View Through an AMLCD Pixel

Black Matrix : Needs to set glass assembly tolerance between CF and TFT substrate.

At least BM layer should be moved to TFT substrate side from CF.

Black Matrix on TFT Array

-Consolidation BM + CS : 1Mask reduce -Cover all of BM areas

Figure : CF on TFT Array Design (Black Matrix and R/G/B layers are moved to TFT substrate side.)

Dielectric constant

-On 1MHz / Agilent 4284A

Material	Organic insulator	Organic black	Carbon black
	material	material	material
ε _r	3.34~3.42	3.35~3.45	>15

Dow Products:

Special black material was applied.

"OD" value requirement can be relaxed for BM on Array design, due to metal lines under BM.

Organic Insulator for Wide Aperture

Organic Insulator for Wide Aperture

Conventional Material :

Positive tone system (PAC) + Acrylic polymer

Needs to improve

1) Higher sensitivity (short tact time)

2) Lower out gas

3) Higher thermal resistance (Yellowish color, >230degC)

Dow supposed PAC is the cause of these points.

Dow products: 1st Step (for TV application)

Negative tone system (Photo Initiator + Photo reactive monomer) + Acrylic polymer

We needed to improve following general weak points of Negative Tone.

a) Resolution of contact hole size

b) Half tone control (multi height by halftone mask)

Organic Insulator for Wide Aperture

Ini. THK : 4.03um

Next Direction of Negative Tone Insulator

NPL : Negative tone organic passivation layer (= Still it it is not actual passivation layer)

TMAH: Tetra-methyl ammonium hydroxide

2nd NPL : More Higher Resolution

Technical Barrier : High Resolution with Taper & Enough DoF margin

Electronic Materials

3rd NPL : Higher Reflective Index

Reflective Index VS. Transmittance

ſ	RI of Passi	RI of IZO	Transmit	tance (%) RI of Pa		RI of Passi		RI of Passi		Transmittance (%)
	1.45	5 86.8 1.45				92.6				
	1.55	1.89	90).1	1.55		1.68	96.0		
	1.65		93	93.2				99.1		
		ĺ	RI of Passi	RI of IZO	RI of SiNx	Tr	ansmittance (%)		
			No layer				94.1			
Pixel Electrode			1.45	1.89	1.68		87.2			
		_	1.55				90.3			
:	= ITO or IZO		1.65				93.3			
SiNx _	Pixel = IT	O Organic Insulato Gate Insulator	Con Hole re	e	Te 1. 2. m 3.	echi Nei Kee atei Kee	nical Barrier : w Material is eping the Tra rial itself. eping the lith	needed nsmittance 98% in o performance		
Drain E	ectrode	Glass Substrate				-	Electronic Materi			

3-4. Touch Panel

3-5. Flexible Display / E-Paper

From Display Search (Jan/2010)

Substrate : PET, PEN

Process Temperature Requirements; =< 150degC

Electrophoretic Mode: E-Ink

High Transmittance & Low Temperature Curable Material

	Transparency at 2.5µm			
Polymer	PI	400nm	380nm	360nm
Thermal Curable	А	95.0	86.2	45.7
Radical Cross linkable	А	95.2	85.9	45.7
Radical Cross linkable	В	99.5	98.6	94.4

Transparency was improved by selecting high efficient photo initiator.

Taper Angle Control for Touch Panel and Flexible/E-Paper

Thermal flow properties can not apply for low temperature curable application.

SUB: 4" Si Wafer FT: 2.5μ m (after cure) SB: 100° C / 90sec EXP: (g+h+I), ≤ 330 cut filter PROX GAP: 50μ m DEV: 0.4wt%TMAHaq HB: 150° C / 5min H.P.

Side wall angle can be adjustable by selecting cross linker.

3-6. CVD Layer Replacement

a-Si TFT Structure (Bottom Gate Type)

3-6. CVD Layer Replacement

	Gate Insulator	TFT Passivation			
Current Material (CVD)	SiOx or SiNx	SiOx or SiNx			
Thermal Resistance	350degC (at least > 320degC)	230degC for LC Alignment layer bake			
Transparency	High Transmittance is required.	It depends on design. Some design needs transparency.			
Moisture Barrie	Not required.	Mobile: Not so sevir TV: Almost same as SiNx (50nm)			
Others	Basically photo-imagable property i an option for total balance.	cally photo-imagable property is required, but non-photo-imagable is otion for total balance.			

3. Latest Materials in LCD & Others (Summary)

1. New Semiconductor for TFT : Next mode of LTPS, High Mobility

Oxide SC : TAOS (Transparent Amorphous Oxide Semiconductor)

Organic TFT

2. Fast Response LC Mode : 3D, High Frame Rate

PFA : Polymer sustainable alignment for VA mode

Photo Alignment for VA mode

3. Wide Aperture Technology: Low Power Consumption

Transparent Polymer Film on TFT Array Technology

CF Layers on TFT Array Technology

4. Touch Panel:

New Application

Very High Transmittance

5. Flexible Display/E-Paper: **New Application**

Low temperature process-able materials for plastic substrate

6. CVD Layer Replacement: Low Cost MFG, Dry \rightarrow Wet Process

Gate Insulator

TFT Passivation Layer

There are other new materials are also discussed.

For example: Blue Phase LC Mode, Ink Jet Printing Process, etc.

THANK YOU FOR YOUR ATTENSION.