Volume 19 • Number 1 • 2019

Journal of the ICRU

ICRU REPORT 94

Methods for Initial-Phase Assessment of Individual Doses Following Acute Exposure to Ionizing Radiation

journals.sagopub.com/homo/cru ISSN: 5473-6691 INTERNATIONAL COMMISSION ON RADIATION UNITS AND MEASUREMENTS Individual Dose Assessment: the Example of Acute Exposure

Prof François BOCHUD ICRU Commissioner Lausanne University and University of Lausanne, Switzerland (CHUV/UNIL)

ICRU Meeting, Fukushima, April 2023

Retrospective dosimetry

dose reconstruction for epidemiological studies

<page-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text>

nothing for high doses that cause acute radiation syndrome

expands to estimate potential tissue reactions

early medical information support and practice of radiological protection

Proposed scenarios

Malicious acts

Dirty bomb Improvised nuclear bomb Irradiator

Accident

in a nuclear power plant

Description of the methods

- 1. Introduction
- 2. Quantities
- 3. Biodosimetry
- 4. Electron Paramagnetic Resonance (EPR) Dosimetry
- 5. Luminescence Dosimetry
- 6. Other Individual-Person Radiation Measurements
- 7. External Dose Assessment Methods Based on
 - Radiation Field Mapping

+ Recommendations on their use for various radiation exposure conditions and dose assessment needs

Quantities

Quantities to be used

Initial phase

For large-scale, acute exposure events, the quantity to be reported in initial-phase dose assessment for individuals should simply be presented as "**absorbed dose**"

Practical approach that will enable decision makers to proceed

non-SI units should be avoided in all circumstances

Quantities to be used

Initial phase

Individual assessment

Practical approach that will enable decision makers to proceed

Quantities to be used

Proposed methods

Table 1.2 Primary Dosimetry Topics Described in This Report.

Techniques	Primary target materials
Biodosimetry	
 Dicentric chromosome assay (DCA) 	Whole blood or lymphocytes
 Translocation analysis by fluorescence in-situ hybridization (FISH) 	Whole blood or lymphocytes
Cytokinesis block micronucleus (CBMN) assay	Whole blood or lymphocytes
Premature chromosome condensation (PCC)	Whole blood or lymphocytes
γ-H2AX	Whole blood or lymphocytes
RNA expression	Whole blood or lymphocytes
Protein-based assays	Urine, blood plasma, blood serum, whole blood, lymphocytes
Metabolomics	Urine, blood serum, blood plasma
Physical dosimetry	
Electron paramagnetic resonance (EPR)	Teeth, bone, nails, glass from personal items, sugars, fabrics, other personal belongings
Thermoluminescence (TL)	Components of portable electronic devices, glass from personal items, dust on personal items
 Optically stimulated luminescence (OSL) 	Components of portable electronic devices, clothing, other personal belongings
Other	
 Bioassays (ex vivo and in vivo) 	Excreta, thyroid, chest, whole body
Neutron activation	Biological tissue, objects worn by the individual
Mapping and time-and-motion studies	Dose and dose rate measurements

RU

biodosimetry

physical dosimetry

supplementary methods

Biodosimetry

https://www.qst.go.jp/site/nirs-english/1369.html

Biodosimetry can be used to **estimate the dose** of radiation an individual has received

https://www.britannica.com/science/blood-biochemistry

Biodosimetric methods

Table 1.2 Primary Dosimetry Topics Described in This Report.

Techniques	Primary target materials
Biodosimetry	
 Dicentric chromosome assay (DCA) 	Whole blood or lymphocytes
 Translocation analysis by fluorescence in-situ hybridization (FISH) 	Whole blood or lymphocytes
Cytokinesis block micronucleus (CBMN) assay	Whole <mark>blood</mark> or lymphocytes
Premature chromosome condensation (PCC)	Whole blood or lymphocytes
 γ-H2AX 	Whole blood or lymphocytes
RNA expression	Whole blood or lymphocytes
Protein-based assays	Urine, blood plasma, blood serum, whole blood, lymphocytes
Metabolomics	Urine, blood serum, blood plasma

blood cells = circulating dosimeters

they average the dose from all parts of the body

urine can also be used

Dicentric chromosome

very **specific** for ionizing radiation

>50 years old method, but still considered as the "gold standard" of biodosimetry

U.S. National Library of Medicine

KF Wong et al, Cytogenetic biodosimetry: what it is and how we do it, Hong Kong Med J Vol 19 No 2 (April 2013)

Dicentric chromosome

- minimum detectable dose MDD ≈ 0.1 Gy with a good control group
 - (low BGD of 0-2 dicentrics/1,000 cells)

REPORT	
1.2 Gy	

blood48 h to 72 h culture timesample(cytogenetic assays)

If **blood sampling** is **delayed** to several weeks or more, correcting for the **half-life** is necessary

T-lymphocytes **half-lives** (*T*) depend on their immunologic function:

- short-lived (T = some weeks/months)
- long-lived (T ≈ 3.5 years or more)

