ICRU Report 95: Operational Quantities for External Radiation Exposure Impact on Environmental Measurements

ICRU Symposium 2023 Revitalization of Fukushima and Radiation Measurement Thomas Otto, ICRU and CERN

Contents

- Protection and Operational quantities
- New operational quantities in ICRU 95
- Changes in conversion coefficients for ambient dosimetry
- Consequences:
 - Dosimetry in realistic radiation fields
 - Environmental dosimeter response
- Summary

Protection Quantities

- ICRP defines Protection Quantities, to compare radiation detriment with limits and to enable optimization.
- Unifying concept to estimate radiation detriment from
 - External exposure
 - Internal exposure
- To organs (tissues) and whole body:
 - $D_{R,T} = \frac{1}{m_T} \int D_R \cdot dm$ Mean Organ Dose
 - $E = \sum_{T} w_T \sum_{R} w_R D_{R,T}$ Effective Dose
- Dose limits and constraints expressed in protection quantities

Calculation of Protection Quantities

• Whole Body: E • Eye lens: $H_{T lens}$

Phantoms: ICRP Report 110 Conversion Coefficients: ICRP Report 116

Operational Quantities

- Defined in a single point in principle measurable
- Defined as (ICRU 39)

$$H(d) = D(d) * Q(L)$$

Dose equivalent = absorbed dose in depth d * quality factor

Calculation of conversion coefficients for present Operational Quantities

Area Monitoring

ICRU sphere

Personal Monitoring

slab and cylinder phantoms (surrogates for trunk, head and extremities)

Phantoms are made from ICRU-4-component tissue surrogate (numerical)

Present Relation of Quantities

New Operational Quantities in ICRU 95

$$H = h_{\varphi} \cdot \Phi_{E_{p}}$$

• Use of anthropomorphic phantoms and $w_{\rm T}$, $w_{\rm R}$

- Better approximation of *E* and H_T by definition
- Definition of quantities to limit tissue effects (local dose to skin and to eye lens) as absorbed dose
- More radiation types, e.g. positrons, protons, pions... & wider energy range

Whole-body personal dosimetry

Personal Dose Equivalent $H_{\rm p}(10)$

- *H_p* (10) = *D*(10) * *Q*(*L*)
 10 mm under the center of the ICRU-4-component tissue slab
- **Expanded Radiation Field**

Personal Dose $H_{\rm p}$:

- Calculated as weighted sum $(W_{\rm R}, W_{\rm T})$ of organ doses in anthropomorph phantom
- Plane-parallel radiation field from defined direction

Ambient Dosimetry

Ambient Dose Equivalent H*(10)

• $H^*(10) = D(10) * Q(L)$

- Absorbed dose in 10 mm depth in the ICRU sphere
- Expanded and aligned field (all radiation field components assembled under 0°)

Ambient Dose H*

Maximum of Effective Dose over the directional coefficients listed in ICRP Report 116

$$H^* = h_{E_{\max}} \cdot \Phi$$
$$h_{E_{\max}}(E_p) = E_{\max}(E_p) / \Phi(E_p)$$

and 4 other directions

E, H*(10) and H* for Photons

E, H*(10) and H* for Neutrons

ICRU Report 95 Relation of Quantities

Ambient dose – Photons

Conversion coefficients from kerma K_a to operational quantity

At energies typical for radioisotopes, $H_p = 0.86 * H_p(10)$ At low-energy x-ray (backscatter from patient) $H_p = 0.2 * H_p(10)$

Monte-Carlo Simulation Study: Activation at an Accelerator Workplace

Activation with 3.5 GeV proton beam Photon and electron spectra (1h decay) *H**(10) and *H** overlay

Ratio H* / H*(10)

Decay Time	1 hour	1 week	1 year
Photon	0.87	0.86	0.86
Electron	2.9	2.0	2.2
Positron	0.9	1.0	1.0
Total	0.87	0.87	0.86

- Photons dominate
- *H*^{*} ≈ 0.86 *H*^{*}(10)
- Typical for radionuclides
- Attention in predominantly beta-fields

Th. Otto & M. Widorski, Int'l. Particle Accelerator Conference 2021, 10.18429/JACoW-IPAC2021-TUPAB316

Low-energy x-ray spectra

High-dose rate spectrum, 20 kV tube voltage Fluence spectrum H*(10)-weigthed spectrum

H*-weighted spectrum

Influence on dose of medical personnel during interventional radiology under study

Diagnostic x-ray calibration spectra

Upper curve: $H^*(10)$ Lower curve: H^* $H^* \approx H^*(10)$ in broad spectra

> T. Otto, JINST 14 P11011 (2019) T. Otto, R. Behrens, J. Rad. Prot **139** (2020)

Calibration of photon dosimeters

Conversion coefficients from **fluence** ϕ to operational quantity

The dosimeter can be recalibrated The energy-dependent response function of the dosimeter must be modified

Response of dosimeters

- Response: $R = \frac{G}{c}$
 - Dose Indication *G* /Conventional true value *C*
- Change of quantity: $C_{old} \rightarrow C_{new}$
- Dose indication remains the same: $G \rightarrow G$

• Response of dosimeter in the new quantity: $R_{\text{new}} = \frac{G}{C_{\text{old}}} \frac{C_{\text{old}}}{C_{\text{new}}} = R_{old} \frac{C_{\text{old}}}{C_{\text{new}}} = R_{old} \frac{h_{\text{old}}}{h_{\text{new}}}$

Response of Survey instrument

Based on

G-M counter

T. Otto, *JINST* **14** P01010, 2019

Response of HPIC for Photons

Centronics high-pressure ionization chamber

T. Otto, *JINST* **14** P01010, 2019

Response of Environmental TLD

C. Hranitzky and H. Stadtmann, Rad. Meas. 43 (2008) 520 ff.

Response of Environmental TLD

C. A. Carlsson et al., Rad. Prot. Dosim. 67 (1996) 33 ff.

Spectrometer Environmental Monitors

counts

Nal-scintillator-based environmental monitor (ICRU Report 92)

For example:

Yi et al., Rad. Prot. Dosim. **74** (1994) 273 ff. Grasty et al., Rad. Prot. Dosim. **94** (2001) 309 ff. Dombrowski, Rad. Prot. Dosim. **160** (2014) 269 ff.

Aerial Survey Measurements

Flight Path (ICRU Report 92)

spectrometer-detector (Breitenmoser et al., Adv. Geosci. **57** (2022) 89 ff.

Evaluation proceeds similar to fixed-location spectrometer-detectors.

Adaptation of response matrix to H^* is required

Environmental Neutron Monitoring with TLD

E. Piesch, B. Burgkhardt and others, 1980's

Response of Neutron Monitors (Rem-counters)

As previously, standard Rem-counter response in mono-energetic fields within a large factor

No significant change for use at E_{kin} < 20 MeV

Field calibration may be necessary

Black lines: IEC 61005 Ed. 3.0 b:2014 recommended response interval Re-assessment of IEC acceptance regions required

J S Eakins et al 2018 J. Radiol. Prot. 38 688

Summary

- Photon ambient dosimeters with cut-off *E* > 50 keV nearly unaffected
 - Recalibration of sensitivity
- Ambient dosimeters for low photon energies:
 - Redesign of filter required (or algorithm for multi-detector types)
- Spectrometer-based ambient dosimeter (Scintillators or HpGe for photons, Bonner spheres for neutrons)
 - Re-evaluate the response matrix for *H**
- Neutron rem-counters continue to give "good estimate"
 - Recalibration, adaptation of acceptance limits by IEC

Thank you for your Attention