Translocation

measured by fluorescence in-situ hybridization (FISH)

probe stained with a **fluorochrome**

U.S. National Library of Medicine

Par Thomas Ried — National human genome research institute, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2271086

Translocation

Typical dose response relationship

100-200 mGy if pre-exposure sample was acquired

blood sample longer time than for dicentric

persists over **years** or **decades** able to **accumulate** during long, chronic exposures

need to have a **baseline**

higher cost and longer and **more complicated** staining protocol limit its use in emergency biodosimetry

H2AX is one of several genes encoding histone H2A double strand break (DSB) induces phosphorylation of H2AX $\rightarrow \gamma$ -H2AX

By David O Morgan - The Cell Cycle. Principles of Control., Attribution, https://commons.wikimedia.org/w/index.php?curid=89674546 By Emw - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8814725 https://www.dinow.co.jp/en/technology-en/ γ-H2AX

fluorescence analysis

Redon, Nakamura, et al, https://www.dinow.co.jp/en/technology-en/

γ-H2AX

Typical dose response relationship

Incubation time/h

Rothkamm and Horn, Ann Ist Super Sanità 2009 | Vol. 45, no. 3: 265-271

Physical dosimetry

https://www.bruker.com/en/products-and-solutions/mr/epr-instruments.html

Physical dosimetry

Table 1.2 Primary Dosimetry Topics Described in This Report.

Techniques	Primary target materials
Physical dosimetry	
 Electron paramagnetic resonance (EPR) 	Teeth, bone, nails, glass from personal items, sugars, fabrics, other personal belongings
 Thermoluminescence (TL) 	Components of portable electronic devices, glass from personal items, dust on personal items
 Optically stimulated luminescence (OSL) 	Components of portable electronic devices, clothing, other personal belongings

EPR can detect and/or identify the sites of **unpaired electrons** in materials

typical example

Carbonate ion \mathbb{CO}_2^- is an impurity in hydroxyapatite that can be radiation-induced in tooth enamel

CO₂⁻ -radicals are **extremely stable**

in tooth enamel:

up to **100'000 years** in historical samples

case of a single unpaired electron

JA Weil and JR Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, Wiley, 2007

biologically derived materials

in vitro measurement

typical sample size ≤ 5 mg

https://www.thesmartclinics.co.uk/understanding-tooth-anatomy-for-better-dental-health/

in vivo measurement

Junwang G *et al.* (2014) New Developed Cylindrical TM010 Mode EPR Cavity for X-Band In Vivo Tooth Dosimetry. PLOS ONE 9(9): e106587. https://doi.org/10.1371/journal.pone.010658

Typical dose response relationship

EPR in **tooth enamel** "gold standard" of retrospective dosimetry

stable for decades

great for epidemiology where time is not an issue

MDD ≈ **100 mGy**

fast enough to be used in emergency

MDD ≈ **500 mGy**

Luminescence – TLD OSL

Luminescence – TLD OSL

non-biological samples

personal electronics, plastic cards, fabrics

biological samples

teeth, dental repair ceramics, clothing

Supplementary methods

https://www.qst.go.jp/site/nirs-english/1369.html

Supplementary methods

Table 1.2 Primary Dosimetry Topics Described in This Report.	
--	--

Techniques	Primary target materials
Other	
 Bioassays (ex vivo and in vivo) 	Excreta, thyroid, chest, whole body
Neutron activation	Biological tissue, objects worn by the individual
Mapping and time-and-motion studies	Dose and dose rate measurements

Bioassay

Biodosimetry and physical dosimetry cannot distinguish between external and internal exposures

CEUSEAN

- whole-body counting (WBC) in-vivo
 - thyroid counting ۲
 - chest counting

ex-vivo

excretion analysis

http://www.advancetechcontrols.com/radiation/in-vivo-and-health-safety/

Neutron activation

Example of Na activation in blood

beware of the main Cl activation in blood (from NaCl)		
³⁷ Cl(n,γ) ³⁸ Cl	T _{1/2} = 33 min	<i>E</i> _v = 1.64 MeV (31 %) and 2.17 MeV (47 %)

Neutron activation

Example of Na activation in blood

Neutron activation

Example of Na activation in blood

https://bsi.lv/en/products/hpge-detectors-spectrometers/hpge-spectrometer-lead-shield/

Monte Carlo (MC) simulation mixed with biodosimetry

memory should not be fully trusted,but the scenario of an accident canbe simulated with 3D phantoms

biodosimetry or official dosimeters

can be used to normalize MC calculations

Radiation field mapping

Dose assessment

"time-and-motion" dose analysis

Where were you?

When were you there?

How long were you there?

What was the **shielding** of your locations?

Time evolution of the dose rate?

Radiation field mapping

Dose assessment

"time-and-motion" dose analysis

RD

Conclusions

Conclusions

- In case of an event, important to act quickly
 - first results in absorbed dose (Gy)
 - many methods available
 - ICRU Report 94 provides guidance
- Essential to be prepared well in advance
 - these techniques take time to master

